Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Front Cell Dev Biol ; 12: 1279723, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086660

RESUMO

Cell-cell contact formation of polarized epithelial cells is a multi-step process that involves the co-ordinated activities of Rho family small GTPases. Consistent with the central role of Rho GTPases, a number of Rho guanine nucleotide exchange factors (GEFs) and Rho GTPase-activating proteins (GAPs) have been identified at cell-cell junctions at various stages of junction maturation. As opposed to RhoGEFs and RhoGAPs, the role of Rho GDP dissociation inhibitors (GDIs) during cell-cell contact formation is poorly understood. Here, we have analyzed the role of RhoGDI1/ARHGDIA, a member of the RhoGDI family, during cell-cell contact formation of polarized epithelial cells. Depletion of RhoGDI1 delays the development of linear cell-cell junctions and the formation of barrier-forming tight junctions. In addition, RhoGDI1 depletion impairs the ability of cells to stop migration in response to cell collision and increases the migration velocity of collectively migrating cells. We also find that the cell adhesion receptor JAM-A promotes the recruitment of RhoGDI1 to cell-cell contacts. Our findings implicate RhoGDI1 in various processes involving the dynamic reorganization of cell-cell junctions.

2.
Biomedicines ; 12(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39061997

RESUMO

Junctional adhesion molecule-A (JAM-A), also known as F11 receptor (F11R), is a transmembrane glycoprotein that is involved in various biological processes, including cancer initiation and progression. However, the functional characteristics and significance of JAM-A in pan-cancer remain unexplored. In this study, we used multiple databases to gain a comprehensive understanding of JAM-A in human cancers. JAM-A was widely expressed in various tissues, mainly located on the microtubules and cell junctions. Aberrant expression of JAM-A was detected in multiple cancers at both mRNA and protein levels, which can be correlated with poorer prognosis and may be attributed to genetic alterations and down-regulated DNA methylation. JAM-A expression was also associated with immune infiltration and may affect immunotherapy responses in several cancers. Functional enrichment analysis indicated that JAM-A participated in tight junction and cancer-related pathways. In vitro experiments verified that JAM-A knockdown suppressed the proliferation and migration abilities of breast cancer cells and liver cancer cells. Overall, our study suggests that JAM-A is a pan-cancer regulator and a potential biomarker for predicting prognosis and immune-therapeutic responses for different tumors.

3.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473701

RESUMO

This work analyzes the role of the tight junction (TJ) protein ZO-2 on mechanosensation. We found that the lack of ZO-2 reduced apical membrane rigidity measured with atomic force microscopy, inhibited the association of γ-actin and JAM-A to the cell border, and instead facilitated p114RhoGEF and afadin accumulation at the junction, leading to an enhanced mechanical tension at the TJ measured by FRET, with a ZO-1 tension probe, and increased tricellular TJ tension. Simultaneously, adherens junction tension measured with an E-cadherin probe was unaltered. The stability of JAM-A and ZO-2 binding was assessed by a collaborative in silico study. The absence of ZO-2 also impacted the cell response to the substrate, as monolayers plated in 20 kPa hydrogels developed holes not seen in parental cultures and displayed a retarded elongation and formation of cell aggregates. The absence of ZO-2 was sufficient to induce YAP and Snail nuclear accumulation in cells cultured over glass, but when ZO-2 KD cells were plated in nanostructured ridge arrays, they displayed an increased abundance of nuclear Snail and conspicuous internalization of claudin-4. These results indicate that the absence of ZO-2 also impairs the response of cells to substrate stiffness and exacerbates transformation triggered by substrate topography.


Assuntos
Actinas , Junções Íntimas , Actinas/metabolismo , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Fosfoproteínas/metabolismo
4.
PeerJ ; 12: e17088, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495763

RESUMO

Junctional adhesion molecule-A (JAM-A) is an adhesion molecule that exists on the surface of certain types of cells, including white blood cells, endothelial cells, and dendritic cells. In this study, the cDNA sequences of JAM-A-Fc were chemically synthesized with optimization for mammalian expression. Afterward, we analyzed JAM-A protein expression through transient transfection in HEK293 cell lines. Mice were immunized with JAM-A-Fc protein, and hybridoma was prepared by fusing myeloma cells and mouse spleen cells. Antibodies were purified from the hybridoma supernatant and four monoclonal strains were obtained and numbered 61H9, 70E5, 71A8, and 74H3 via enzyme-linked immunosorbent assay screening. Immunofluorescence staining assay showed 61H9 was the most suitable cell line for mAb production due to its fluorescence signal being the strongest. Flow cytometric analysis proved that 61H9 possessed high affinity. Moreover, antagonism of JAM-A mAb could attenuate the proliferative, migrative, and invasive abilities of ESCC cells and significantly inhibit tumor growth in mice. By examining hematoxylin-eosin staining mice tumor tissues, we found inflammatory cells infiltrated lightly in the anti-JAM-A group. The expression of BCL-2 and IκBα in the anti-JAM-A group were decreased in mice tumor tissues compared to the control group. Ultimately, a method for preparing high-yield JAM-A-Fc protein was created and a high affinity mAb against JAM-A with an antitumor effect was prepared.


Assuntos
Molécula A de Adesão Juncional , Neoplasias , Humanos , Camundongos , Animais , Molécula A de Adesão Juncional/metabolismo , Células Endoteliais , Células HEK293 , Neoplasias/metabolismo , Mamíferos
5.
Bioact Mater ; 36: 112-125, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38440324

RESUMO

Androgenic alopecia (AGA) is a highly prevalent form of non-scarring alopecia but lacks effective treatments. Stem cell exosomes have similar repair effects to stem cells, suffer from the drawbacks of high cost and low yield yet. Cell-derived nanovesicles acquired through mechanical extrusion exhibit favorable biomimetic properties similar to exosomes, enabling them to efficiently encapsulate substantial quantities of therapeutic proteins. In this study, we observed that JAM-A, an adhesion protein, resulted in a significantly increased the adhesion and resilience of dermal papilla cells to form snap structures against damage caused by dihydrotestosterone and macrophages, thereby facilitating the process of hair regrowth in cases of AGA. Consequently, adipose-derived stem cells were modified to overexpress JAM-A to produce engineered JAM-A overexpressing nanovesicles (JAM-AOE@NV). The incorporation of JAM-AOE@NV into a thermosensitive hydrogel matrix (JAM-AOE@NV Gel) to effectively addresses the limitations associated with the short half-life of JAM-AOE@NV, and resulted in the achievement of a sustained-release profile for JAM-AOE@NV. The physicochemical characteristics of the JAM-AOE@NV Gel were analyzed and assessed for its efficacy in promoting hair regrowth in vivo and vitro. The JAM-AOE@NV Gel, thus, presents a novel therapeutic approach and theoretical framework for promoting the treatment of low cell adhesion diseases similar to AGA.

6.
Cells ; 12(23)2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38067129

RESUMO

Tight junctions (TJ) are cell-cell adhesive structures that define the permeability of barrier-forming epithelia and endothelia. In contrast to this seemingly static function, TJs display a surprisingly high molecular complexity and unexpected dynamic regulation, which allows the TJs to maintain a barrier in the presence of physiological forces and in response to perturbations. Cell-cell adhesion receptors play key roles during the dynamic regulation of TJs. They connect individual cells within cellular sheets and link sites of cell-cell contacts to the underlying actin cytoskeleton. Recent findings support the roles of adhesion receptors in transmitting mechanical forces and promoting phase separation. In this review, we discuss the newly discovered functions of cell adhesion receptors localized at the TJs and their role in the regulation of the barrier function.


Assuntos
Células Epiteliais , Junções Íntimas , Junções Íntimas/metabolismo , Adesão Celular/fisiologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Moléculas de Adesão Celular/metabolismo , Receptores de Superfície Celular/metabolismo
7.
Cancer Cell Int ; 23(1): 160, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37563645

RESUMO

BACKGROUND: The F11R/JAM-A cell adhesion protein was examined as the therapeutic target in triple negative breast cancer (TNBC) with the use of the peptide antagonist to F11R/JAM-A, that previously inhibited the early stages of breast cancer metastasis in vitro. METHODS: The online in silico analysis was performed by TNMPlot, UALCAN, and KM plotter. The in vitro experiments were performed to verify the effect of peptide 4D (P4D) on human endothelial cell lines EA.hy926 and HMEC-1 as well as on human TNBC cell line MDA-MB-231. The cell morphology upon P4D treatment was verified by light microscopy, while the cell functions were assessed by colony forming assay, MTT cell viability assay, BrdU cell proliferation assay, and Transepithelial/Endothelial Electrical Resistance measurements. The in vivo experiments on 4T1 murine breast cancer model were followed by histopathological analysis and a series of quantitative analyses of murine tissues. RESULTS: By in silico analysis we have found the elevated gene expression in breast cancer with particular emphasis on TNBC. The elevated F11R expression in TNBC was related with poorer survival prognosis. Peptide 4D has altered the morphology and increased the permeability of endothelial monolayers. The colony formation, viability, and proliferation of MDA-MB-231 cells were decreased. P4D inhibited the metastasis in 4T1 breast cancer murine model in a statistically significant manner that was demonstrated by the resampling bootstrap technique. CONCLUSIONS: The P4D peptide antagonist to F11R/JAM-A is able to hinder the metastasis in TNBC. This assumption needs to be confirmed by additional 4T1 mouse model study performed on larger group size, before making the decision on human clinical trials.

8.
Platelets ; 34(1): 2214618, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37246517

RESUMO

F11 receptor (F11R)/Junctional Adhesion Molecule -A (JAM-A) is a transmembrane protein which belongs to the immunoglobulin superfamily of cell adhesion molecules. F11R/JAM-A is present in epithelial cells, endothelial cells, leukocytes, and blood platelets. In epithelial and endothelial cells, it takes part in the formation of tight junctions. In these structures, molecules of F11R/JAM-A located on adjacent cells form homodimers and thus take part in stabilization of cellular layer integrity. In leukocytes, F11R/JAM-A was shown to play role in their transmigration through the vascular wall. Paradoxically, the function of F11R/JAM-A in blood platelets, where it was primarily discovered, is much less understood. It has been proven to regulate downstream signaling of αIIbß3 integrin and to mediate platelet adhesion under static conditions. It was also shown to contribute to transient interactions of platelets with inflamed vascular wall. The review is aimed at summarizing the current state of knowledge of the platelet pool of F11R/JAM-A. The article also presents perspectives of the future research to better understand the role of this protein in hemostasis, thrombosis, and other processes where blood platelets are involved.


The molecule of a complex name F11R/JAM-A is a protein which was primarily discovered on blood platelets. Later, the presence of the same molecule was confirmed on endothelial cells and epithelial cells. From the moment of the discovery, most of the research was focused on the role of this protein in the latter types of cells. It was found to be an important element of so-called tight junctions. These structures are crucial for maintaining of integrity and selective permeability of cellular layers composed of these types of cells. In the following years, the presence of F11R/JAM-A has also been reported on leukocytes. An important role of specific type of leukocytes is their penetration to the sites of inflammation. Interplay of F11R/JAM-A present on endothelium and that on leukocyte is involved in this process. But what about the role of this protein in blood platelets where it was originally discovered? There is limited knowledge regarding this issue. It was found to play a role in the ability of platelets to adhere to a surface under static conditions, but it is not known if the same is true under flow. Is the protein necessary for platelets to aggregate and form thrombus? Genetically engineered mice were created which lack this protein in blood platelets to answer this question. These platelets were abnormally reactive, as it transpired that the protein plays a role of a negative regulator to one of the most important mechanisms, which triggers platelet aggregation. But is this inhibitory function the only task F11R/JAM-A has to fulfil in platelets? Presented review collects all the knowledge regarding this protein in blood platelets and tries to show interesting routes which need exploration.


Assuntos
Plaquetas , Molécula A de Adesão Juncional , Humanos , Plaquetas/metabolismo , Molécula A de Adesão Juncional/metabolismo , Células Endoteliais/metabolismo , Junções Íntimas/metabolismo , Moléculas de Adesão Celular/metabolismo , Receptores de Superfície Celular/metabolismo
9.
Yonsei Med J ; 64(6): 375-383, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37226564

RESUMO

PURPOSE: Junctional adhesion molecule (JAM)-A is an immunoglobulin-like molecule that colocalizes with tight junctions (TJs) in the endothelium and epithelium. It is also found in blood leukocytes and platelets. The biological significance of JAM-A in asthma, as well as its clinical potential as a therapeutic target, are not well understood. The aim of this study was to elucidate the role of JAM-A in a mouse model of asthma, and to determine blood levels of JAM-A in asthmatic patients. MATERIALS AND METHODS: Mice sensitized and challenged with ovalbumin (OVA) or saline were used to investigate the role of JAM-A in the pathogenesis of bronchial asthma. In addition, JAM-A levels were measured in the plasma of asthmatic patients and healthy controls. The relationships between JAM-A and clinical variables in patients with asthma were also examined. RESULTS: Plasma JAM-A levels were higher in asthma patients (n=19) than in healthy controls (n=12). In asthma patients, the JAM-A levels correlated with forced expiratory volume in 1 second (FEV1%), FEV1/forced vital capacity (FVC), and the blood lymphocyte proportion. JAM-A, phospho-JNK, and phospho-ERK protein expressions in lung tissue were significantly higher in OVA/OVA mice than in control mice. In human bronchial epithelial cells treated with house dust mite extracts for 4 h, 8 h, and 24 h, the JAM-A, phospho-JNK, and phospho-ERK expressions were increased, as shown by Western blotting, while the transepithelial electrical resistance was reduced. CONCLUSION: These results suggest that JAM-A is involved in the pathogenesis of asthma, and may be a marker for asthma.


Assuntos
Asma , Humanos , Animais , Camundongos , Moléculas de Adesão Juncional , Plaquetas , Western Blotting , Modelos Animais de Doenças
10.
Stem Cell Rev Rep ; 19(5): 1554-1575, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37060532

RESUMO

Mesenchymal stem cells (MSCs) is promising in promoting wound healing mainly due to their paracrine function. Nonetheless, the transplanted MSCs presented poor survival with cell dysfunction and paracrine problem in diabetic environment, thus limiting their therapeutic efficacy and clinical application. JAM-A, an adhesion molecule, has been reported to play multi-functional roles in diverse cells. We therefore investigated the potential effect of JAM-A on MSCs under diabetic environment and explored the underlying mechanism. Indeed, high-glucose condition inhibited MSCs viability and JAM-A expression. However, JAM-A abnormality was rescued by lentivirus transfection and JAM-A overexpression promoted MSCs proliferation, migration and adhesion under hyperglycemia. Moreover, JAM-A overexpression attenuated high-glucose-induced ROS production and MSCs apoptosis. The bio-effects of JAM-A on MSCs under hyperglycemia were confirmed by RNA-seq with enrichment analyses. Moreover, Luminex chip results showed JAM-A overexpression dramatically upregulated PDGF-BB and VEGF in the supernatant of MSCs, which was verified by RT-qPCR and western blotting. The supernatant was further found to facilitate HUVECs proliferation, migration and angiogenesis under hyperglycemia. In vivo experiments revealed JAM-A overexpression significantly enhanced MSCs survival, promoted wound angiogenesis, and thus accelerated diabetic wound closure, partially by enhancing PDGF-BB and VEGF expression. This study firstly demonstrated that JAM-A expression of MSCs was inhibited upon high-glucose stimulation. JAM-A overexpression alleviated high-glucose-induced MSCs dysfunction, enhanced their anti-oxidative capability, protected MSCs from hyperglycemia-induced apoptosis and improved their survival, thus strengthening MSCs paracrine function to promote angiogenesis and significantly accelerating diabetic wound healing, which offers a promising strategy to maximize MSCs-based therapy in diabetic wound.


Assuntos
Diabetes Mellitus , Hiperglicemia , Células-Tronco Mesenquimais , Neovascularização Fisiológica , Cicatrização , Ferimentos e Lesões , Humanos , Becaplermina/genética , Becaplermina/metabolismo , Sobrevivência Celular/genética , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Glucose/farmacologia , Hiperglicemia/genética , Hiperglicemia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica/genética , Comunicação Parácrina/genética , Cordão Umbilical/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/genética , Ferimentos e Lesões/genética , Ferimentos e Lesões/metabolismo
11.
Hum Cell ; 36(1): 244-257, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36214988

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a tumor with high incidence and poor prognosis in developing countries. Junctional adhesion molecule A (JAM-A, also known as F11R) affects numerous biological processes, which is a vital regulator of the development of malignant tumors. However, its exact role and underlying mechanism in ESCC remain obscure. Our present study demonstrated that JAM-A was upregulated in ESCC tissues and cell lines by RNA sequencing and immunohistochemistry (IHC). JAM-A knockdown significantly suppressed the proliferation of the ESCC cells, induced cell cycle arrest at the G1 and promoted apoptosis, and suppressed the ability of invasion and migration in vivo and in vitro. Mechanistically, JAM-A may activate the NF-κB signaling pathway to regulate malignant behavior of ESCC. Further research showed that Homeobox D11 (HOXD11) could directly regulate JAM-A transcription by binding to specific sequences of JAM-A promoter region, thereby activating NF-κB signaling pathway to regulate malignant behavior of ESCC. Functional experiments indicated that HOXD11 could exert an oncogenic role in ESCC. Collectively, our findings support the hypothesis that the HOXD11/JAM-A/NF-κB signal axis plays a role in regulating malignant behavior in ESCC patients, highlighting its potential therapeutic value for ESCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteínas de Homeodomínio , NF-kappa B , Humanos , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo
12.
Front Immunol ; 13: 1003975, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531986

RESUMO

Junctional adhesion molecule-A (JAM-A), expressed on the surface of myeloid cells, is required for extravasation at sites of inflammation and may also modulate myeloid cell activation. Infiltration of myeloid cells is a common feature of tumors that drives disease progression, but the function of JAM-A in this phenomenon and its impact on tumor-infiltrating myeloid cells is little understood. Here we show that systemic cancer-associated inflammation in mice enhanced JAM-A expression selectively on circulating monocytes in an IL1ß-dependent manner. Using myeloid-specific JAM-A-deficient mice, we found that JAM-A was dispensable for recruitment of monocytes and other myeloid cells to tumors, in contrast to its reported role in inflammation. Single-cell RNA sequencing revealed that loss of JAM-A did not influence the transcriptional reprogramming of myeloid cells in the tumor microenvironment. Overall, our results support the notion that cancer-associated inflammation can modulate the phenotype of circulating immune cells, and we demonstrate that tumors can bypass the requirement of JAM-A for myeloid cell recruitment and reprogramming.


Assuntos
Molécula A de Adesão Juncional , Camundongos , Animais , Microambiente Tumoral/genética , Células Mieloides/metabolismo , Monócitos/metabolismo , Inflamação/metabolismo
13.
Precis Clin Med ; 5(3): pbac020, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36132055

RESUMO

The dermal papilla cells in hair follicles function as critical regulators of hair growth. In particular, alopecia areata (AA) is closely related to the malfunctioning of the human dermal papilla cells (hDPCs). Thus, identifying the regulatory mechanism of hDPCs is important in inducing hair follicle (HF) regeneration in AA patients. Recently, growing evidence has indicated that 3' untranslated regions (3' UTR) of key genes may participate in the regulatory circuitry underlying cell differentiation and diseases through a so-called competing endogenous mechanism, but none have been reported in HF regeneration. Here, we demonstrate that the 3' UTR of junctional adhesion molecule A (JAM-A) could act as an essential competing endogenous RNA to maintain hDPCs function and promote HF regeneration in AA. We showed that the 3' UTR of JAM-A shares many microRNA (miRNA) response elements, especially miR-221-3p, with versican (VCAN) mRNA, and JAM-A 3' UTR could directly modulate the miRNA-mediated suppression of VCAN in self-renewing hDPCs. Furthermore, upregulated VCAN can in turn promote the expression level of JAM-A. Overall, we propose that JAM-A 3' UTR forms a feedback loop with VCAN and miR-221-3p to regulate hDPC maintenance, proliferation, and differentiation, which may lead to developing new therapies for hair loss.

14.
JACC Basic Transl Sci ; 7(5): 445-461, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35663628

RESUMO

Genetic predisposition through F11R-single-nucleotide variation (SNV) influences circulatory soluble junctional adhesion molecule-A (sJAM-A) levels in coronary artery disease (CAD) patients. Homozygous carriers of the minor alleles (F11R-SNVs rs2774276, rs790056) show enhanced levels of thrombo-inflammatory sJAM-A. Both F11R-SNVs and sJAM-A are associated with worse prognosis for recurrent myocardial infarction in CAD patients. Platelet surface-associated JAM-A correlate with platelet activation markers in CAD patients. Activated platelets shed transmembrane-JAM-A, generating proinflammatory sJAM-A and JAM-A-bearing microparticles. Platelet transmembrane-JAM-A and sJAM-A as homophilic interaction partners exaggerate thrombotic and thrombo-inflammatory platelet monocyte interactions. Therapeutic strategies interfering with this homophilic interface may regulate thrombotic and thrombo-inflammatory platelet response in cardiovascular pathologies where circulatory sJAM-A levels are elevated.

15.
Cell Biol Int ; 46(8): 1227-1235, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35419903

RESUMO

A better understanding of the molecular regulation of wound healing may provide novel therapeutic targets. A previous study revealed that junctional adhesion molecule A (JAM-A)-modified mesenchymal stem cells promoted wound healing. However, whether direct JAM-A modification in the skin wound edge area accelerates the wound repair process is not clear. We determined whether JAM-A modification at the skin wound edge accelerated the wound healing process. We established JAM-A modification mouse wound models and mouse primary fibroblast cell models. Wound pictures were taken to compare the wound size. H&E staining was performed to monitor the morphology of the wound and quality of the newborn skin. CCK-8 assays and immunofluorescence (IF) for Ki67 were used to measure the cell proliferation of mouse primary fibroblasts. Quantitative real-time PCR, immunohistochemistry, IF, and Western blot analysis were used to detect bFGF and EGF expression in vivo and in vitro. The JAM-A-overexpressing group exhibited a smaller residual wound size than the control group at Day 7. Thicker epidermal layers and more hair follicle-like structures were found in the JAM-A-overexpressing group at Day 21. Cell proliferation capacity was higher in JAM-A-modified mouse fibroblasts. Elevated levels of bFGF and EGF were found in the JAM-A-modified group in vivo and in vitro. JAM-A modification significantly promoted fibroblast proliferation and wound healing. Increased levels of bFGF and EGF growth factors may be part of the mechanism.


Assuntos
Molécula A de Adesão Juncional , Animais , Proliferação de Células , Modelos Animais de Doenças , Fator de Crescimento Epidérmico/metabolismo , Fibroblastos/metabolismo , Molécula A de Adesão Juncional/metabolismo , Lentivirus , Camundongos , Pele/metabolismo , Cicatrização/fisiologia
16.
J Virol ; 96(8): e0005522, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35353001

RESUMO

Engagement of host receptors is essential for viruses to enter target cells and initiate infection. Expression patterns of receptors in turn dictate host range, tissue tropism, and disease pathogenesis during infection. Mammalian orthoreovirus (reovirus) displays serotype-dependent patterns of tropism in the murine central nervous system (CNS) that are dictated by the viral attachment protein σ1. However, the receptor that mediates reovirus CNS tropism is unknown. Two proteinaceous receptors have been identified for reovirus, junctional adhesion molecule A (JAM-A) and Nogo-66 receptor 1 (NgR1). Engagement of JAM-A is required for reovirus hematogenous dissemination but is dispensable for neural spread and infection of the CNS. To determine whether NgR1 functions in reovirus neuropathogenesis, we compared virus replication and disease in wild-type (WT) and NgR1-/- mice. Genetic ablation of NgR1 did not alter reovirus replication in the intestine or transmission to the brain following peroral inoculation. Viral titers in neural tissues following intramuscular inoculation, which provides access to neural dissemination routes, also were comparable in WT and NgR1-/- mice, suggesting that NgR1 is dispensable for reovirus neural spread to the CNS. The absence of NgR1 also did not alter reovirus replication, neural tropism, and virulence following direct intracranial inoculation. In agreement with these findings, we found that the human but not the murine homolog of NgR1 functions as a receptor and confers efficient reovirus binding and infection of nonsusceptible cells in vitro. Thus, neither JAM-A nor NgR1 is required for reovirus CNS tropism in mice, suggesting that other unidentified receptors support this function. IMPORTANCE Viruses engage diverse molecules on host cell surfaces to navigate barriers, gain cell entry, and establish infection. Despite discovery of several reovirus receptors, host factors responsible for reovirus neurotropism are unknown. Human NgR1 functions as a reovirus receptor in vitro and is expressed in CNS neurons in a pattern overlapping reovirus tropism. We used mice lacking NgR1 to test whether NgR1 functions as a reovirus neural receptor. Following different routes of inoculation, we found that murine NgR1 is dispensable for reovirus dissemination to the CNS, tropism and replication in the brain, and resultant disease. Concordantly, expression of human but not murine NgR1 confers reovirus binding and infection of nonsusceptible cells in vitro. These results highlight species-specific use of alternate receptors by reovirus. A detailed understanding of species- and tissue-specific factors that dictate viral tropism will inform development of antiviral interventions and targeted gene delivery and therapeutic viral vectors.


Assuntos
Receptor Nogo 1 , Reoviridae , Animais , Molécula A de Adesão Juncional/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptor Nogo 1/genética , Receptor Nogo 1/metabolismo , Reoviridae/metabolismo , Infecções por Reoviridae/virologia
17.
Cancers (Basel) ; 14(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35267611

RESUMO

Breast ductal carcinoma in situ (DCIS) is clinically challenging, featuring high diagnosis rates and few targeted therapies. Expression/signaling from junctional adhesion molecule-A (JAM-A) has been linked to poor prognosis in invasive breast cancers, but its role in DCIS is unknown. Since progression from DCIS to invasive cancer has been linked with overexpression of the human epidermal growth factor receptor-2 (HER2), and JAM-A regulates HER2 expression, we evaluated JAM-A as a therapeutic target in DCIS. JAM-A expression was immunohistochemically assessed in patient DCIS tissues. A novel JAM-A antagonist (JBS2) was designed and tested alone/in combination with the HER2 kinase inhibitor lapatinib, using SUM-225 cells in vitro and in vivo as validated DCIS models. Murine tumors were proteomically analyzed. JAM-A expression was moderate/high in 96% of DCIS patient tissues, versus 23% of normal adjacent tissues. JBS2 bound to recombinant JAM-A, inhibiting cell viability in SUM-225 cells and a primary DCIS culture in vitro and in a chick embryo xenograft model. JBS2 reduced tumor progression in in vivo models of SUM-225 cells engrafted into mammary fat pads or directly injected into the mammary ducts of NOD-SCID mice. Preliminary proteomic analysis revealed alterations in angiogenic and apoptotic pathways. High JAM-A expression in aggressive DCIS lesions and their sensitivity to treatment by a novel JAM-A antagonist support the viability of testing JAM-A as a novel therapeutic target in DCIS.

18.
Cells ; 11(4)2022 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-35203384

RESUMO

Overexpression of the human epidermal growth factor receptor-2 (HER2) is associated with aggressive disease in breast and certain other cancers. At a cellular level, the adhesion protein Junctional Adhesion Molecule-A (JAM-A) has been reported to regulate the expression of HER3 via a transcriptional pathway involving FOXA1. Since FOXA1 is also a suggested transcription factor for HER2, this study set out to determine if JAM-A regulates HER2 expression via a similar mechanism. An integrated tripartite approach was taken, involving cellular expression studies after targeted disruption of individual players in the putative pathway, in silico identification of relevant HER2 promoter regions and, finally, interrogation of cancer patient survival databases to deconstruct functionally important links between HER2, JAM-A and FOXA1 gene expression. The outcome of these investigations revealed a unidirectional pathway in which JAM-A expression transcriptionally regulates that of HER2 by influencing the binding of FOXA1 to a specific site in the HER2 gene promoter. Moreover, a correlation between JAM-A and HER2 gene expression was identified in 75% of a sample of 40 cancer types from The Cancer Genome Atlas, and coincident high mean mRNA expression of JAM-A, HER2 and FOXA1 was associated with poorer survival outcomes in HER2-positive (but not HER2-negative) patients with either breast or gastric tumors. These investigations provide the first evidence of a transcriptional pathway linking JAM-A, HER2 and FOXA1 in cancer settings, and support potential future pharmacological targeting of JAM-A as an upstream regulator of HER2.


Assuntos
Neoplasias da Mama , Fator 3-alfa Nuclear de Hepatócito , Molécula A de Adesão Juncional , Receptor ErbB-2 , Neoplasias da Mama/patologia , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Feminino , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Molécula A de Adesão Juncional/genética , Receptor ErbB-2/genética , Receptores de Superfície Celular/genética
19.
Mol Cell Biochem ; 477(1): 79-98, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34533648

RESUMO

The F11 Receptor (F11R), also called Junctional Adhesion Molecule-A (JAM-A) (F11R/JAM-A), is a transmembrane glycoprotein of the immunoglobulin superfamily, which is mainly located in epithelial and endothelial cell tight junctions and also expressed on circulating platelets and leukocytes. It participates in the regulation of various biological processes, as diverse as paracellular permeability, tight junction formation and maintenance, leukocyte transendothelial migration, epithelial-to-mesenchymal transition, angiogenesis, reovirus binding, and platelet activation. Dysregulation of F11R/JAM-A may result in pathological consequences and disorders in normal cell function. A growing body of evidence points to its role in carcinogenesis and invasiveness, but its tissue-specific pro- or anti-tumorigenic role remains a debated issue. The following review focuses on the F11R/JAM-A tissue-dependent manner in tumorigenesis and metastasis and also discusses the correlation between poor patient clinical outcomes and its aberrant expression. In the future, it will be required to clarify the signaling pathways that are activated or suppressed via the F11R/JAM-A protein in various cancer types to understand its multiple roles in cancer progression and further use it as a novel direct target for cancer treatment.


Assuntos
Moléculas de Adesão Celular/metabolismo , Movimento Celular , Transição Epitelial-Mesenquimal , Proteínas de Neoplasias/metabolismo , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Receptores de Superfície Celular/metabolismo , Moléculas de Adesão Celular/genética , Humanos , Proteínas de Neoplasias/genética , Neoplasias/genética , Neovascularização Patológica/genética , Receptores de Superfície Celular/genética
20.
Transpl Immunol ; 69: 101474, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34582968

RESUMO

INTRODUCTION: End stage renal disease (ESRD) is the irreversible deterioration of renal function requiring renal replacement therapy by dialysis or transplant. Human leucocyte antigens (HLA) have been well examined however research still is required into the non-HLA antibodies. Antibody mediated rejection (AMR) can be seen in the absence of HLA antibodies on biopsies of patients who have received identical transplants; anti-endothelial cell antibodies may explain this. Investigation into endothelial cell antigens on donor and recipient endothelium may elucidate and stratify the degree of risk of any given transplant and may guide towards the best matched donor. METHODS: Protein array analysis was carried out on 8 patient pairs using nitro-cellulose membranes and biotinylated detection antibodies. The fluorescence emitted was captured by X-Ray film and results were recorded with ImageJ software. A fold increase of more than 2 was considered to be positive. RESULTS: 11 proteins identified had a fold increase of increase ≥2 and were present in ≥2 patient pairs which may point to potential clinical utility. Nectin2/CD112 may be measured in order analyse graft survival time in transplant recipients. Prognosticating renal failure has clinical importance and potential markers that have been identified to aid which include MEPE, CRELD2, and TIMP-4. Novel pharmacological therapies for specific biomarkers identified in this study include JAM-A, E-Selectin, CD147, Galectin-3, JAM-C, PAR-1, and TNFR2. CONCLUSION: Protein analysis showed differences in expression of antigens between patients with and without Chronic Kidney Disease (CKD). This information could be used at the matching stage of renal transplantation and also in the treatment of rejection episodes. The results highlight biomarkers that potentially prognosticate and pharmacological therapies that may ameliorate kidney disease and rejection in ESRD and transplant recipients.


Assuntos
Transplante de Rim , Rejeição de Enxerto , Sobrevivência de Enxerto , Antígenos HLA , Humanos , Rim/fisiologia , Diálise Renal , Transplantados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA