Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Vaccine ; 39(23): 3169-3178, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33941407

RESUMO

An effective dengue vaccine should induce a long-lasting immune response against all four serotypes simultaneously with a minimum number of immunizations. Our live attenuated tetravalent dengue vaccine candidate, KD-382, was developed using a classical host range mutation strategy (no addition of artificial genetic modification). In our previous study, cynomolgus monkeys immunized with a single dose of KD-382 seroconverted to all four serotypes. However, it is important to determine if neutralizing antibodies (NAbs) induced by KD-382 can work as a long-lasting immune response to prevent dengue. In this study, a single dose of KD-382 induced a strong NAb response against all four serotypes in cynomolgus monkeys. We also confirmed that NAb titers against all four serotypes persist for at least five years, indicating its high potential as a dengue vaccine candidate. Next, we evaluated the effect of pre-existing dengue immunity on NAb responses induced by KD-382. We administered KD-382 to cynomolgus monkeys pre-administered one of the monovalent parental wild-type strains 60 days before vaccination. Regardless of the pre-immunized serotype, all the monkeys showed sufficient tetravalent NAb responses, which lasted for over two years. All the KD-382 vaccinated monkeys were then challenged with different parental wild-type viruses than that used for pre-administration; viral RNA in the serum was less than the lower limit of quantification, indicating complete protection against secondary heterologous dengue infection without any harmful disease enhancement. Consequently, KD-382 successfully induced a long-lasting and protective tetravalent NAb response in monkeys, suggesting that KD-382 is a promising vaccine candidate usable for both dengue seronegative and seropositive individuals.


Assuntos
Vacinas contra Dengue , Vírus da Dengue , Dengue , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Dengue/prevenção & controle , Macaca fascicularis , Vacinas Atenuadas , Vacinas Combinadas
2.
Heliyon ; 6(7): e04506, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32760828

RESUMO

One of the challenges developing a live attenuated tetravalent dengue vaccine (TDV) is to overcome the presumed viral interference that may be preventing the induction of a balanced immune response to all 4 serotypes of the dengue virus (DENV1-4). Our live attenuated TDV candidate was developed from wild-type (wt) parental strains (DENV1/03135, DENV2/99345, DENV3/16562, and DENV4/1036, respectively) using a classical host range mutation strategy: the same strategy used for the approved live attenuated smallpox, polio, and MMR vaccines. Our vaccine candidate is expected to mimic natural dengue virus infection, as it provides all the components of dengue virus, including both structural and nonstructural proteins. Therefore, induction of more solid and comprehensive immune responses against pathogenic dengue viruses is also expected. In this study, we evaluated the neutralizing antibody responses for each serotype induced by a single subcutaneous administration of 6 formulations, which were composed of different combinations of vaccine strains and were all of different dosages. These formulations were tested in dengue-naïve cynomolgus macaques. As a result, regardless of the TDV formulation, all the monkeys immunized with TDVs seroconverted to all the 4 serotypes at day 30. Next, we evaluated protection ability of the selected formulations of TDV candidate, no RNAemia was detected from any of the immunized monkeys upon s.c. challenge with wtDENV. The findings of this non-human primate study indicate that our vaccine candidate is very promising; it can be further evaluated for safety and efficacy in human clinical studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA