Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Carcinog ; 63(7): 1288-1302, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38607237

RESUMO

Baicalein has been implicated in the chemotherapy overcoming triple-negative breast cancer (TNBC). However, many unanswered questions remain regarding its role in treating TNBC. Here, we sought to demonstrate the molecular pathway mediated by baicalein in TNBC. Lysine-specific demethylase 4E (KDM4E), reduced in TNBC cells, was identified as a target protein of baicalein, and baicalein enhanced the protein expression and stability of KDM4E in TNBC cells. Knockdown of KDM4E attenuated the inhibitory effect of baicalein on TNBC cell activity, as demonstrated by intensified mobility, viability, and apoptosis resistance in TNBC cells. KDM4E activated protein bicaudal D homolog 1 (BICD1) expression by reducing the deposition of histone H3 lysine 9 trimethylation (H3K9me3) in its promoter, whereas BICD1 promoted protease-activated receptor-1 (PAR1) endocytosis and blocked PAR1 signaling through physical interaction with PAR1. Knockdown of KDM4E strengthened the PAR1-dependent activity of TNBC cells in response to thrombin activation, whereas TNBC progression activated by PAR1 signaling was blocked by combined overexpression of BICD1. Taken together, our data indicate that baicalein-promoted KDM4E enhanced the expression of BICD1 and activated the inhibitory effect of BICD1 on PAR1 signaling, thereby inhibiting TNBC progression.


Assuntos
Flavanonas , Transdução de Sinais , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Flavanonas/farmacologia , Feminino , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Animais , Receptor PAR-1/metabolismo , Receptor PAR-1/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Progressão da Doença , Camundongos
2.
Comput Biol Chem ; 110: 108072, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636391

RESUMO

The methylation and demethylation of lysine and arginine side chains are fundamental processes in gene regulation and disease development. Histone lysine methylation, controlled by histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs), plays a vital role in maintaining cellular homeostasis and has been implicated in diseases such as cancer and aging. This study focuses on two members of the lysine demethylase (KDM) family, KDM4E and KDM6B, which are significant in gene regulation and disease pathogenesis. KDM4E demonstrates selectivity for gene regulation, particularly concerning cancer, while KDM6B is implicated in inflammation and cancer. The study utilizes specific inhibitors, DA-24905 and GSK-J1, showcasing their exceptional selectivity for KDM4E and KDM6B, respectively. Employing an array of computational simulations, including sequence alignment, molecular docking, dynamics simulations, and free energy calculations, we conclude that although the binding cavities of KDM4E and KDM6B has high similarity, there are still some different crucial amino acid residues, indicating diverse binding forms between protein and ligands. Various interaction predominates when proteins are bound to different ligands, which also has significant effect on selective inhibition. These findings provide insights into potential therapeutic strategies for diseases by selectively targeting these KDM members.


Assuntos
Inibidores Enzimáticos , Histona Desmetilases com o Domínio Jumonji , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/química , Humanos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Simulação de Dinâmica Molecular , Descoberta de Drogas , Simulação de Acoplamento Molecular , Estrutura Molecular , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/metabolismo , Histona Desmetilases/química , Relação Estrutura-Atividade
3.
Front Mol Biosci ; 9: 997747, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36866106

RESUMO

The incidences of colorectal cancer (CRC) are continuously increasing in some areas of the world, including Malaysia. In this study, we aimed to characterize the landscape of somatic mutations using the whole-genome sequencing approach and identify druggable somatic mutations specific to Malaysian patients. Whole-genome sequencing was performed on the genomic DNA obtained from 50 Malaysian CRC patients' tissues. We discovered the top significantly mutated genes were APC, TP53, KRAS, TCF7L2 and ACVR2A. Four novel, non-synonymous variants were identified in three genes, which were KDM4E, MUC16 and POTED. At least one druggable somatic alteration was identified in 88% of our patients. Among them were two frameshift mutations in RNF43 (G156fs and P192fs) predicted to have responsive effects against the Wnt pathway inhibitor. We found that the exogenous expression of this RNF43 mutation in CRC cells resulted in increased cell proliferation and sensitivity against LGK974 drug treatment and G1 cell cycle arrest. In conclusion, this study uncovered our local CRC patients' genomic landscape and druggable alterations. It also highlighted the role of specific RNF43 frameshift mutations, which unveil the potential of an alternative treatment targeting the Wnt/ß-Catenin signalling pathway and could be beneficial, especially to Malaysian CRC patients.

4.
Hum Mutat ; 42(4): 421-433, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33502067

RESUMO

Facioscapulohumeral dystrophy (FSHD) is associated with the upregulation of the DUX4 transcription factor and its target genes. However, low-frequency DUX4 upregulation in patient myocytes is difficult to detect and examining the relationship and dynamics of DUX4 and target gene expression has been challenging. Using RNAScope in situ hybridization with highly specific probes, we detect the endogenous DUX4 and target gene transcripts in situ in patient skeletal myotubes during 13-day differentiation in vitro. We found that the endogenous DUX4 transcripts primarily localize as foci in one or two nuclei as compared with the accumulation of the recombinant DUX4 transcripts in the cytoplasm. We also found the continuous increase of DUX4 and target gene-positive myotubes after Day 3, arguing against its expected immediate cytotoxicity. Interestingly, DUX4 and target gene expression become discordant later in differentiation with the increase of DUX4-positive/target gene-negative as well as DUX4-negative/target gene-positive myotubes. Depletion of DUX4-activated transcription factors, DUXA and LEUTX, specifically repressed a DUX4-target gene, KDM4E, later in differentiation, suggesting that after the initial activation by DUX4, target genes themselves contribute to the maintenance of downstream gene expression. Together, the study provides important new insights into the dynamics of the DUX4 transcriptional network in FSHD patient myocytes.


Assuntos
Distrofia Muscular Facioescapuloumeral , Núcleo Celular/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/genética
5.
Development ; 145(4)2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29453221

RESUMO

Aberrant epigenetic reprogramming often results in developmental defects in somatic cell nuclear transfer (SCNT) embryos during embryonic genome activation (EGA). Bovine eight-cell SCNT embryos exhibit global hypermethylation of histone H3 lysine 9 tri- and di-methylation (H3K9me3/2), but the intrinsic reason for this remains elusive. Here, we provide evidence that two H3K9 demethylase genes, lysine-specific demethylase 4D (KDM4D) and 4E (KDM4E), are related to active H3K9me3/2 demethylation in in vitro fertilized (IVF) embryos and are deficiently expressed in cloned embryos at the time of EGA. Moreover, KDM4E plays a more crucial role in IVF and SCNT embryonic development, and overexpression of KDM4E can restore the global transcriptome, improve blastocyst formation and increase the cloning efficiency of SCNT embryos. Our results thereby indicate that KDM4E can function as a crucial epigenetic regulator of EGA and as an internal defective factor responsible for persistent H3K9me3/2 barriers to SCNT-mediated reprogramming. Furthermore, we show that interactions between RNA and KDM4E are essential for H3K9 demethylation during EGA. These observations advance the understanding of incomplete nuclear reprogramming and are of great importance for transgenic cattle procreation.


Assuntos
Reprogramação Celular/genética , Desenvolvimento Embrionário/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Animais , Western Blotting , Bovinos , Embrião de Mamíferos/metabolismo , Epigenômica , Fertilização in vitro , Imunofluorescência , Técnicas de Transferência Nuclear , Reação em Cadeia da Polimerase em Tempo Real
6.
Cell Mol Life Sci ; 74(18): 3305-3315, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28364192

RESUMO

Arginine methylation of histones is one mechanism of epigenetic regulation in eukaryotic cells. Methylarginines can also be found in non-histone proteins involved in various different processes in a cell. An enzyme family of nine protein arginine methyltransferases catalyses the addition of methyl groups on arginines of histone and non-histone proteins, resulting in either mono- or dimethylated-arginine residues. The reversibility of histone modifications is an essential feature of epigenetic regulation to respond to changes in environmental factors, signalling events, or metabolic alterations. Prominent histone modifications like lysine acetylation and lysine methylation are reversible. Enzyme family pairs have been identified, with each pair of lysine acetyltransferases/deacetylases and lysine methyltransferases/demethylases operating complementarily to generate or erase lysine modifications. Several analyses also indicate a reversible nature of arginine methylation, but the enzymes facilitating direct removal of methyl moieties from arginine residues in proteins have been discussed controversially. Differing reports have been seen for initially characterized putative candidates, like peptidyl arginine deiminase 4 or Jumonji-domain containing protein 6. Here, we review the most recent cellular, biochemical, and mass spectrometry work on arginine methylation and its reversible nature with a special focus on putative arginine demethylases, including the enzyme superfamily of Fe(II) and 2-oxoglutarate-dependent oxygenases.


Assuntos
Arginina/metabolismo , Histonas/metabolismo , Animais , Arginina/análogos & derivados , Arginina/análise , Histona Desmetilases/metabolismo , Humanos , Hidrolases/metabolismo , Metilação , Proteína-Arginina Desiminase do Tipo 4 , Desiminases de Arginina em Proteínas , Proteína-Arginina N-Metiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA