Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Front Cell Neurosci ; 18: 1380442, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39175503

RESUMO

Introduction: The KCNQ2/KCNQ3 genes encode the voltage-gated K channel underlying the neuronal M-current, regulating neuronal excitability. Loss-of-function (LoF) variants cause neonatal epilepsy, treatable with the M-current-opener retigabine, which is no longer marketed due to side effects. Gain-of-function (GoF) variants cause developmental encephalopathy and autism that could be amenable to M-current, but such therapies are not clinically available. In this translational project, we investigated whether donepezil, a cholinergic drug used in Alzheimer's, suppresses M currents in vitro and improves cognitive symptoms in patients with GoF variants. Methods: (1) The effect of 1 µM donepezil on the amplitude of the M-current was measured in excitatory and inhibitory neurons of mouse primary cultured hippocampal cells. M-current was measured using the standard deactivation protocol (holding at 0 mV and deactivation at -60 mV) in the voltage-clamp configuration of the whole-cell patch clamp technique. The impact of donepezil was also examined on the spontaneous firing activity of hippocampal neurons in the current-clamp configuration. (2) Four children with autism, aged 2.5-8 years, with the following GoF variants were enrolled: KCNQ2 (p. Arg144Gln) and KCNQ 3 (p.Arg227Gln, p.Arg230Cys). Patients were treated off-label with donepezil 2.5-5 mg/d for 12 months and assessed with: clinical Global Impression of Change (CGI-c), Childhood Autism Rating Scale 2 (CARS-2), Adaptive Behavior Assessment System-II (ABAS-II), and Child Development Inventory (CDI). Results: (1) Application of donepezil for at least 6 min produced a significant inhibition of the M-current with an IC50 of 0.4 µM. At 1 µM, donepezil reduced by 67% the M-current density of excitatory neurons (2.4 ± 0.46 vs. 0.89 ± 0.15 pA/pF, p < 0.05*). In inhibitory neurons, application of 1 µM donepezil produced a lesser inhibition of 59% of the M-current density (1.39 ± 0.43 vs. 0.57 ± 0.21, p > 0.05). Donepezil (1 µM) potently increased by 2.6-fold the spontaneous firing frequency, which was prevented by the muscarinic receptor antagonist atropine (10 µM). (2) The CARS-2 decreased by 3.8 ± 4.9 points (p > 0.05), but in two patients with KCNQ3 variants, the improvement was over the 4.5 clinically relevant threshold. The global clinical change was also clinically significant in these patients (CGI-c = 1). The CDI increased by 65% (p < 0.05*), while the ABAS-II remained unchanged. Discussion: Donepezil should be repurposed as a novel alternative treatment for GoF variants in KCNQ2/KCNQ3 encephalopathy.

2.
Epilepsia Open ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141400

RESUMO

OBJECTIVE: To summarize the clinical features and genetic mutation characteristics of Chinese children with KCNQ2-related epilepsy. METHODS: A cohort of children with genetically caused epilepsy was evaluated at Linyi People's Hospital from January 2017 to December 2023. After next-generation sequencing and pathogenicity analysis, we summarized the medical records and genetic testing data of the children who had KCNQ2 gene mutations. RESULTS: We identified 23 KCNQ2 gene mutations. 73.9% (n = 17) of the mutation sites were located in S5-S6 segments and the C-terminal region. In addition to the common phenotypes, 2 new phenotypes were identified: infantile convulsion with paroxysmal choreoathetosis (ICCA) and febrile seizure plus (FS+). Of all the cases with abnormal video-electro-encephalography, three cases with self-limited familial infantile epilepsy (SeLNE) exhibited a small number of multifocal discharges. Of the patients who have taken a particular antiepileptic drug, the statistics on the number of patients who have responded to the drug are as follows: oxcarbazepine (8/9, 88.9%), levetiracetam (5/7, 71.4%), phenobarbital (9/16, 56.3%), and topiramate (2/5, 40.0%). However, the efficacy of phenobarbital varied widely in treating SeLNE and KCNQ2-DEE. At the final follow-up, 1 case with SeLNE had a transient developmental regression and 7 cases with KCNQ2-DEE had mild to severe developmental backwardness. SIGNIFICANCE: Although clinically rare, we report 10 new KCNQ2 mutations and two new phenotypes: ICCA and FS+. This further expands genetic and phenotypic spectrum of KCNQ2-related epilepsy. The gene mutation sites are mostly located in S5-S6 segments and the C-terminal region, and the former is usually associated with KCNQ2-DEE. Sodium channel blockers (including oxcarbazepine and topiramate) and levetiracetam should be prioritized over phenobarbital for KCNQ2-DEE. Some cases with KCNQ2-related epilepsy may have transient developmental regression during periods of frequent seizures. Early treatment and early seizure control may be beneficial for willing outcomes in children with KCNQ2-DEE. PLAIN LANGUAGE SUMMARY: This article reports 23 cases of children with KCNQ2-related epilepsy, including 10 new mutation sites and 2 new phenotypes. It further expands the genetic and phenotypic spectrum of KCNQ2-related epilepsy. In addition, the article summarizes the gene mutation characteristics and clinical manifestations of children with KCNQ2-related epilepsy, with the expectation of providing a certain theoretical basis for the diagnosis and treatment of such patients.

3.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39000434

RESUMO

GRT-X, which targets both the mitochondrial translocator protein (TSPO) and the Kv7.2/3 (KCNQ2/3) potassium channels, has been shown to efficiently promote recovery from cervical spine injury. In the present work, we investigate the role of GRT-X and its two targets in the axonal growth of dorsal root ganglion (DRG) neurons. Neurite outgrowth was quantified in DRG explant cultures prepared from wild-type C57BL6/J and TSPO-KO mice. TSPO was pharmacologically targeted with the agonist XBD173 and the Kv7 channels with the activator ICA-27243 and the inhibitor XE991. GRT-X efficiently stimulated DRG axonal growth at 4 and 8 days after its single administration. XBD173 also promoted axonal elongation, but only after 8 days and its repeated administration. In contrast, both ICA27243 and XE991 tended to decrease axonal elongation. In dissociated DRG neuron/Schwann cell co-cultures, GRT-X upregulated the expression of genes associated with axonal growth and myelination. In the TSPO-KO DRG cultures, the stimulatory effect of GRT-X on axonal growth was completely lost. However, GRT-X and XBD173 activated neuronal and Schwann cell gene expression after TSPO knockout, indicating the presence of additional targets warranting further investigation. These findings uncover a key role of the dual mode of action of GRT-X in the axonal elongation of DRG neurons.


Assuntos
Axônios , Gânglios Espinais , Receptores de GABA , Animais , Gânglios Espinais/metabolismo , Gânglios Espinais/citologia , Camundongos , Axônios/metabolismo , Receptores de GABA/metabolismo , Receptores de GABA/genética , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ2/genética , Camundongos Knockout , Camundongos Endogâmicos C57BL , Células Cultivadas , Células de Schwann/metabolismo , Células de Schwann/efeitos dos fármacos , Células de Schwann/citologia , Técnicas de Cocultura , Neurônios/metabolismo , Neurônios/efeitos dos fármacos
4.
Eur J Pediatr ; 183(9): 4103-4110, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38965081

RESUMO

Developmental and epileptic encephalopathies (DEEs) cause disability and dependence affecting both children and the family. The aim of the study was to describe the perspective of parents of children with DEEs regarding the impact of the disease on the family. We carried out a qualitative study based on the interpretivist paradigm. Twenty-one participants were selected using purposive sampling. Parents of children with DEEs of SCN1A, KCNQ2, CDKL5, PCDH19, and GNAO1 variants were included. In-depth interviews and researcher notes were used for data collection. A thematic analysis was performed on the data. Three themes were identified in the results: (a) Assuming conflicts and changes within the couple, causing them to distance themselves, reducing their time and intimacy and leading them to reconsider having more children; (b) impact of the disorder on siblings and grandparents, where siblings perceived DEE as a burden in their lives, felt neglected, and needed to grow and mature alone; conversely, the grandparents suffered for their grandchildren and the parents, in addition to perceiving that their health worsened, and (c) reconciling the care of the child with family life and work; this led the parents to share tasks, abandon or reduce working hours and ask for help.Conclusions: Caring for a child with DEE can result in neglect of social, psychological, emotional, recreational, educational, or occupational needs and obligations that ultimately impact all family members. What is Known: • Children with DEE may develop seizures and experience developmental and cognitive problems. • Caring for a child with DEE has a social and psychological impact on the entire family.

Caring for a child with DEE has a social and psychological impact on the entire family.
What is New: • Within the couple, there are tensions due to a lack of time, which could be alleviated by alternating childcare duties. • It is necessary to implement programs that address the physical and mental needs of the couple, as well as cater to the needs of siblings and alleviate the suffering of grandparents.


Assuntos
Pais , Pesquisa Qualitativa , Humanos , Masculino , Feminino , Criança , Pré-Escolar , Adulto , Pais/psicologia , Adolescente , Pessoa de Meia-Idade , Lactente , Efeitos Psicossociais da Doença , Síndromes Epilépticas/psicologia , Síndromes Epilépticas/genética , Espasmos Infantis/psicologia
5.
Epilepsy Behav ; 156: 109798, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788659

RESUMO

OBJECTIVE: KCNQ2 gene mutation usually manifests as neonatal seizures in the first week of life. Nonsense mutations cause a unique self-limited familial neonatal epilepsy (SLFNE), which is radically different from developmental epileptic encephalopathy (DEE). However, the exact underlying mechanisms remain unclear. METHODS: The proband, along with their mother and grandmother, carried the c.1342C > T (p.Arg448Ter) mutation in the KCNQ2 gene. The clinical phenotypes, electroencephalography (EEG) findings, and neurodevelopmental outcomes were comprehensively surveyed. The mutant variants were transfected into HEK293 cells to investigate functional changes. RESULTS: The proband exhibited behavior arrests, autonomic and non-motor neonatal seizures with changes in heart rate and respiration. EEG exhibited focal sharp waves. Seizures were remitted after three months of age. The neurodevelopmental outcomes at three years of age were unremarkable. A functional study demonstrated that the currents of p.Arg448Ter were non-functional in homomeric p.Arg448Ter compared with that of the KCNQ2 wild type. However, the current density and V1/2 exhibited significant improvement and close to that of the wild-type after transfection with heteromeric KCNQ2 + p.Arg448Ter and KCNQ2 + KCNQ3 + p.Arg448Ter respectively. Channel expression on the cell membrane was not visible after homomeric transfection, but not after heteromeric transfection. Retigabine did not affect homomeric p.Arg448Ter but improved heteromeric p. Arg448Ter + KCNQ2 and heteromeric KCNQ2 + Arg448Ter + KCNQ3. CONCLUSIONS: The newborn carrying the p. Arg448Ter mutation presented frequent behavioral arrests, autonomic, and non-motor neonatal seizures. This unique pattern differs from KCNQ2 seizures, which typically manifest as motor seizures. Although p.Arg448Ter is a non-sense decay, the functional study demonstrated an almost-full compensation mechanism after transfection of heteromeric KCNQ2 and KCNQ3.


Assuntos
Eletroencefalografia , Canal de Potássio KCNQ2 , Mutação , Humanos , Canal de Potássio KCNQ2/genética , Células HEK293 , Feminino , Masculino , Convulsões/genética , Convulsões/fisiopatologia , Recém-Nascido , Fenilenodiaminas/farmacologia , Carbamatos/farmacologia , Epilepsia Neonatal Benigna/genética , Epilepsia Neonatal Benigna/fisiopatologia , Lactente
6.
Turk J Pediatr ; 66(2): 191-204, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38814296

RESUMO

BACKGROUND: We aimed to delineate the genotype and phenotype of patients with KCNQ2 mutations from South China. METHODS: Clinical manifestations and characteristics of KCNQ2 mutations of patients from South China were analyzed. Previous patients with mutations detected in this study were reviewed. RESULTS: Eighteen epilepsy patients with KCNQ2 mutations, including seven self-limited neonatal epilepsy (SeLNE), two self-limited infantile epilepsy (SeLIE) and nine developmental and epileptic encephalopathy (DEE) were enrolled. The age of onset (p=0.006), mutation types (p=0.029), hypertonia (p=0.000), and seizure offset (p=0.029) were different in self-limited epilepsy (SeLE) and DEE. De novo mutations were mainly detected in DEE patients (p=0.026). The mutation position, EEG or the age of onset were not predictive for the seizure or ID/DD outcome in DEE, while the development of patients free of seizures was better than that of patients with seizures (p=0.008). Sodium channel blockers were the most effective anti-seizure medication, while the age of starting sodium channel blockers did not affect the seizure or development offset. We first discovered the seizure recurrence ratio in SeLNE/SeLIE was 23.1% in South China. Four novel mutations (c.790T>C, c.355_363delGAGAAGAG, c.296+2T>G, 20q13.33del) were discovered. Each of eight mutations (c.1918delC, c.1678C>T, c.683A>G, c.833T>C, c.868G>A, c.638G>A, c.997C>T, c.830C>T) only resulted in SeLE or DEE, while heterogeneity was also found. Six patients in this study have enriched the known phenotype caused by the mutations (c.365C>T, c.1A>G, c.683A>G, c.833T>C, c.830C>T, c.1678C>T). CONCLUSION: This research has expanded known phenotype and genotype of KCNQ2-related epilepsy, and the different clinical features of SeLE and DEE from South China.


Assuntos
Canal de Potássio KCNQ2 , Mutação , Fenótipo , Humanos , Canal de Potássio KCNQ2/genética , China/epidemiologia , Feminino , Masculino , Lactente , Pré-Escolar , Genótipo , Criança , Recém-Nascido , Epilepsia/genética , Epilepsia/tratamento farmacológico , Testes Genéticos/métodos
7.
Artigo em Inglês | MEDLINE | ID: mdl-38737299

RESUMO

Background: Tremor disorders have various genetic causes. Case report: A 60-year-old female with a family history of tremor presented a combined tremor syndrome, transient episodes of loss of contact and speech disturbances, as well as distal painful symptoms. Genetic screening revealed a novel heterozygous missense variant in the KCNQ2 gene. Discussion: The KCNQ2 protein regulates action potential firing, and mutations in its gene are associated with epilepsy and neuropathic pain. The identified variant, although of uncertain significance, may disrupt KCNQ2 function and also play a role in tremor pathogenesis. This case highlights the importance of genetic screening in combined tremor disorders.


Assuntos
Canal de Potássio KCNQ2 , Tremor , Feminino , Humanos , Pessoa de Meia-Idade , Canal de Potássio KCNQ2/genética , Mutação de Sentido Incorreto , Tremor/genética , Tremor/fisiopatologia
8.
Epilepsy Res ; 200: 107296, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219422

RESUMO

Mutations within the Kv7.2 and Kv7.3 genes are well described causes for genetic childhood epilepsies. Knowledge on these channels in acquired focal epilepsy, especially in mesial temporal lobe epilepsy (mTLE), however, is scarce. Here, we used the rat pilocarpine model of drug-resistant mTLE to elucidate both expression and function by quantitative polymerase-chain reaction, immunohistochemistry, and electrophysiology, respectively. We found transcriptional downregulation of Kv7.2 and Kv7.3 as well as reduced Kv7.2 expression in epileptic CA1. Consequences were altered synaptic transmission, hyperexcitability which consisted of epileptiform afterpotentials, and increased susceptibility to acute GABAergic disinhibition. Importantly, blocking Kv7 channels with XE991 increased hyperexcitability in control tissue, but not in chronically epileptic tissue suggesting that the Kv7 deficit had precluded XE991 effects in this tissue. Conversely, XE991 resulted in comparable reduction of the paired-pulse ratio in both experimental groups implying preserved presynaptic Kv7.2 function of Schaffer collateral terminals. Consistent with Kv7.2/7.3 downregulation, the Kv7.3 channel opener ß-hydroxybutyrate failed to mitigate hyperexcitability. Our findings demonstrate that compromised Kv7 function is not only relevant in genetic epilepsy, but also in acquired focal epilepsy. Moreover, they help explain reduced anti-seizure efficacy of Kv7 channel openers in drug-resistant epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Animais , Criança , Humanos , Ratos , Regulação para Baixo , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/metabolismo , Potenciais da Membrana , Pilocarpina , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/genética
9.
Hippocampus ; 34(2): 58-72, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38049972

RESUMO

Numerous epilepsy-related genes have been identified in recent decades by unbiased genome-wide screens. However, the available druggable targets for temporal lobe epilepsy (TLE) remain limited. Furthermore, a substantial pool of candidate genes potentially applicable to TLE therapy awaits further validation. In this study, we reveal the significant role of KCNQ2 and KCNQ3, two M-type potassium channel genes, in the onset of seizures in TLE. Our investigation began with a quantitative analysis of two publicly available TLE patient databases to establish a correlation between seizure onset and the downregulated expression of KCNQ2/3. We then replicated these pathological changes in a pilocarpine seizure mouse model and observed a decrease in spike frequency adaptation due to the affected M-currents in dentate gyrus granule neurons. In addition, we performed a small-scale simulation of the dentate gyrus network and confirmed that the impaired spike frequency adaptation of granule cells facilitated epileptiform activity throughout the network. This, in turn, resulted in prolonged seizure duration and reduced interictal intervals. Our findings shed light on an underlying mechanism contributing to ictogenesis in the TLE hippocampus and suggest a promising target for the development of antiepileptic drugs.


Assuntos
Epilepsia do Lobo Temporal , Camundongos , Animais , Humanos , Epilepsia do Lobo Temporal/patologia , Giro Denteado/metabolismo , Convulsões/induzido quimicamente , Convulsões/patologia , Hipocampo/metabolismo , Neurônios/fisiologia , Canal de Potássio KCNQ2/genética
10.
Neonatology ; 121(2): 178-186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38043515

RESUMO

INTRODUCTION: Pathogenic variant in the KCNQ2 gene is a common genetic etiology of neonatal convulsion. However, it remains a question in KCNQ2-related disorders that who will develop into atypical developmental outcomes. METHODS: We established a prediction model for the neurodevelopmental outcomes of newborns with seizures caused by KCNQ2 gene defects based on the Gradient Boosting Machine (GBM) model with a training set obtained from the Human Gene Mutation Database (HGMD, public training dataset). The features used in the prediction model were, respectively, based on clinical features only and optimized features. The validation set was obtained from the China Neonatal Genomes Project (CNGP, internal validation dataset). RESULTS: With the HGMD training set, the prediction results showed that the area under the receiver-operating characteristic curve (AUC) for predicting atypical developmental outcomes was 0.723 when using clinical features only and was improved to 0.986 when using optimized features, respectively. In feature importance ranking, both variants pathogenicity and protein functional/structural features played an important role in the prediction model. For the CNGP validation set, the AUC was 0.596 when using clinical features only and was improved to 0.736 when using optimized features. CONCLUSION: In our study, functional/structural features and variant pathogenicity have higher feature importance compared with clinical information. This prediction model for the neurodevelopmental outcomes of newborns with seizures caused by KCNQ2 gene defects is a promising alternative that could prove to be valuable in clinical practice.


Assuntos
Doenças do Recém-Nascido , Canal de Potássio KCNQ2 , Recém-Nascido , Humanos , Canal de Potássio KCNQ2/genética , Convulsões/genética , Mutação , Prognóstico
12.
Seizure ; 116: 51-64, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37353388

RESUMO

PURPOSE: In Developmental and Epileptic Encephalopathies (DEEs), identifying the precise genetic factors guides the clinicians to apply the most appropriate treatment for the patient. Due to high locus heterogeneity, WES analysis is a promising approach for the genetic diagnosis of DEE. Therefore, the aim of the present study is to evaluate the utility of WES in the diagnosis and treatment of DEE patients. METHODS: The exome data of 29 DEE patients were filtrated for destructive and missense mutations in 1896 epilepsy-related genes to detect the causative variants and examine the genotype-phenotype correlations. We performed Sanger sequencing with the available DNA samples to follow the co-segregation of the variants with the disease phenotype in the families. Also, the structural effects of p.Asn1053Ser, p.Pro120Ser and p.Glu1868Gly mutations on KCNMA1, NPC2, and SCN2A proteins, respectively, were evaluated by molecular dynamics (MD) and molecular docking simulations. RESULTS: Out of 29, nine patients (31%) harbor pathological (P) or likely pathological (LP) mutations in SCN2A, KCNQ2, ATP1A2, KCNMA1, and MECP2 genes, and three patients have VUS variants (10%) in SCN1A and SCN2A genes. Sanger sequencing results indicated that three of the patients have de novo mutations while eight of them carry paternally and/or maternally inherited causative variants. MD and molecular docking simulations supported the destructive effects of the mutations on KCNMA1, NPC2, and SCN2A protein structures. CONCLUSION: Herein we demonstrated the effectiveness of WES for DEE with high locus heterogeneity. Identification of the genetic etiology guided the clinicians to adjust the proper treatment for the patients.


Assuntos
Epilepsia Generalizada , Epilepsia , Humanos , Exoma/genética , Simulação de Acoplamento Molecular , Epilepsia/genética , Epilepsia/diagnóstico , Epilepsia Generalizada/genética , Mutação/genética , Fenótipo
13.
Life Sci ; 339: 122378, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142737

RESUMO

AIMS: The paucity of functional annotations on hundreds of KCNQ2 variants impedes the diagnosis and treatment of KCNQ2-related disorders. The aims of this work were to determine the functional properties of 331 clinical KCNQ2 variants, interpreted the pathogenicity of 331 variants using functional data,and explored the association between homomeric channel functions and phenotypes. MAIN METHODS: We collected 145 KCNQ2 variants from 232 epilepsy patients and 186 KCNQ2 missense variants from the ClinVar database. Whole-cell patch-clamp recording was used to classify the function of 331 variants. Subsequently, we proposed 24 criteria for the pathogenicity interpretation of KCNQ2 variants and used them to assess pathogenicity of 331 variants. Finally, we analyzed the clinical phenotypes of patients carrying these variants, and explored the correlations between functional mechanisms and phenotypes. KEY FINDINGS: In the homozygous state, 287 were classified as loss-of-function and 14 as gain-of-function. In the more clinically relative heterozygous state, 200 variants exhibited functional impairment, 121 of which showed dominant-negative effects on wild-type KCNQ2 subunits. After introducing functional data as strong-level evidence to interpret pathogenicity, over half of variants (169/331) were reclassified and 254 were classified as pathogenic/likely pathogenic. Moreover, dominant-negative effect and haploinsufficiency were identified as primary mechanisms in DEE/ID and SeLNE, respectively. The degree of impairment of channel function correlated with the phenotype severity. SIGNIFICANCE: Our study reveals the possible cause of KCNQ2-related disorders at the molecular level, provides compelling evidence for clinical classification of KCNQ2 variants, and expands the knowledge of correlations between functional mechanisms and phenotypes.


Assuntos
Epilepsia , Humanos , Virulência , Epilepsia/genética , Mutação de Sentido Incorreto , Fenótipo , Heterozigoto , Canal de Potássio KCNQ2/genética
14.
Neurosci Bull ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973721

RESUMO

Trigeminal inflammatory pain is one of the most severe pain-related disorders in humans; however, the underlying mechanisms remain largely unknown. In this study, we investigated the possible contribution of interaction between ten-eleven translocation methylcytosine dioxygenase 1 (TET1) and the voltage-gated K+ channel Kv7.2 (encoded by Kcnq2) to orofacial inflammatory pain in mice. We found that complete Freund's adjuvant (CFA) injection reduced the expression of Kcnq2/Kv7.2 in the trigeminal ganglion (TG) and induced orofacial inflammatory pain. The involvement of Kv7.2 in CFA-induced orofacial pain was further confirmed by Kv7.2 knockdown or overexpression. Moreover, TET1 knockdown in Tet1flox/flox mice significantly reduced the expression of Kv7.2 and M currents in the TG and led to pain-like behaviors. Conversely, TET1 overexpression by lentivirus rescued the CFA-induced decreases of Kcnq2 and M currents and alleviated mechanical allodynia. Our data suggest that TET1 is implicated in CFA-induced trigeminal inflammatory pain by positively regulating Kv7.2 in TG neurons.

15.
Expert Rev Proteomics ; 20(11): 291-298, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37787112

RESUMO

INTRODUCTION: Since the emergence of the cholinergic hypothesis of Alzheimer's disease (AD), acetylcholine has been viewed as a mediator of learning and memory. Donepezil improves AD-associated learning deficits and memory loss by recovering brain acetylcholine levels. However, it is associated with side effects due to global activation of acetylcholine receptors. Muscarinic acetylcholine receptor M1 (M1R), a key mediator of learning and memory, has been an alternative target. The importance of targeting a specific pathway downstream of M1R has recently been recognized. Elucidating signaling pathways beyond M1R that lead to learning and memory holds important clues for AD therapeutic strategies. AREAS COVERED: This review first summarizes the role of acetylcholine in aversive learning, one of the outputs used for preliminary AD drug screening. It then describes the phosphoproteomic approach focused on identifying acetylcholine intracellular signaling pathways leading to aversive learning. Finally, the intracellular mechanism of donepezil and its effect on learning and memory is discussed. EXPERT OPINION: The elucidation of signaling pathways beyond M1R by phosphoproteomic approach offers a platform for understanding the intracellular mechanism of AD drugs and for developing AD therapeutic strategies. Clarifying the molecular mechanism that links the identified acetylcholine signaling to AD pathophysiology will advance the development of AD therapeutic strategies.


Assuntos
Acetilcolina , Doença de Alzheimer , Humanos , Acetilcolina/farmacologia , Acetilcolina/uso terapêutico , Receptor Muscarínico M1/metabolismo , Donepezila/farmacologia , Donepezila/uso terapêutico , Transdução de Sinais , Doença de Alzheimer/tratamento farmacológico
16.
J Neurosci ; 43(38): 6479-6494, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37607817

RESUMO

Gain-of-function (GOF) pathogenic variants in the potassium channels KCNQ2 and KCNQ3 lead to hyperexcitability disorders such as epilepsy and autism spectrum disorders. However, the underlying cellular mechanisms of how these variants impair forebrain function are unclear. Here, we show that the R201C variant in KCNQ2 has opposite effects on the excitability of two types of mouse pyramidal neurons of either sex, causing hyperexcitability in layer 2/3 (L2/3) pyramidal neurons and hypoexcitability in CA1 pyramidal neurons. Similarly, the homologous R231C variant in KCNQ3 leads to hyperexcitability in L2/3 pyramidal neurons and hypoexcitability in CA1 pyramidal neurons. However, the effects of KCNQ3 gain-of-function on excitability are specific to superficial CA1 pyramidal neurons. These findings reveal a new level of complexity in the function of KCNQ2 and KCNQ3 channels in the forebrain and provide a framework for understanding the effects of gain-of-function variants and potassium channels in the brain.SIGNIFICANCE STATEMENT KCNQ2/3 gain-of-function (GOF) variants lead to severe forms of neurodevelopmental disorders, but the mechanisms by which these channels affect neuronal activity are poorly understood. In this study, using a series of transgenic mice we demonstrate that the same KCNQ2/3 GOF variants can lead to either hyperexcitability or hypoexcitability in different types of pyramidal neurons [CA1 vs layer (L)2/3]. Additionally, we show that expression of the recurrent KCNQ2 GOF variant R201C in forebrain pyramidal neurons could lead to seizures and SUDEP. Our data suggest that the effects of KCNQ2/3 GOF variants depend on specific cell types and brain regions, possibly accounting for the diverse range of phenotypes observed in individuals with KCNQ2/3 GOF variants.


Assuntos
Mutação com Ganho de Função , Canal de Potássio KCNQ2 , Canal de Potássio KCNQ3 , Transtornos do Neurodesenvolvimento , Animais , Camundongos , Canal de Potássio KCNQ2/genética , Camundongos Transgênicos , Canais de Potássio , Prosencéfalo , Células Piramidais , Canal de Potássio KCNQ3/genética
17.
Front Mol Neurosci ; 16: 1205265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37497102

RESUMO

Background: Developmental and epileptic encephalopathy (DEE) is a condition characterized by severe seizures and a range of developmental impairments. Pathogenic variants in KCNQ2, encoding for potassium channel subunit, cause KCNQ2-related DEE. This study aimed to examine the relationships between genotype and phenotype in KCNQ2-related DEE. Methods: In total, 12 patients were enrolled in this study for genetic testing, clinical analysis, and developmental evaluation. Pathogenic variants of KCNQ2 were characterized through a whole-cell electrophysiological recording expressed in Chinese hamster ovary (CHO) cells. The expression levels of the KCNQ2 subunit and its localization at the plasma membrane were determined using Western blot analysis. Results: Seizures were detected in all patients. All DEE patients showed evidence of developmental delay. In total, 11 de novo KCNQ2 variants were identified, including 10 missense variants from DEE patients and one truncating variant from a patient with self-limited neonatal epilepsy (SeLNE). All variants were found to be loss of function through analysis of M-currents using patch-clamp recordings. The functional impact of variants on M-current in heteromericKCNQ2/3 channels may be associated with the severity of developmental disorders in DEE. The variants with dominant-negative effects in heteromeric channels may be responsible for the profound developmental phenotype. Conclusion: The mechanism underlying KCNQ2-related DEE involves a reduction of the M-current through dominant-negative effects, and the severity of developmental disorders in DEE may be predicted by the impact of variants on the M-current of heteromericKCNQ2/3 channels.

18.
Front Neurol ; 14: 1207539, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409016

RESUMO

Over the last decade KCNQ2 channels have arisen as fundamental and indispensable regulators of neonatal brain excitability, with KCNQ2 loss-of-function pathogenic variants being increasingly identified in patients with developmental and epileptic encephalopathy. However, the mechanisms by which KCNQ2 loss-of-function variants lead to network dysfunction are not fully known. An important remaining knowledge gap is whether loss of KCNQ2 function alters GABAergic interneuron activity early in development. To address this question, we applied mesoscale calcium imaging ex vivo in postnatal day 4-7 mice lacking KCNQ2 channels in interneurons (Vgat-ires-cre;Kcnq2f/f;GCamp5). In the presence of elevated extracellular potassium concentrations, ablation of KCNQ2 channels from GABAergic cells increased the interneuron population activity in the hippocampal formation and regions of the neocortex. We found that this increased population activity depends on fast synaptic transmission, with excitatory transmission promoting the activity and GABAergic transmission curtailing it. Together, our data show that loss of function of KCNQ2 channels from interneurons increases the network excitability of the immature GABAergic circuits, revealing a new function of KCNQ2 channels in interneuron physiology in the developing brain.

19.
Seizure ; 110: 212-219, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37429183

RESUMO

PURPOSE: Early recognition of seizures in neonates secondary to pathogenic variants in potassium or sodium channel coding genes is crucial, as these seizures are often resistant to commonly used anti-seizure medications but respond well to sodium channel blockers. Recently, a characteristic ictal amplitude-integrated electroencephalogram (aEEG) pattern was described in neonates with KCNQ2-related epilepsy. We report a similar aEEG pattern in seizures caused by SCN2A- and KCNQ3-pathogenic variants, as well as conventional EEG (cEEG) descriptions. METHODS: International multicentre descriptive study, reporting clinical characteristics, aEEG and cEEG findings of 13 neonates with seizures due to pathogenic SCN2A- and KCNQ3-variants. As a comparison group, aEEGs and cEEGs of neonates with seizures due to hypoxic-ischemic encephalopathy (n = 117) and other confirmed genetic causes affecting channel function (n = 55) were reviewed. RESULTS: In 12 out of 13 patients, the aEEG showed a characteristic sequence of brief onset with a decrease, followed by a quick rise, and then postictal amplitude attenuation. This pattern correlated with bilateral EEG onset attenuation, followed by rhythmic discharges ending in several seconds of post-ictal amplitude suppression. Apart from patients with KCNQ2-related epilepsy, none of the patients in the comparison groups had a similar aEEG or cEEG pattern. DISCUSSION: Seizures in SCN2A- and KCNQ3-related epilepsy in neonates can usually be recognized by a characteristic ictal aEEG pattern, previously reported only in KCNQ2-related epilepsy, extending this unique feature to other channelopathies. Awareness of this pattern facilitates the prompt initiation of precision treatment with sodium channel blockers even before genetic results are available.


Assuntos
Eletroencefalografia , Epilepsia , Recém-Nascido , Humanos , Eletroencefalografia/métodos , Bloqueadores dos Canais de Sódio , Canal de Potássio KCNQ2/genética , Cognição , Canal de Sódio Disparado por Voltagem NAV1.2/genética
20.
BMC Biol ; 21(1): 156, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443005

RESUMO

BACKGROUND: Prime editing (PE) is the most recent gene editing technology able to introduce targeted alterations to the genome, including single base pair changes, small insertions, and deletions. Several improvements to the PE machinery have been made in the past few years, and these have been tested in a range of model systems including immortalized cell lines, stem cells, and animal models. While double nicking RNA (dncRNA) PE systems PE3 and PE5 currently show the highest editing rates, they come with reduced accuracy as undesired indels or SNVs arise at edited loci. Here, we aimed to improve single ncRNA (sncRNA) systems PE2 and PE4max by generating novel all-in-one (pAIO) plasmids driven by an EF-1α promoter, which is especially suitable for human-induced pluripotent stem cell (hiPSC) models. RESULTS: pAIO-EF1α-PE2 and pAIO-EF1α-PE4max were used to edit the voltage gated potassium channel gene KCNQ2 and voltage gated sodium channel gene SCN1A. Two clinically relevant mutations were corrected using pAIO-EF1α-PE2 including the homozygous truncating SCN1A R612* variant in HEK293T cells and the heterozygous gain-of-function KCNQ2 R201C variant in patient-derived hiPSC. We show that sncRNA PE yielded detectable editing rates in hiPSC ranging between 6.4% and 9.8%, which was further increased to 41% after a GFP-based fluorescence-activated cell sorting (FACS) cell sorting step. Furthermore, we show that selecting the high GFP expressing population improved editing efficiencies up to 3.2-fold compared to the low GFP expressing population, demonstrating that not only delivery but also the number of copies of the PE enzyme and/or pegRNA per cell are important for efficient editing. Edit rates were not improved when an additional silent protospacer-adjacent motif (PAM)-removing alteration was introduced in hiPSC at the target locus. Finally, there were no genome-wide off-target effects using pAIO-EF1α-PE2 and no off-target editing activity near the edit locus highlighting the accuracy of snc prime editors. CONCLUSION: Taken together, our study shows an improved efficacy of EF-1α driven sncRNA pAIO-PE plasmids in hiPSC reaching high editing rates, especially after FACS sorting. Optimizing these sncRNA PE systems is of high value when considering future therapeutic in vivo use, where accuracy will be extremely important.


Assuntos
Sistemas CRISPR-Cas , Pequeno RNA não Traduzido , Animais , Humanos , Células HEK293 , Fator 1 de Elongação de Peptídeos/genética , Plasmídeos/genética , Canal de Potássio KCNQ2/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA