Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Tissue Cell ; 89: 102440, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002288

RESUMO

Abnormal proliferation, migration, and foam cell formation of Vascular smooth muscle cells (VSMCs) each play a role in the development of atherosclerosis (AS). Schisandrin (Sch) is the active lignan ingredient with broad-spectrum pharmacological effects. However, the role of Sch in the AS process is not clear. Therefore, this study was proposed to explore the therapeutic effect and potential mechanism of Sch on VSMCs. Ox-LDL was selected to create an atherosclerosis injury environment for VSMCs and macrophages. The MTT assay, Oil red O staining, wound healing, transwell experiments and ELISA were used to investigate the phenotype effects of Sch. Network pharmacology, molecular docking, flow cytometry, and western blot were used to investigate the underlying mechanisms of Sch on AS progression. Our findings implied that Sch treatment inhibited the proliferation and migration of VSMCs, and suppressed the ROS production and inflammatory cytokines up-regulation of VSMCs and macrophages. Moreover, Sch reduced lipid uptake and foam cell formation through downregulating LOX-1. Mechanistically, we found that Sch can inhibit the activation of JAK2/STAT3 signaling by targeting JAK2, and arrest cell cycle in GO/G1 phase. In summary, Sch can inhibit VSMCs proliferation and migration by arresting cell cycle and targeting JAK2 to regulating the JAK2/STAT3 pathway. Sch may serve as a potential drug for patients with AS.


Assuntos
Movimento Celular , Proliferação de Células , Ciclo-Octanos , Janus Quinase 2 , Lignanas , Músculo Liso Vascular , Compostos Policíclicos , Fator de Transcrição STAT3 , Transdução de Sinais , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/citologia , Lignanas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ciclo-Octanos/farmacologia , Compostos Policíclicos/farmacologia , Humanos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Animais , Aterosclerose/patologia , Aterosclerose/metabolismo , Aterosclerose/tratamento farmacológico
2.
Arch Biochem Biophys ; 746: 109719, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37591369

RESUMO

Kv1.3 channel has been shown to participate in regulating inflammatory activation, proliferation and apoptosis in several cell types. However, most of those existing studies focused on the ion-conducting properties of Kv1.3 in maintaining the resting potential and regulating Ca2+ influx. The aim of our study was to explore whether the Kv1.3-JAK2/STAT3 signaling pathway was involved in oxidized low density lipoprotein (ox-LDL) induced vascular smooth muscle cell (VSMC) proliferation. VSMCs from mouse aorta were cultured and treated with ox-LDL (25 µg/mL). The cell counting kit-8 was used to assess cell proliferation, and western blotting was performed to detect expression levels of Kv1.3, JAK2/STAT3, phosphorylated JAK2/STAT3, cyclin B1 and cyclin D1 in treated VSMCs. VSMCs were transfected with Kv1.3 small interfering RNA (Kv1.3-siRNA) or infected with a Kv1.3 lentiviral expression vector (Lv-Kv1.3) and treated with a JAK2 inhibitor LY2784544 to assess the role of Kv1.3 and JAK2/STAT3 signaling in mediating VSMC proliferation induced by ox-LDL. Ox-LDL induced cell proliferation and upregulated the expression of Kv1.3 in mouse VSMCs. In VSMCs transfected with Kv1.3-siRNA, ox-LDL was not efficient in inducing cell proliferation or the levels of proliferation associated proteins, cyclin B1 and cyclin D1. However, cell proliferation, cyclin B1 and cyclin D1 levels increased in VSMCs infected with Lv-Kv1.3. Levels of phosphorylated JAK2 and STAT3 were increased in ox-LDL-treated VSMCs, and this increase was prevented in VSMCs transfected with Kv1.3-siRNA. Treatment with the JAK2 inhibitor LY2784544 also prevented the increase in VSMCs proliferation treated with ox-LDL. Our findings demonstrated that Kv1.3 promoted proliferation of VSMCs treated with ox-LDL, and that this effect might be mediated through activation of the JAK2/STAT3 signaling pathway.


Assuntos
Ciclina D1 , Músculo Liso Vascular , Animais , Camundongos , Proliferação de Células , Ciclina B1 , RNA Interferente Pequeno , Transdução de Sinais , Canal de Potássio Kv1.3
3.
CNS Neurosci Ther ; 29(3): 866-877, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36419252

RESUMO

AIMS: Remote ischemic pre-conditioning (RIPC) protects against ischemia/reperfusion (I/R) injury. However, the mechanisms underlying this protection remain unclear. In the present study, we investigated the role of Janus-activated kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway and cell cycle arrest, and their relationship with neuronal apoptosis following RIPC. METHODS: A rat cerebral I/R injury model was induced by middle cerebral artery occlusion (MCAO), and AG490 was used to investigate the mechanisms of RIPC. p-JAK2-, p-STAT3-, cyclin D1-, and cyclin-dependent kinase 6 (CDK6) expression was assessed by Western blotting and immunofluorescence staining. RESULTS: RIPC reduced the infarct volume, improved neurological function, and increased neuronal survival. Furthermore, p-JAK2 and p-STAT3 were detected during the initial phase of reperfusion; the expression levels were significantly increased at 3 and 24 h after reperfusion and were suppressed by RIPC. Additionally, the MCAO-induced upregulation of the cell cycle regulators cyclin D1 and CDK6 was ameliorated by RIPC. Meanwhile, cyclin D1 and CDK6 were colocalized with p-STAT3 in the ischemic brain. CONCLUSION: RIPC ameliorates the induction of the JAK2/STAT3 pathway and cell cycle regulators cyclin D1 and CDK6 by MCAO, and this net inhibition of cell cycle re-entry by RIPC is associated with downregulation of STAT3 phosphorylation.


Assuntos
Isquemia Encefálica , Precondicionamento Isquêmico , Traumatismo por Reperfusão , Ratos , Animais , Fator de Transcrição STAT3/metabolismo , Ciclina D1/metabolismo , Ciclina D1/farmacologia , Transdução de Sinais , Isquemia Encefálica/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Infarto da Artéria Cerebral Média/complicações , Ciclo Celular , Membro Posterior , Janus Quinase 2/metabolismo , Janus Quinase 2/farmacologia
4.
J Transl Med ; 20(1): 207, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35545774

RESUMO

BACKGROUND: This study aims to explore the mechanism of interleukin-32 (IL-32) affecting atopic dermatitis (AD) through the Janus-activated kinase-1 (JAK1)/microRNA-155 (miR-155) axis. METHODS: In this study, skin tissue samples and blood samples from normal subjects and patients with AD, human immortalized keratinocytes (HaCaT), and PA-induced mouse models of AD were selected for expression determination of IL-32, JAK1 and miR-155. The interaction among IL-32, JAK1 and miR-155 was identified with their roles in AD analyzed through loss- and gain-of-function assays. RESULTS: Elevated IL-32 was detected in AD tissues and blood samples and promoted the occurrence of AD. IL-32 upregulated JAK1 expression and phosphorylation of its downstream genes, thus activating the JAK signaling pathway. JAK1 promoted the expression of miR-155. IL-32/JAK1/miR-155 axis promoted inflammation in the AD skin reconstruction model. In vivo experiments further confirmed that IL-32 promoted AD development by activating the JAK1/miR-155 axis. CONCLUSION: The present study underlined that IL-32 promoted the occurrence of AD by promoting JAK1 expression to upregulate miR-155 expression.


Assuntos
Dermatite Atópica , MicroRNAs , Animais , Dermatite Atópica/genética , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Queratinócitos/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Pele/metabolismo
5.
Drug Dev Res ; 83(2): 379-388, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34405891

RESUMO

Apatinib has experienced a long-term study in enhancing the sensitivity of various cancer cells to chemotherapy drugs. Currently, researches show that apatinib could attenuate the resistance of gastric cancer (GC) cells to paclitaxel (PTX), but the mechanism has not been fully elucidated, which therefore was explored in this study. PTX-resistant GC cell, namely HGC-27R, was established by exposure to stepwise-increasing PTX. The cell viability of HGC-27 and HGC-27R under PTX or apatinib at different concentrations was assessed by CCK-8 assay, while scratching test and invasion assay were used for investigating the harmful influence of GC cells resistance to PTX. The function of apatinib in HGC-27R was studied by performing functional experiments (flow cytometry, scratching test, and invasion assay). Western blot was performed to measure the expressions of proteins concerning apoptosis, epithelial-mesenchymal transition and janus-activated kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. PTX-resistant GC cell, namely HGC-27R, was successively constructed. HGC-27R cells showed resistance to PTX by promoting migratory and invasive capabilities. Apatinib not only inhibited cell viability of HGC-27 and HGC-27R, but also combined with PTX to suppress that of HGC-27R. Apatinib enhanced apoptosis, diminished migration and invasion of HGC-27R cells, elevated proapoptotic protein expression, and reduced Bcl-2, vimentin, snail, MMP-3, MMP-2, and MMP-9 expressions. The phosphorylation of JAK2 and STAT3 was repressed by apatinib. JAK2 partially reversed the effect of apatinib on enhancing sensitivity of GC cells to PTX. Apatinib strengthened sensitivity of GC cells to PTX by inhibiting JAK/STAT3 signaling pathway.


Assuntos
Neoplasias Gástricas , Linhagem Celular Tumoral , Humanos , Janus Quinases/metabolismo , Janus Quinases/farmacologia , Janus Quinases/uso terapêutico , Paclitaxel/farmacologia , Piridinas , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo
6.
Cell Signal ; 88: 110156, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34592416

RESUMO

Previous reports have demonstrated that sphingosine 1-phosphate receptor type 2 (S1P2) is involved in the activation of signal transducer and activator of transcription (STAT) 6. Additionally, the major signaling pathway of S1P2 is the Rho-Rho kinase pathway. In this study, we examined the role of S1P2 in STAT6 activation in a macrophage (Mφ) model using THP-1 cells differentiated with phorbol 12-myristate 13-acetate (PMA). We established S1P2knockout THP-1 cells using the CRISPR-Cas9 gene editing system. The PMA-treated S1P2knockout THP-1 Mφs showed decreases in IL-4/IL-13-induced phosphorylation of Janus-activated kinase (JAK) 1, JAK2, and STAT6 as well as mRNA expression of the M2 marker ARG1 compared with wild-type THP-1 Mφs. Pretreatment of PMA-treated THP-1 Mφs with the S1P2 antagonist JTE-013, the Rho inhibitor Rhosin or the Rho kinase inhibitor Y27632 inhibited the IL-4/IL-13-induced increase in STAT6 phosphorylation. The expressions of suppressor of cytokine signaling 3 in the S1P2knockout THP-1 Mφs were higher than those in wild-type THP-1 Mφs. In addition, the protein tyrosine phosphatase inhibitor vanadate enhanced IL-4-induced STAT6 phosphorylation in the S1P2knockout THP-1 Mφs, suggesting that S1P2-Rho-Rho kinase inhibited the negative regulation of STAT6. These results suggest that the S1P2-Rho-Rho kinase pathway is necessary for full activation of STAT6 by IL-4/IL-13 in Mφs.


Assuntos
Interleucina-13 , Transdução de Sinais , Interleucina-13/metabolismo , Fosforilação , Fator de Transcrição STAT6/metabolismo , Esfingosina/metabolismo , Esfingosina/farmacologia , Receptores de Esfingosina-1-Fosfato
7.
Am J Transl Res ; 11(8): 5076-5085, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31497223

RESUMO

Apolipoprotein E (apoE) and apoE-mimetic peptides exert prominent anti-inflammatory effects. We determined the anti-inflammatory effects of novel apoE receptor mimetics, composed of the LDL receptor-binding domain of apoE (aa 133-152, ApoEp) or ApoEp with 6 lysines (6KApoEp) or 6 aspartates added at the N-terminus (6DApoEp). BV2 microglia and human THP-1 monocytes were treated with lipopolysaccharide (LPS) in the absence or presence of ApoEp, 6KApoEp or 6DApoEp, followed by determination of pro-inflammatory tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) release by ELISA. As signaling intermediates of inflammation, Signal Transducer and Activator of Transcription 3 (STAT3), Janus-Activated Kinase2 (JAK2) and p38 and p44/42 MAPK phosphorylation levels were determined by Western blot analysis. In addition, we isolated splenocytes from female htau mice treated with 6KApoEp or 6K for 28 weeks, followed by determination of concanavalinA (conA)-mediated interferon gamma (IFNγ) release. 6KApoEp starting at 2.5 µM significantly reduced LPS-mediated TNFα and IL-6 secretion in BV2 and THP-1 cells in a dose-dependent manner. In BV2 cells, 6KApoEp reduced TNFα secretion more effectively than 6DApoEp and ApoEp, which was blocked by PCSK9 treatment, suggesting a role for LDL receptors. 6KApoEp also inhibited LPS-induced p44/42 MAPK, JAK2 and STAT3 phosphorylation, while enhancing p38 MAPK phosphorylation. In addition, conA induced significantly less IFNγ release in splenocytes derived from htau mice treated with 6KApoEp compared with those treated with 6K. Thus, 6KApoEp most effectively reduces LPS-mediated neuroinflammation by interacting with LDL receptors, thus representing a novel anti-inflammatory agent for treatment of neurodegenerative disease.

8.
Acta Pharm Sin B ; 8(6): 889-899, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30505658

RESUMO

Interferons (IFNs) are cytokines with fundamental roles in resistance to infections, cancer and other diseases. Type-I IFNs, interferon α (IFN-α) and interferon ß (IFN-ß), act through a shared receptor complex (IFNAR) comprised of IFNAR1 and IFNAR2 subunits. Binding of type-I IFN to IFNAR1 will robustly activate Janus activated kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway. Aberrant activation of the type-I IFN response results in a spectrum of disorders called interferonopathies. The purpose of this research is to develop an assay for high-throughput screening (HTS) of small molecule inhibitors of the type-I IFN signaling pathway. Inhibition of type-I IFN signaling can be beneficial in terms of therapeutic use and understanding the underlying mechanism of action. We report here a HTS campaign with the secreted embryonic alkaline phosphatase (SEAP) reporter gene assay against 32,000 compounds which yielded 25 confirmed hits. These compounds were subsequently characterized for their cytotoxicity, effects on STAT phosphorylation and activities in IFN regulatory factor (IRF) transcription.

9.
Oncol Lett ; 16(1): 167-178, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29928398

RESUMO

The incidence of complications and mortality following open-heart surgery with cardiopulmonary bypass (CPB) is associated with the severity of the myocardial injury that occurs during surgery. Hydrogen-rich solution (HRS) may prevent antioxidant stress and inhibit apoptosis and inflammation. The present study was designed to investigate the effects of HRS on CPB-induced myocardial injury, and to investigate its potential regulation of the Janus-activated kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway. The HRS treatment resulted in the significant upregulation of malonyl dialdehyde (MDA) and myeloperoxidase (MPO), whilesuperoxide dismutase (SOD) levels were significantly downregulated, compared with the Sham group (P<0.05). Additionally, HRS treatment improved myocardial injury, and decreased the expression levels of cardiac troponins, heart-type fatty acid binding protein, interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α, MDA and MPO, and increased SOD release in CPB rats (P<0.05). Additionally, in the CPB group without the HRS treatment, the expression levels of B-cell lymphoma (Bcl)-2, JAK2, phospho-JAK2 (p-JAK2), STAT3 and phospho-STAT3 (p-STAT3) were significantly decreased, and Bax was significantly increased, compared with the Sham group (P<0.05). By contrast, compared with the CPB group, the expression levels of B-cell lymphoma 2 (Bcl-2), JAK2, phosphorylated (p)-JAK2, STAT3 and p-STAT3 in the HRS group were significantly increased, and Bcl-2-associated X protein expression was significantly decreased (P<0.05). In JAK2 knockdown experiments using siRNA, HRS treatment following hypoxia/reoxygenation also significantly increased the viability of myocardial cells, decreased the rate of myocardial cell apoptosis, elevated the levels of SOD and suppressed the release of MDA and lactate dehydrogenase in the control siRNA and CPB groups (P<0.05). Furthermore, JAK2 siRNA attenuated these protective effects of HRS (P<0.05 vs. control siRNA, HRS and CPB groups). Additionally, the results demonstrated that the HRS treatment significantly increased the expression levels of p-JAK2, p-STAT3 and Bcl-2 in myocardial cells following hypoxia and decreased Bax expression in the control siRNA and CPB groups (P<0.05). In addition, JAK2 siRNA was determined to attenuate these effects of HRS (P<0.05 vs. control siRNA, HRS and CPB groups). Taken together, these results indicated that HRS may alleviate CPB-induced myocardial injury, inhibit myocardial cell apoptosis and protect myocardial cells through regulation of the JAK2/STAT3 signaling pathway.

10.
Mol Med Rep ; 17(4): 5102-5108, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29393473

RESUMO

To explore the protective effect of N(2)-L-alanyl-L-glutamine (NLAG) on myocardial ischemia-reperfusion injury (IRI), and observe the influence of NLAG on the Janus activated kinase signal transducer 2 and activator of transcription 3 (JAK2/STAT3) signaling pathway­associated molecules. Wistar rats were randomly divided into three groups: Sham, IRI and NLAG. In the IRI rat model, the cardiac hemodynamics, the maximum rate of left ventricular pressure (+dP/dtmax) and the left ventricular end­diastolic pressure (LVDP) were recorded. Hematoxylin­eosin and Masson staining were used to detect myocardial histological changes. The levels of plasma interleukin (IL)­1ß and ­6, tumor necrosis factor (TNF)­α, lactase dehydrogenase (LDH), troponin (cTn)I, creatine kinase (CK), heart type fatty acid binding protein (hFABP), malondialdehyde (MDA) and succinate dehydrogenase (SDH) were determined with ELISA. The protein expression levels of B­cell lymphoma (Bcl)­2, Bcl2­associated X protein (Bax), Caspase­3, JAK2, phosphorylated (p)­JAK2, STAT3 and p­STAT3 were detected by western blot analysis. The IRI model demonstrated notable myocardial injury; myocardial cells were arranged disorderly with some nuclei disappearing, and cardiac muscular fibers were degenerated. Following 60 min of reperfusion, LVDP, HR and +dP/dtmax were 31.3±4.53 mmHg, 239.17±8.45 beats/min and 615.17 mmHg/sec, respectively. Compared with the Sham group, the levels of LDH, cTnI, CK, hFABP release, inflammatory factors (IL­1ß, IL­6 and TNF­α) and oxygen free radical (MDA and SDH) levels were increased in the IRI group. In the NLAG group, myocardial injury was improved, the concentrations of LDH, cTnI, CK, hFABP, IL­1ß, IL­6, TNF­α, MDA were decreased, and SDH release was increased compared with the IRI group. In addition, NLAG significantly increased Bcl­2, JAK2, p­JAK2, STAT3 and p­STAT3 protein expression, and decreased Bax protein expression compared with the IRI group. In conclusion, myocardial ischemia­reperfusion can lead to myocardial cell apoptosis and myocardial injury and NLAG attenuates the IRI­induced mitochondrial oxidative stress injury and apoptosis by activating the JAK2/STAT3 signaling pathway, thus exerting protective effects against IRI.


Assuntos
Cardiotônicos/farmacologia , Dipeptídeos/farmacologia , Janus Quinase 2/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Biomarcadores , Colágeno/metabolismo , Citocinas/metabolismo , Hemodinâmica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Masculino , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos
11.
Cell Mol Gastroenterol Hepatol ; 4(1): 47-53, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28560288

RESUMO

Chronic inflammation caused by infection with Helicobacter pylori and autoimmune gastritis increases an individual's risk of developing gastric cancer. More than 90% of gastric cancers are adenocarcinomas, which originate from epithelial cells in the chronically inflamed gastric mucosa. However, only a small subset of chronic gastritis patients develops gastric cancer, implying a role for genetic and environmental factors in cancer development. A number of DNA polymorphisms that increase gastric cancer risk have mapped to genes encoding cytokines. Many different cytokines secreted by immune cells and epithelial cells during chronic gastritis have been identified, but a better understanding of how cytokines regulate the severity of gastritis, epithelial cell changes, and neoplastic transformation is needed. This review summarizes studies in both human and mouse models, describing a number of different findings that implicate various cytokines in regulating the development of gastric cancer.

12.
Oncol Lett ; 13(5): 3191-3197, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28521425

RESUMO

Patients with cervical lymph node metastasis in squamous cell carcinoma of the head and neck (SCCHN) exhibit a poor prognosis and low 5-year survival rate. It has been proven that chemokine receptor 7 (CCR7) promotes cellular migration and invasion in metastatic SCCHN. In the present study, the metastatic SCCHN PCI-37B cell line was utilized to explore the role of Janus activated kinase-3 (Jak3) in the CCR7-mediated signaling pathway in metastatic SCCHN cells. It was observed that phospho-Jak3 was expressed in SCCHN tissues. In addition, when the PCI-37B cells were analyzed in response to chemokine ligand 19 (CCL19), the ligand of CCR7, at the indicated time points, the results of the present study demonstrated that CCR7 induced Jak3 activation, and inhibition of Jak3 activity using a specific inhibitor, ZM39923, significantly attenuated CCR7-induced Jak3 phosphorylation. Migration and invasion assays and immunofluorescence staining experiments demonstrated that CCL19 promoted cell migration, invasion and F-actin rearrangment in CCR7-expressing SCCHN cells partially due to the activation of the Jak3 signaling pathway. These results demonstrate that the Jak3 signaling pathway is important for the CCR7-induced malignant biological behavior of SCCHN cells.

13.
J Cell Biochem ; 118(11): 3765-3774, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28379605

RESUMO

Osteosarcoma (OS) is a tumor with rapid progression, high metastatic potential and poor clinical prognosis. This study was aimed to investigate the function of miR-126 in OS cells. The miR-126 expression in OS cell lines and OS tissues were explored by qRT-PCR. Then, the effects of miR-126 on proliferation, cycle, migration, invasion, and transforming growth factor (TGF)-ß1 induced epithelial to mesenchymal transition (EMT) were assessed. Predicted by TargetScan, one of target genes for miR-126 was verified by luciferase activity assay. Meantime, the mRNA and protein expressions of ZEB1 were assessed by qRT-PCR and Western blot assay. Subsequently, the effect of ZEB1 silence on miR-126 down-regulated cells was also evaluated. Finally, the expressions of key kinases involved in c-Jun N-terminal kinase (JNK) and Janus-activated kinase (JAK)-1/signal transducer and activator of transcription (STAT)-3 pathways were detected by Western blot analysis. Result showed that miR-126 was down-regulated in OS tissues and cell lines. Overexpression of miR-126 significantly inhibited cell proliferation, migration, invasion, and TGF-ß1 induced EMT. The effect of miR-126 knockdown was just the opposite. ZEB1 was predicted and verified as a target gene of miR-126. Meantime, the influence of miR-126 knockdown was abrogated by ZEB1 silence. Additionally, the phosphorylation levels of c-Jun, JNK, JAK1, and STAT3 were down-regulated in miR-126 over-expressed cells, and the effect of miR-126 knockdown was reversed by ZEB1 silence. In conclusion, miR-126 inhibits proliferation, migration, invasion and EMT in OS by targeting ZEB1 through inactivation of JNK and JAK1/STAT3 pathways. J. Cell. Biochem. 118: 3765-3774, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Neoplasias Ósseas/metabolismo , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , MicroRNAs/biossíntese , Proteínas de Neoplasias/biossíntese , Osteossarcoma/metabolismo , RNA Neoplásico/biossíntese , Homeobox 1 de Ligação a E-box em Dedo de Zinco/biossíntese , Idoso , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Feminino , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Osteossarcoma/genética , Osteossarcoma/patologia , RNA Neoplásico/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
14.
BMC Complement Altern Med ; 17(1): 12, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056922

RESUMO

BACKGROUND: Xian-Fang-Huo-Ming-Yin (XFHM), a traditional herbal formula, has been used to treat sores and carbuncles for hundreds of years in Asia. Nowadays, its clinical effects in treatment of rheumatoid arthritis (RA) have been validated. In this study, we want to study its possible molecular mechanisms of regulating the differentiation of lymphocytes and production of pro-inflammatory cytokines in collagen-induced arthritis (CIA) mice for RA treatment. METHODS: A high performance liquid chromatography-electrospray ionization/mass spectrometer (HPLC-ESI/MSn) system was used to analyze the constituents of XFHM granules. An arthritics mouse model was induced by collagen and leflunomide (LEF) was used as a positive control medicine. Pathological changes at the metatarsophalangeal joint were studied through Safranin O and immunohistochemical staining. The differentiation of T, B and NK cells was examined by flow cytometry and pro-inflammatory cytokines were assayed using an Inflammation Antibody Array assay. The expression of key molecules of the nuclear factor κB (NF-κB) and Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathways in spleen were studied by western-blot analysis. RESULTS: In our study. 21 different dominant chemical constituents were identified in XFHM. Treatment with XFHM suppressed the pathological changes in arthrosis of CIA. Additionally, XFHM down-regulated the proliferation and differentiation of CD3+ T cells and CD3-CD19+ B cells significantly. However, XFHM had no significant effect on CD3-NK1.1+ NK cells. Further study showed that the production of pro-inflammatory cytokines had been suppressed by inhibiting the activation of NF-κB and JAK/STAT signaling. CONCLUSIONS: XFHM can regulate and maintain the immunologic balance of lymphocytic immunity and inhibit the production of pro-inflammatory cytokines, thus suppressing the pathological changes of RA. Therefore, XFHM may be used as an application of traditional medicine against RA in modern complementary and alternative therapeutics.


Assuntos
Artrite/tratamento farmacológico , Diferenciação Celular , Citocinas/imunologia , Medicamentos de Ervas Chinesas/administração & dosagem , Linfócitos/citologia , Animais , Artrite/genética , Artrite/imunologia , Artrite/fisiopatologia , Colágeno/efeitos adversos , Citocinas/genética , Modelos Animais de Doenças , Humanos , Janus Quinases/genética , Janus Quinases/imunologia , Linfócitos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , NF-kappa B/genética , NF-kappa B/imunologia
15.
Exp Ther Med ; 11(5): 2054-2060, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27168850

RESUMO

Chlorogenic acid (CGA) is the primary constituent of Caulis Lonicerae, a Chinese herb used for the treatment of rheumatoid arthritis (RA). The present study aimed to investigate whether CGA was able to inhibit the proliferation of the fibroblast-like synoviocyte cell line (RSC-364), stimulated by interleukin (IL)-6, through inducing apoptosis. Following incubation with IL-6 or IL-6 and CGA, the cellular proliferation of RSC-364 cells was detected by MTT assay. The ratio of apoptosed cells were detected by flow cytometry. Western blot analysis was performed to observe protein expression levels of key molecules involved in the Janus-activated kinase/signal transducer and activator of transcription 3 (JAK/STAT) signaling pathway [phosphorylated (p)-STAT3, JAK1 and gp130] and the nuclear factor κB (NF-κB) signaling pathway [phosphorylated (p)-inhibitor of κB kinase subunit α/ß and NF-κB p50). It was revealed that CGA was able to inhibit the inflammatory proliferation of RSC-364 cells mediated by IL-6 through inducing apoptosis. CGA was also able to suppress the expression levels of key molecules in the JAK/STAT and NF-κB signaling pathways, and inhibit the activation of these signaling pathways in the inflammatory response through IL-6-mediated signaling, thereby resulting in the inhibition of the inflammatory proliferation of synoviocytes. The present results indicated that CGA may have potential as a novel therapeutic agent for inhibiting inflammatory hyperplasia of the synovium through inducing synoviocyte apoptosis in patients with RA.

16.
FEBS Open Bio ; 5: 900-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26697292

RESUMO

MicroRNA-431 (miR-431) has been recognized as an oncogenic miRNA, being implicated in the initiation and development of human cancers. Recently, deregulation of miR-431 has been reported in several tumors. However, the clinical significance of miR-431 and its underlying role in human hepatocellular carcinoma (HCC) are poorly explored. Herein, we found that miR-431 expression was reduced in HCC tissues compared to noncancerous tissues. Otherwise, down-regulation of miR-431 was observed in aggressive tumor tissues. The levels of miR-431 expression in HCC cell lines were significantly lower than that in a nontransformed hepatic cell line. Clinical association analyses disclosed that a low level of miR-431 was prominently associated with poor prognostic features of HCC including venous infiltration, high Edmondson-Steiner grading and advanced tumor-node-metastasis (TNM) tumor stage. Our in vitro studies showed that up-regulation of miR-431 expression reduced cell invasion and migration in HCCLM3 cells. In contrast, down-regulation of miR-431 expression promoted SMMC-7721 cell invasion and migration. We found that up-regulation of miR-431 expression decreased zinc finger E-box binding homeobox 1 (ZEB1) expression and inhibited the epithelial-mesenchymal transition (EMT) with increased E-cadherin expression and decreased vimentin expression in HCCLM3 cells. Otherwise, down-regulation of miR-431 expression increased ZEB1 expression and promoted EMT in SMMC-7721 cells. Significantly, ZEB1 was identified as a target of miR-431 in HCC. ZEB1 knockdown abrogated the effect of miR-431 silencing on EMT and cell mobility in SMMC-7721 cells. In conclusion, miR-431 inhibits migration and invasion of HCC cells by suppressing ZEB1-mediated EMT.

17.
Immunopharmacol Immunotoxicol ; 37(6): 499-507, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26471424

RESUMO

CONTEXT: Chlorogenic acid (CGA) and luteolin (Lut) are the predominant constituents of Caulis Lonicerae, which is usually used in the treatment for rheumatoid arthritis (RA). OBJECTIVE: In this study, we investigated whether CGA and Lut could synergistically inhibit the proliferation of fibroblast-like synoviocytes (FLSs) in RA synovial tissues. METHODS: Rat FLS cells (RSC-364) induced by interleukin (IL)-1ß were treated by CGA, Lut or both of them. The apoptosis rates were detected by flow cytometer. Protein expression of key molecules of NF-κB and JAK/STAT signaling pathways were detected by Western blot. RESULTS AND DISCUSSION: Treatment with CGA and Lut inhibited the proliferation of RSC-364 cells stimulated by IL-1ß significantly and induced cell apoptosis notably. The ratio of apoptosis in RSC-364 cells induced with IL-1ß accompanied by both CGA and Lut increased approximately 7-fold compared with those incubated with IL-1ß alone. The results of immunoblot analysis revealed that the key molecules involved in the NF-κB and JAK/STAT-signaling pathways, including NF-κB p50, p100, IKKα/ß, gp103, JAK1 and STAT3, were decreased significantly in RSC-364 cells treated by IL-1ß plus CAG and Lut compared with those incubated with IL-1ß alone. Additionally, the amounts of phospho-IKKα/ß and phospho-STAT3 were also decreased significantly in cells treated with CGA and Lut. Furthermore, the synergistic effect of CGA and Lut was superior to the effect of one of these two ingredients. CONCLUSION: Our finding suggested that the combination of CGA and Lut may be a potential therapeutic treatment for the inflammatory proliferation of synoviocytes in patients with RA.


Assuntos
Ácido Clorogênico/farmacologia , Interleucina-1beta/antagonistas & inibidores , Janus Quinase 1/antagonistas & inibidores , Luteolina/farmacologia , NF-kappa B/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Interleucina-1beta/farmacologia , Janus Quinase 1/metabolismo , NF-kappa B/metabolismo , Ratos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Membrana Sinovial/citologia , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/metabolismo
18.
Clin Exp Immunol ; 181(3): 491-510, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25902927

RESUMO

In this study we examined the effects of non-myeloablative total body irradiation (TBI) in combination with immunosuppressive chemotherapy on immune homeostasis in rhesus macaques. Our results show that the administration of cyclosporin A or tacrolimus without radiotherapy did not result in lymphopenia. The addition of TBI to the regimen resulted in lymphopenia as well as alterations in the memory/naive ratio following reconstitution of lymphocyte populations. Dendritic cell (DC) numbers in whole blood were largely unaffected, while the monocyte population was altered by immunosuppressive treatment. Irradiation also resulted in increased levels of circulating cytokines and chemokines that correlated with T cell proliferative bursts and with the shift towards memory T cells. We also report that anti-thymocyte globulin (ATG) treatment and CD3 immunotoxin administration resulted in a selective and rapid depletion of naive CD4 and CD8 T cells and increased frequency of memory T cells. We also examined the impact of these treatments on reactivation of latent simian varicella virus (SVV) infection as a model of varicella zoster virus (VZV) infection of humans. None of the treatments resulted in overt SVV reactivation; however, select animals had transient increases in SVV-specific T cell responses following immunosuppression, suggestive of subclinical reactivation. Overall, we provide detailed observations into immune modulation by TBI and chemotherapeutic agents in rhesus macaques, an important research model of human disease.


Assuntos
Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/efeitos da radiação , Imunossupressores/farmacologia , Irradiação Corporal Total/métodos , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Ciclosporina/farmacologia , Citocinas/sangue , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Células Dendríticas/efeitos da radiação , Ensaio de Imunoadsorção Enzimática , Feminino , Homeostase/efeitos dos fármacos , Homeostase/efeitos da radiação , Sistema Imunitário/citologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Leucócitos/efeitos da radiação , Contagem de Linfócitos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Linfócitos/efeitos da radiação , Macaca mulatta/virologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/efeitos da radiação , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/efeitos da radiação , Tacrolimo/farmacologia , Varicellovirus/efeitos dos fármacos , Varicellovirus/crescimento & desenvolvimento , Varicellovirus/efeitos da radiação , Carga Viral/efeitos dos fármacos , Carga Viral/efeitos da radiação , Ativação Viral/efeitos dos fármacos , Ativação Viral/efeitos da radiação
19.
Pharmacol Ther ; 141(1): 21-31, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23954656

RESUMO

The pharmacological support and stimulation of endogenous and transplanted neural stem cells (NSCs) is a major challenge in brain repair. Trauma to the central nervous system (CNS) results in a distinct inflammatory response caused by local and infiltrating immune cells. This makes NSC-supported regeneration difficult due to the presence of inhibitory immune factors which are upregulated around the lesion site. The continual and dual role of the neuroinflammatory response leaves it difficult to decipher upon a single modulatory strategy. Therefore, understanding the influence of cytokines upon regulation of NSC self-renewal, proliferation and differentiation is crucial when designing therapies for CNS repair. There is a plethora of partially conflicting data in vitro and in vivo on the role of cytokines in modulating the stem cell niche and the milieu around NSC transplants. This is mainly due to the pleiotropic role of many factors. In order for cell-based therapy to thrive, treatment must be phase-specific to the injury and also be personalized for each patient, i.e. taking age, sex, neuroimmune and endocrine status as well as other key parameters into consideration. In this review, we will summarize the most relevant information concerning interleukin (IL)-1, IL-4, IL-10, IL-15, IFN-γ, the neuropoietic cytokine family and TNF-α in order to extract promising therapeutic approaches for further research. We will focus on the consequences of neuroinflammation on endogenous brain stem cells and the transplantation environment, the effects of the above cytokines on NSCs, as well as immunopharmacological manipulation of the microenvironment for potential therapeutic use.


Assuntos
Anti-Inflamatórios/farmacologia , Citocinas/efeitos dos fármacos , Inflamação/imunologia , Regeneração Nervosa/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/transplante , Neurogênese/efeitos dos fármacos , Animais , Anti-Inflamatórios/uso terapêutico , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/imunologia , Citocinas/imunologia , Humanos , Fatores Imunológicos/antagonistas & inibidores , Fatores Imunológicos/imunologia , Inflamação/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Regeneração Nervosa/imunologia , Células-Tronco Neurais/imunologia , Neurogênese/imunologia , Nicho de Células-Tronco/efeitos dos fármacos , Nicho de Células-Tronco/imunologia
20.
Cell Signal ; 26(3): 528-39, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24308966

RESUMO

High glucose is an independent risk factor that alters the expression pattern of cytokines/chemokine leading to leukocyte activation in diabetes. Fluctuation of cytokine milieu in lymphocytes may lead to differentiation into a particular subset. Our objectives were to profile high glucose induced inflammatory gene expression in lymphocytes, to examine in vivo relevance in diabetes and to identify the key transcription factors and signaling pathways involved. Cytokine gene arrays and T-helper (Th1/Th2/Th17) cytokine profiler RT(2)-PCR arrays used for cytokine expression profiling followed by validation using Real Time-qPCR and relative RT-PCR in Jurkat T-lymphocytes, peripheral blood lymphocytes (PBLCs) from normal and diabetes subjects. Luciferase reporter plasmid, pharmacological inhibitors and mutant plasmids were used for promoter activation and signaling pathway studies. High glucose induced gene profiling in Jurkat T-lymphocytes showed significantly increased expression of 64 proinflammatory genes including IL-6 and IL-17A and most of these genes were Nuclear Factor (NF)-κB and AP-1 regulated. RT(2)-PCR array results suggested the transcriptional activation of IL-17 and its downstream signaling in Jurkat T-lymphocytes upon high glucose treatment. Candidate genes like Interleukin (IL)-17A, IL-17E IL-17F and IL-6 were up-regulated in both Jurkat T-lymphocytes and PBLCs from normal and diabetes subjects. This high glucose induced cytokine expression was due to promoter activation. Pharmacology inhibitor studies showed the involvement of NF-κB, protein kinase-C, p38 Mitogen activated protein kinase; Janus activated kinase-signal transducer and activator of transcription and extracellular regulated kinase signaling pathways. Further, high glucose treatment increased the adhesion of lymphocytes to human umbilical vein endothelial cells. These results show that IL-17 cytokines are induced by high glucose via key signaling pathways leading to lymphocyte activation and relevant to the pathogenesis of diabetic complications like atherosclerosis.


Assuntos
Glucose/farmacologia , Interleucina-17/sangue , Interleucina-6/sangue , Estresse Oxidativo/efeitos dos fármacos , Aterosclerose/patologia , Adesão Celular/efeitos dos fármacos , Quimiocina CCL11/sangue , Diabetes Mellitus/genética , Células Endoteliais da Veia Umbilical Humana/imunologia , Humanos , Interleucina-17/biossíntese , Interleucina-17/genética , Interleucina-6/biossíntese , Interleucina-6/genética , Interleucina-6/imunologia , Células Jurkat/imunologia , Ativação Linfocitária/genética , NF-kappa B/biossíntese , Regiões Promotoras Genéticas , RNA Mensageiro/biossíntese , Edulcorantes/farmacologia , Células Th17/citologia , Células Th17/imunologia , Fator de Transcrição AP-1/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA