Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Plant Physiol Biochem ; 214: 108886, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38950461

RESUMO

Methyl viologen (MV), also known as paraquat, is a widely used herbicide but has also been reported as highly toxic to different life forms. The mode of its operation is related to superoxide radical (O2.-) production and consequent oxidative damage. However, besides the damage to key macromolecules, reactive oxygen species (ROS; to which O2.- belongs) are also known as regulators of numerous ion transport systems located at cellular membranes. In this study, we used MV as a tool to probe the role of O2.- in regulating membrane-transport activity and systemic acquired tolerance in halophytic Chenopodium quinoa and glycophytic spinach plants. Both plant species showed growth reduction in terms of reduced shoot length, lower shoot fresh and dry weight, photosynthesis rate, and chlorophyll contents; however, quinoa showed less reduction in growth compared with spinach. This whole plant response was further examined by measuring the ion concentration, gene expression of ion transporters, activation of antioxidants, and osmolyte accumulation. We observed that at the mechanistic level, the differences in growth in response to MV were conferred by at least four complementary physiological mechanisms: (1) higher K+ loss from spinach leaves resulted from higher expression of MV-induced plasma membrane-based depolarization-activated K+ efflux GORK channel, (2) higher activation of high-affinity K+ uptake transporter HAK5 in quinoa, (3) higher antioxidant production and osmolyte accumulation in quinoa as compared with spinach, and (4) maintaining a higher rate of photosynthesis due to higher chlorophyll contents, and efficiency of photosystem II and reduced ROS and MDA contents. Obtained results also showed that MV induced O2.- significantly reduced N contents in both species but with more pronounced effects in glycophytic spinach. Taken together this study has shown the role of O2.- in regulating membrane ion transport and N metabolism in the leaves of halophyte vs. glycophyte in the context of oxidative stress tolerance.


Assuntos
Chenopodium quinoa , Homeostase , Oxirredução , Fotossíntese , Potássio , Spinacia oleracea , Superóxidos , Chenopodium quinoa/metabolismo , Spinacia oleracea/metabolismo , Spinacia oleracea/efeitos dos fármacos , Superóxidos/metabolismo , Potássio/metabolismo , Clorofila/metabolismo , Paraquat/farmacologia , Folhas de Planta/metabolismo , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
New Phytol ; 241(5): 2090-2107, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38168024

RESUMO

High-affinity K+ (HAK) transporters play essential roles in facilitating root K+ uptake in higher plants. Our previous studies revealed that GhHAK5a, a member of the HAK family, is crucial for K+ uptake in upland cotton. Nevertheless, the precise regulatory mechanism governing the expression of GhHAK5a remains unclear. The yeast one-hybrid screening was performed to identify the transcription factors responsible for regulating GhHAK5a, and ethylene response factor 9 (GhERF9) was identified as a potential candidate. Subsequent dual-luciferase and electrophoretic mobility shift assays confirmed that GhERF9 binds directly to the GhHAK5a promoter, thereby activating its expression. Silencing of GhERF9 decreased the expression of GhHAK5a and exacerbated K+ deficiency symptoms in leaves, also decreased K+ uptake rate and K+ content in roots. Additionally, it was observed that the application of ethephon (an ethylene-releasing reagent) resulted in a significant upregulation of GhERF9 and GhHAK5a, accompanied by an increased rate of K+ uptake. Expectedly, GhEIN3b and GhEIL3c, the two key components involved in ethylene signaling, bind directly to the GhERF9 promoter. These findings provide valuable insights into the molecular mechanisms underlying the expression of GhHAK5a and ethylene-mediated K+ uptake and suggest a potential strategy to genetically enhance cotton K+ uptake by exploiting the EIN3/EILs-ERF9-HAK5 module.


Assuntos
Gossypium , Proteínas de Ligação a DNA/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Gossypium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
New Phytol ; 238(1): 270-282, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36597715

RESUMO

Guard cells control the opening of stomatal pores in the leaf surface, with the use of a network of protein kinases and phosphatases. Loss of function of the CBL-interacting protein kinase 23 (CIPK23) was previously shown to decrease the stomatal conductance, but the molecular mechanisms underlying this response still need to be clarified. CIPK23 was specifically expressed in Arabidopsis guard cells, using an estrogen-inducible system. Stomatal movements were linked to changes in ion channel activity, determined with double-barreled intracellular electrodes in guard cells and with the two-electrode voltage clamp technique in Xenopus oocytes. Expression of the phosphomimetic variant CIPK23T190D enhanced stomatal opening, while the natural CIPK23 and a kinase-inactive CIPK23K60N variant did not affect stomatal movements. Overexpression of CIPK23T190D repressed the activity of S-type anion channels, while their steady-state activity was unchanged by CIPK23 and CIPK23K60N . We suggest that CIPK23 enhances the stomatal conductance at favorable growth conditions, via the regulation of several ion transport proteins in guard cells. The inhibition of SLAC1-type anion channels is an important facet of this response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ânions/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Estômatos de Plantas/fisiologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
4.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362290

RESUMO

Potassium (K+) is essential for plant growth and stress responses. A deficiency in soil K+ contents can result in decreased wheat quality and productivity. Thus, clarifying the molecular mechanism underlying wheat responses to low-K+ (LK) stress is critical. In this study, a tandem mass tag (TMT)-based quantitative proteomic analysis was performed to investigate the differentially abundant proteins (DAPs) in roots of the LK-tolerant wheat cultivar "KN9204" at the seedling stage after exposure to LK stress. A total of 104 DAPs were identified in the LK-treated roots. The DAPs related to carbohydrate and energy metabolism, transport, stress responses and defense, and post-translational modifications under LK conditions were highlighted. We identified a high-affinity potassium transporter (TaHAK1-4A) that was significantly up-regulated after the LK treatment. Additionally, TaHAK1-4A was mainly expressed in roots, and the encoded protein was localized in the plasma membrane. The complementation assay in yeast suggested that TaHAK1-4A mediates K+ uptake under extreme LK conditions. The overexpression of TaHAK1-4A increased the fresh weight and root length of Arabidopsis under LK conditions and improved the growth of Arabidopsis athak5 mutant seedlings, which grow poorly under LK conditions. Moreover, silencing of TaHAK1-4A in wheat roots treated with LK stress decreased the root length, dry weight, K+ concentration, and K+ influx. Accordingly, TaHAK1-4A is important for the uptake of K+ by roots exposed to LK stress. Our results reveal the protein metabolic changes in wheat induced by LK stress. Furthermore, we identified a candidate gene potentially relevant for developing wheat lines with increased K+ use efficiency.


Assuntos
Arabidopsis , Deficiência de Potássio , Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Potássio/metabolismo , Deficiência de Potássio/metabolismo , Proteômica , Plântula/genética , Plântula/metabolismo , Triticum/genética , Triticum/metabolismo
5.
Int J Biol Macromol ; 208: 844-857, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35367275

RESUMO

Potassium (K+) is an essential macronutrient for plant growth and productivity. It is the most abundant cation in plants and is involved in various cellular processes. Variable K+ availability is sensed by plant roots, consequently K+ transport proteins are activated to optimize K+ uptake. In addition to K+ uptake and translocation these proteins are involved in other important physiological processes like transmembrane voltage regulation, polar auxin transport, maintenance of Na+/K+ ratio and stomata movement during abiotic stress responses. K+ transport proteins display tremendous genomic and structural diversity in plants. Their key structural features, such as transmembrane domains, N-terminal domains, C-terminal domains and loops determine their ability of K+ uptake and transport and thus, provide functional diversity. Most K+ transporters are regulated at transcriptional and post-translational levels. Genetic manipulation of key K+ transporters/channels could be a prominent strategy for improving K+ utilization efficiency (KUE) in plants. This review discusses the genomic and structural diversity of various K+ transport proteins in plants. Also, an update on the function of K+ transport proteins and their regulatory mechanism in response to variable K+ availability, in improving KUE, biotic and abiotic stresses is provided.


Assuntos
Proteínas de Transporte , Potássio , Transporte Biológico , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas , Genômica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Potássio/metabolismo
6.
J Mol Cell Cardiol ; 165: 9-18, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34954465

RESUMO

ATP synthase (F1Fo) is a rotary molecular engine that harnesses energy from electrochemical-gradients across the inner mitochondrial membrane for ATP synthesis. Despite the accepted tenet that F1Fo transports exclusively H+, our laboratory has demonstrated that, in addition to H+, F1Fo ATP synthase transports a significant fraction of ΔΨm-driven charge as K+ to synthesize ATP. Herein, we utilize a computational modeling approach as a proof of principle of the feasibility of the core mechanism underlying the enhanced ATP synthesis, and to explore its bioenergetic consequences. A minimal model comprising the 'core' mechanism constituted by ATP synthase, driven by both proton (PMF) and potassium motive force (KMF), respiratory chain, adenine nucleotide translocator, Pi carrier, and K+/H+ exchanger (KHEmito) was able to simulate enhanced ATP synthesis and respiratory fluxes determined experimentally with isolated heart mitochondria. This capacity of F1Fo ATP synthase confers mitochondria with a significant energetic advantage compared to K+ transport through a channel not linked to oxidative phosphorylation (OxPhos). The K+-cycling mechanism requires a KHEmito that exchanges matrix K+ for intermembrane space H+, leaving PMF as the overall driving energy of OxPhos, in full agreement with the standard chemiosmotic mechanism. Experimental data of state 4➔3 energetic transitions, mimicking low to high energy demand, could be reproduced by an integrated computational model of mitochondrial function that incorporates the 'core' mechanism. Model simulations display similar behavior compared to the experimentally observed changes in ΔΨm, mitochondrial K+ uptake, matrix volume, respiration, and ATP synthesis during the energetic transitions at physiological pH and K+ concentration. The model also explores the role played by KHEmito in modulating the energetic performance of mitochondria. The results obtained support the available experimental evidence on ATP synthesis driven by K+ and H+ transport through the F1Fo ATP synthase.


Assuntos
Membranas Mitocondriais , Potássio/metabolismo , Prótons , Trifosfato de Adenosina , Simulação por Computador , Mitocôndrias Cardíacas/metabolismo , Membranas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo
7.
Front Plant Sci ; 13: 1084337, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36816483

RESUMO

The potassium transporter group of the HAK/KUP/KT (high-affinity K+)/KUP (K+ uptake)/KT (K+ transporter) family plays a crucial role in plant growth and development as well as in environmental adaptation such as tolerance to salt stress. HAK/KUP/KT genes and their functions have been characterized for a number of plant species, but they remain unknown for Casuarina equisetifolia, an important tree species for coastal protection in southern China and many other countries. In this study, 25 HAK genes were identified in the C. equisetifolia genome. Their gene structure, conserved motif, phylogeny, and expression were comprehensively and systematically analyzed to understand their functions. All HAK genes were relatively conserved and could be divided into four clusters. The expression level of two particular genes, CeqHAK11 and CeqHAK6, increased significantly with the duration of salt treatment. To further elucidated their function in response to salt stress, subcellular localization, and their functional analysis were developed. Results revealed that CeqHAK11 and CeqHAK6 were localized on the plasma membrane, which mainly mediated high-affinity K+ uptake. Overexpression of CeqHAK6 or CeqHAK11 in Arabidopsis showed higher germination and survival rates and longer root length than wild-type (WT) under salt stress, suggesting that both genes improve tolerance to salt stress. Moreover, CeqHAK6 and CeqHAK11 improved their ability to tolerate salt stress by increasing the K+/Na+ ratio and antioxidant enzyme activities (CAT, POD, and SOD), and decreasing reactive oxygen species (ROS) accumulation. Consequently, CeqHAK6 and CeqHAK11 were verified as potassium transport proteins and could be applied for further molecular breeding for salt tolerance in C. equisetifolia or other crops to increasing salt tolerance.

8.
Front Genet ; 12: 698875, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394188

RESUMO

Bacteria use K+-uptake transporters differentially for adaptation in varying growth conditions. In Mycobacterium tuberculosis, two K+-uptake systems, the Trk comprising the CeoB and CeoC proteins and the Kdp consisting of the two-component system (TCS), KdpDE and KdpFABC, have been characterized, but their selective utilization during bacterial growth has not been completely explored. In the current study, the roles of the M. tuberculosis KdpDE regulatory system alone and in association with the Trk transporters in bacterial growth were investigated by evaluating the growth of M. tuberculosis KdpDE-deletion and KdpDE/Trk (KT)-double knockout mutant strains in planktonic culture under standard growth conditions. The KT-double knockout mutant strain was first constructed using homologous recombination procedures and was evaluated together with the KdpDE-deletion mutant and the wild-type (WT) strains with respect to their rates of growth, K+-uptake efficiencies, and K+-transporter gene expression during planktonic growth. During growth at optimal K+ concentrations and pH levels, selective deletion of the TCS KdpDE (KdpDE-deletion mutant) led to attenuation of bacterial growth and an increase in bacterial K+-uptake efficiency, as well as dysregulated expression of the kdpFABC and trk genes. Deletion of both the KdpDE and the Trk systems (KT-double knockout) also led to severely attenuated bacterial growth, as well as an increase in bacterial K+-uptake efficiency. These results demonstrate that the KdpDE regulatory system plays a key role during bacterial growth by regulating K+ uptake via modulation of the expression and activities of both the KdpFABC and Trk systems and is important for bacterial growth possibly by preventing cytoplasmic K+ overload.

9.
Front Plant Sci ; 12: 730002, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34413871

RESUMO

Potassium (K+) levels in the soil often limit plant growth and development. As a result, crop production largely relies on the heavy use of chemical fertilizers, presenting a challenging problem in sustainable agriculture. To breed crops with higher K+-use efficiency (KUE), we must learn how K+ is acquired from the soil by the root system and transported to the rest of the plant through K+ transporters. In this study, we identified the function of the rice K+ transporter OsHAK8, whose expression level is downregulated in response to low-K+ stress. When OsHAK8 was disrupted by CRISPR/Cas9-mediated mutagenesis, Oshak8 mutant plants showed stunted growth, especially under low-K+ conditions. Ion content analyses indicated that K+ uptake and root-to-shoot K+ transport were significantly impaired in Oshak8 mutants under low-K+ conditions. As the OsHAK8 gene was broadly expressed in different cell types in the roots and its protein was targeted to the plasma membrane, we propose that OsHAK8 serves as a major transporter for both uptake and root-to-shoot translocation in rice plants.

10.
New Phytol ; 232(1): 176-189, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34192362

RESUMO

In Arabidopsis, the high-affinity K+ transporter HAK5 is the major pathway for root K+ uptake when below 100 µM; HAK5 responds to Low-K+ (LK) stress by strongly and rapidly increasing its expression during K+ -deficiency. Therefore, positive regulators of HAK5 expression have the potential to improve K+ uptake under LK. Here, we show that mutants of the transcription factor MYB77 share a LK-induced leaf chlorosis phenotype, lower K+ content, and lower Rb+ uptake of the hak5 mutant, but not the shorter root growth, and that overexpression of MYB77 enhanced K+ uptake and improved tolerance to LK stress. Furthermore, we demonstrated that MYB77 positively regulates the expression of HAK5, by binding to the HAK5 promoter and enhances high-affinity K+ uptake of roots. As such, our results reveal a novel pathway for enhancing HAK5 expression under LK stress, and provides a candidate for increasing the tolerance of plants to LK.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Transporte de Íons , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Potássio/metabolismo , Fatores de Transcrição/genética
11.
Front Plant Sci ; 12: 517742, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746991

RESUMO

Potassium (K+) is one of essential mineral elements for plant growth and development. K+ channels, especially AKT1-like channels, play crucial roles in K+ uptake in plant roots. Maize is one of important crops; however, the K+ uptake mechanism in maize is little known. Here, we report the physiological functions of K+ channel ZMK1 in K+ uptake and homeostasis in maize. ZMK1 is a homolog of Arabidopsis AKT1 channel in maize, and mainly expressed in maize root. Yeast complementation experiments and electrophysiological characterization in Xenopus oocytes indicated that ZMK1 could mediate K+ uptake. ZMK1 rescued the low-K+-sensitive phenotype of akt1 mutant and enhanced K+ uptake in Arabidopsis. Overexpression of ZMK1 also significantly increased K+ uptake activity in maize, but led to an oversensitive phenotype. Similar to AKT1 regulation, the protein kinase ZmCIPK23 interacted with ZMK1 and phosphorylated the cytosolic region of ZMK1, activating ZMK1-mediated K+ uptake. ZmCIPK23 could also complement the low-K+-sensitive phenotype of Arabidopsis cipk23/lks1 mutant. These findings demonstrate that ZMK1 together with ZmCIPK23 plays important roles in K+ uptake and homeostasis in maize.

12.
Plant Sci ; 304: 110736, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33568288

RESUMO

Plant roots absorb K+ from soil via K+ channels and transporters, which are important for stress responses. In this research, GmAKT1, an AKT1-type K+ channel, was isolated and characterized. The expression of GmAKT1 was induced by K+-starvation and salinity stresses, and it was preferentially expressed in the soybean roots. And GmAKT1 was located in the plasma membrane. As an inward K+ channel, GmAKT1 participated in K+ uptake, as well as rescued the low-K+-sensitive phenotype of the yeast mutant and Arabidopsis akt1 mutant. Overexpression of GmAKT1 significantly improved the growth of plants and increased K+ concentration, leading to lower Na+/K+ ratios in transgenic Arabidopsis and chimeric soybean plants with transgenic hairy roots. In addition, GmAKT1 overexpression resulted in significant upregulation of these ion uptake-related genes, including GmSKOR, GmsSOS1, GmHKT1, and GmNHX1. Our findings suggested that GmAKT1 plays an important part in K+ uptake under low-K+ condition, and could maintain Na+/K+ homeostasis under salt stress in Arabidopsis and soybean plants.


Assuntos
Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Canais de Potássio/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Arabidopsis , Regulação da Expressão Gênica de Plantas , Homeostase , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , Canais de Potássio/genética , Canais de Potássio/fisiologia , Estresse Salino , Glycine max/genética
13.
Int J Mol Sci ; 21(15)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722526

RESUMO

Potassium retention under saline conditions has emerged as an important determinant for salt tolerance in plants. Halophytic Hordeum brevisubulatum evolves better strategies to retain K+ to improve high-salt tolerance. Hence, uncovering K+-efficient uptake under salt stress is vital for understanding K+ homeostasis. HAK/KUP/KT transporters play important roles in promoting K+ uptake during multiple stresses. Here, we obtained nine salt-induced HAK/KUP/KT members in H. brevisubulatum with different expression patterns compared with H. vulgare through transcriptomic analysis. One member HbHAK1 showed high-affinity K+ transporter activity in athak5 to cope with low-K+ or salt stresses. The expression of HbHAK1 in yeast Cy162 strains exhibited strong activities in K+ uptake under extremely low external K+ conditions and reducing Na+ toxicity to maintain the survival of yeast cells under high-salt-stress. Comparing with the sequence of barley HvHAK1, we found that C170 and R342 in a conserved domain played pivotal roles in K+ selectivity under extremely low-K+ conditions (10 µM) and that A13 was responsible for the salt tolerance. Our findings revealed the mechanism of HbHAK1 for K+ accumulation and the significant natural adaptive sites for HAK1 activity, highlighting the potential value for crops to promote K+-uptake under stresses.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Hordeum/crescimento & desenvolvimento , Potássio/metabolismo , Tolerância ao Sal/fisiologia , Plantas Tolerantes a Sal/crescimento & desenvolvimento
14.
Metabolites ; 9(12)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817542

RESUMO

In response to salt stress, cyanobacteria increases the gene expression of Na+/H+ antiporter and K+ uptake system proteins and subsequently accumulate compatible solutes. However, alterations in the concentrations of metabolic intermediates functionally related to the early stage of the salt stress response have not been investigated. The halophilic cyanobacterium Synechococcus sp. PCC 7002 was subjected to salt shock with 0.5 and 1 M NaCl, then we performed metabolomics analysis by capillary electrophoresis/mass spectrometry (CE/MS) and gas chromatography/mass spectrometry (GC/MS) after cultivation for 1, 3, 10, and 24 h. Gene expression profiling using a microarray after 1 h of salt shock was also conducted. We observed suppression of the Calvin cycle and activation of glycolysis at both NaCl concentrations. However, there were several differences in the metabolic changes after salt shock following exposure to 0.5 M and 1 M NaCl: (i): the main compatible solute, glucosylglycerol, accumulated quickly at 0.5 M NaCl after 1 h but increased gradually for 10 h at 1 M NaCl; (ii) the oxidative pentose phosphate pathway and the tricarboxylic acid cycle were activated at 0.5 M NaCl; and (iii) the multi-functional compound spermidine greatly accumulated at 1 M NaCl. Our results show that Synechococcus sp. PCC 7002 acclimated to different levels of salt through a salt stress response involving the activation of different metabolic pathways.

15.
Plant Cell Environ ; 42(8): 2357-2371, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31046137

RESUMO

Root cells take up K+ from the soil solution, and a fraction of the absorbed K+ is translocated to the shoot after being loaded into xylem vessels. K+ uptake and translocation are spatially separated processes. K+ uptake occurs in the cortex and epidermis whereas K+ translocation starts at the stele. Both uptake and translocation processes are expected to be linked, but the connection between them is not well characterized. Here, we studied K+ uptake and translocation using Rb+ as a tracer in wild-type Arabidopsis thaliana and in T-DNA insertion mutants in the K+ uptake or translocation systems. The relative amount of translocated Rb+ to the shoot was positively correlated with net Rb+ uptake rates, and the akt1 athak5 T-DNA mutant plants were more efficient in their allocation of Rb+ to shoots. Moreover, a mutation of SKOR and a reduced plant transpiration prevented the full upregulation of AtHAK5 gene expression and Rb+ uptake in K+ -starved plants. Lastly, Rb+ was found to be retrieved from root xylem vessels, with AKT1 playing a significant role in K+ -sufficient plants. Overall, our results suggest that K+ uptake and translocation are tightly coordinated via signals that regulate the expression of K+ transport systems.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Canais de Potássio/fisiologia , Antiportadores de Potássio-Hidrogênio/fisiologia , Potássio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Mutagênese Insercional , Canais de Potássio/genética , Canais de Potássio/metabolismo , Antiportadores de Potássio-Hidrogênio/genética , Antiportadores de Potássio-Hidrogênio/metabolismo
16.
J Appl Microbiol ; 126(1): 215-222, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30326179

RESUMO

AIM: Potassium (K) is one of the three major nutrients required of plant growth and muriate of potash (MoP) is the only recognized chemical fertilizer used in agriculture. In many countries, 100% of the applied MoP is imported costing huge revenue. Application of suitable potassium-solubilizing bacteria (KSB) as biofertilizer could be an integral part of K management in arable soil. The object of this study was to evaluate K-solubilizing ability of a ubiquitous micro-organism as KSB to supplement K in soil. METHODS AND RESULTS: Strain (O-5) was isolated from tea-growing soil and identified as Bacillus pseudomycoides. Phylogenetic analysis revealed that the nearest neighbours of B. pseudomycoides strain O-5 were Bacillus cereus, Bacillus thuringiensis and Bacillus toyonensis. Though the species was first identified in 1998 and is ubiquitous in soil, the role of this group of micro-organisms in nutrient cycling in soil has not been studied before. Strain solubilized 33·32 ± 2·40 µg K ml-1 in mica waste (MW; muscovite type mineral)-amended broth after 7 days incubation at 30 ± 1°C. In a soil microcosm study under laboratory condition, B. pseudomycoides strain O-5 increased K availability by 47·0 ± 7·1 mg kg-1 after 105 days incubation, while the strain released 104·9 ± 15·3 mg K kg-1 in MW-treated soil. In this study, application of isolated B. pseudomycoides with MW significantly increased K availability in soil, and that in turn facilitated K uptake by tea plants. CONCLUSION: Based on the data, it could be inferred that B. pseudomycoides could mobilize K from bound form in soil and can be utilized as K-solubilizing biofertilizer especially in combination with MW for supplementing K in soil. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacillus pseudomycoides strain O-5 has potential to be used as K-solubilizing biofertilizer in agriculture.


Assuntos
Silicatos de Alumínio/metabolismo , Bacillus/metabolismo , Camellia sinensis/metabolismo , Potássio/metabolismo , Agricultura , Silicatos de Alumínio/análise , Bacillus/classificação , Bacillus/genética , Bacillus/isolamento & purificação , Camellia sinensis/crescimento & desenvolvimento , Fertilizantes/análise , Índia , Filogenia , Solo/química , Microbiologia do Solo , Chá
17.
Plant J ; 90(1): 48-60, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28008679

RESUMO

The inward-rectifying K+ channel AKT1 constitutes an important pathway for K+ acquisition in plant roots. In glycophytes, excessive accumulation of Na+ is accompanied by K+ deficiency under salt stress. However, in the succulent xerophyte Zygophyllum xanthoxylum, which exhibits excellent adaptability to adverse environments, K+ concentration remains at a relatively constant level despite increased levels of Na+ under salinity and drought conditions. In this study, the contribution of ZxAKT1 to maintaining K+ and Na+ homeostasis in Z. xanthoxylum was investigated. Expression of ZxAKT1 rescued the K+ -uptake-defective phenotype of yeast strain CY162, suppressed the salt-sensitive phenotype of yeast strain G19, and complemented the low-K+ -sensitive phenotype of Arabidopsis akt1 mutant, indicating that ZxAKT1 functions as an inward-rectifying K+ channel. ZxAKT1 was predominantly expressed in roots, and was induced under high concentrations of either KCl or NaCl. By using RNA interference technique, we found that ZxAKT1-silenced plants exhibited stunted growth compared to wild-type Z. xanthoxylum. Further experiments showed that ZxAKT1-silenced plants exhibited a significant decline in net uptake of K+ and Na+ , resulting in decreased concentrations of K+ and Na+ , as compared to wild-type Z. xanthoxylum grown under 50 mm NaCl. Compared with wild-type, the expression levels of genes encoding several transporters/channels related to K+ /Na+ homeostasis, including ZxSKOR, ZxNHX, ZxSOS1 and ZxHKT1;1, were reduced in various tissues of a ZxAKT1-silenced line. These findings suggest that ZxAKT1 not only plays a crucial role in K+ uptake but also functions in modulating Na+ uptake and transport systems in Z. xanthoxylum, thereby affecting its normal growth.


Assuntos
Proteínas de Plantas/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Zygophyllum/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Cloreto de Potássio/farmacologia , Cloreto de Sódio/farmacologia , Zygophyllum/efeitos dos fármacos
18.
Front Plant Sci ; 7: 957, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446183

RESUMO

Biotic and abiotic constraints seriously affect the productivity of agriculture worldwide. The broadly recognized benefits of legumes in cropping systems-biological nitrogen fixation, improving soil fertility and broadening cereal-based agro-ecologies, are desirable now more than ever. Legume production is affected by hostile environments, especially soil salinity and high temperatures (HTs). Among legumes, mungbean has acceptable intrinsic tolerance mechanisms, but many agro-physiological characteristics of the Vigna species remain to be explored. Mungbean has a distinct advantage of being short-duration and can grow in wide range of soils and environments (as mono or relay legume). This review focuses on salinity and HT stresses on mungbean grown as a fallow crop (mungbean-rice-wheat to replace fallow-rice-wheat) and/or a relay crop in cereal cropping systems. Salinity tolerance comprises multifaceted responses at the molecular, physiological and plant canopy levels. In HTs, adaptation of physiological and biochemical processes gradually may lead to improvement of heat tolerance in plants. At the field level, managing or manipulating cultural practices can mitigate adverse effects of salinity and HT. Greater understanding of physiological and biochemical mechanisms regulating these two stresses will contribute to an evolving profile of the genes, proteins, and metabolites responsible for mungbean survival. We focus on abiotic stresses in legumes in general and mungbean in particular, and highlight gaps that need to be bridged through future mungbean research. Recent findings largely from physiological and biochemical fronts are examined, along with a few agronomic and farm-based management strategies to mitigate stress under field conditions.

19.
Mol Plant ; 9(3): 437-446, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26851373

RESUMO

Potassium (K(+)) is one of the essential macronutrients for plant growth and development. K(+) uptake from environment and K(+) translocation in plants are conducted by K(+) channels and transporters. In this study, we demonstrated that KT/HAK/KUP transporter KUP7 plays crucial roles in K(+) uptake and translocation in Arabidopsis root. The kup7 mutant exhibited a sensitive phenotype on low-K(+) medium, whose leaves showed chlorosis symptoms compared with wild-type plants. Loss of function of KUP7 led to a reduction of K(+) uptake rate and K(+) content in xylem sap under K(+)-deficient conditions. Thus, the K(+) content in kup7 shoot was significantly reduced under low-K(+) conditions. Localization analysis revealed that KUP7 was predominantly targeted to the plasma membrane. The complementation assay in yeast suggested that KUP7 could mediate K(+) transport. In addition, phosphorylation on S80, S719, and S721 was important for KUP7 activity. KUP7 was ubiquitously expressed in many organs/tissues, and showed a higher expression level in Arabidopsis root. Together, our data demonstrated that KUP7 is crucial for K(+) uptake in Arabidopsis root and might be also involved in K(+) transport into xylem sap, affecting K(+) translocation from root toward shoot, especially under K(+)-limited conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Canais de Potássio/metabolismo , Potássio/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Transporte de Íons , Mutação , Canais de Potássio/genética , Transporte Proteico
20.
J Plant Res ; 129(1): 67-77, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26578190

RESUMO

HKT transporters are Na(+)-permeable membrane proteins, which mediate Na(+) and K(+) homeostasis in K(+)-depleted and saline environments in plants. Class II HKT transporters, a distinct subgroup found predominantly in monocots, are known to mediate Na(+)-K(+) co-transport in principle. Here we report features of ion transport functions of No-OsHKT2;2/1, a class II transporter identified in a salt tolerant landrace of indica rice, Nona Bokra. We profiled No-OsHKT2;2/1 expression in organs of Nona Bokra plants with or without salinity stress. Dominant accumulation of the No-OsHKT2;2/1 transcript in K(+)-starved roots of Nona Bokra plants largely disappeared in response to 50 mM NaCl. We found that No-OsHKT2;2/1 expressed in the high-affinity K(+) uptake deficient mutant of Saccharomyces cerevisiae and Xenopus laevis oocytes shows robust K(+) selectivity even in the presence of a large amount of NaCl as reported previously. However, No-OsHKT2;2/1-expressing yeast cells exhibited Na(+) hypersensitive growth under various concentrations of K(+) and Na(+) as the cells expressing Po-OsHKT2;2, a similar class II transporter from another salt tolerant indica rice Pokkali, when compared with the growth of cells harboring empty vector or cells expressing OsHKT2;4. The OsHKT2;4 protein expressed in Xenopus oocytes showed strong K(+) selectivity in the presence of 50 mM NaCl in comparison with No-OsHKT2;2/1 and Po-OsHKT2;2. Together with apparent plasma membrane-localization of No-OsHKT2;2/1, these results point to possibilities that No-OsHKT2;2/1 could mediate destructive Na(+) influx over K(+) uptake in Nona Bokra plants upon salinity stress, and that a predominant physiological function of No-OsHKT2;2/1 might be the acquisition of Na(+) and K(+) in K(+)-limited environments.


Assuntos
Proteínas de Transporte de Cátions/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Potássio/metabolismo , Sódio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Dados de Sequência Molecular , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Tolerância ao Sal , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA