Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Comp Immunol ; 84: 327-336, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29522790

RESUMO

The development of mammalian megakaryocytes and platelets is regulated by numerous cytokine signals, primarily through the thrombopoietin (TPO)/c-MPL axis. Although non-mammalian vertebrates are known to possess nucleated thrombocytes functionally equivalent to mammalian platelets, the dynamics of the thrombocyte development remains unclear. Here we identified TPO and a splice variant (TPO-v) caused by the intron retention in common carp (Cyprinus carpio). Both the tpo and its variant transcripts were highly expressed in heart and liver. Recombinant carp TPO (rcTPO) was produced and purified in HEK293T cells stably expressing tpo, but TPO-v was shown not to be secreted from the transfectants. rcTPO induced the formation of colony-forming unit-thrombocyte (CFU-T) colonies which were recognized by a monoclonal antibody against carp thrombocytes expressing c-mpl and cd41, in a dose-dependent manner. The combination of rcTPO and recombinant carp Kit ligand A (rcKITLA) exerted a significant synergistic effect on three types of colony formation: thrombocytic colonies, thrombocytic burst colonies and thrombocytic/erythroid colonies. Utilizing this colony assay to examine the distribution of thrombocytic progenitor cells in carp, we demonstrated that carp head and trunk kidney play a primary role in thrombopoiesis, while the spleen does not. Our results indicate that carp possess mechanisms of TPO- and KITLA-dependent thrombopoiesis similar to those in other vertebrates and the sites of thrombopoiesis are restricted to the kidney, the primary hematopoietic organ in the teleost fish.


Assuntos
Plaquetas/fisiologia , Carpas/fisiologia , Proteínas de Peixes/metabolismo , Coração/fisiologia , Rim/fisiologia , Fígado/fisiologia , Trombopoetina/metabolismo , Animais , Secreções Corporais , Proteínas de Peixes/genética , Células HEK293 , Humanos , Ligantes , Mamíferos/fisiologia , Células Progenitoras Mieloides , Isoformas de RNA/genética , Receptores de Trombopoetina/metabolismo , Transdução de Sinais , Fator de Células-Tronco/genética , Fator de Células-Tronco/metabolismo , Trombopoese , Trombopoetina/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Dev Comp Immunol ; 53(1): 13-22, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26111997

RESUMO

The use of in vitro colony assays in mammals has contributed to identification of erythroid progenitor cells such as burst-forming unit-erythroid (BFU-E) and colony-forming unit-erythroid (CFU-E) progenitors, and serves to examine functions of erythropoietic growth factors like Erythropoietin (Epo) and Kit ligand. Here, we established an in vitro colony-forming assay capable of investigating erythropoiesis in carp (Cyprinus carpio), cloned and functionally characterized recombinant homologous molecules Epo and Kit ligand A (Kitla), and identified three distinct erythroid progenitor cells in carp. Recombinant carp Epo induced the formation of CFU-E-like and BFU-E-like erythroid colonies, expressing erythroid marker genes, ß-globin, epor and gata1. Recombinant carp Kitla alone induced limited colony formation, whereas a combination of Kitla and Epo dramatically enhanced erythroid colony formation and colony cell growth, as well as stimulated the formation of thrombocytic/erythroid colonies expressing not only erythroid markers but also thrombocytic markers, cd41 and c-mpl. Utilizing this colony assay to examine the distribution of distinct erythroid progenitor cells in carp, we demonstrated that carp head and trunk kidney play a primary role in erythropoiesis, while the spleen plays a secondary. Furthermore, we showed that presumably bi-potent thrombocytic/erythroid progenitor cells localize principally in the trunk kidney. Our results indicate that teleost fish possess mechanisms of Epo- and Kitla-dependent erythropoiesis similar to those in other vertebrates, and also help to demonstrate the diversity of erythropoietic sites among vertebrates.


Assuntos
Eritropoese/fisiologia , Eritropoetina/genética , Fator de Células-Tronco/genética , Células-Tronco/citologia , Animais , Carpas , Fator de Transcrição GATA1/biossíntese , Rim/metabolismo , Glicoproteína IIb da Membrana de Plaquetas/biossíntese , Receptores da Eritropoetina/biossíntese , Proteínas Recombinantes/genética , Baço/metabolismo , Trombopoetina/biossíntese , Globinas beta/biossíntese
3.
Dev Comp Immunol ; 49(1): 157-69, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25450454

RESUMO

Thrombopoietin (TPO) is the principal regulator of thrombopoiesis and promotes the proliferation, differentiation and maturation of megakaryocytic progenitor cells in mammals. In this study we report on the molecular and functional characterization of goldfish TPO. Quantitative expression analysis of goldfish tpo revealed the highest mRNA levels in heart, followed by spleen, liver, brain, intestine and kidney tissues. Significant decrease of tpo and c-mpl expressions in goldfish primary kidney macrophage (PKM) cultures, as progenitor to macrophage development progressed, indicates that TPO is not involved in monopoiesis. Recombinant goldfish TPO (rgTPO) alone did not induce significant proliferation of progenitor cells, but TPO in cooperation with recombinant goldfish kit ligand A (rgKITLA) supported proliferation of progenitor cells in a dose-dependent manner. In response to rgTPO or a combination of rgTPO and rgKITLA, the mRNA levels of thrombopoietic markers cd41 and c-mpl as well as thrombo/erythropoietic transcription factors gata1 and lmo2 in sorted progenitor cells were up-regulated, while the mRNA levels of granulopoietic markers (cebpα and gcsfr) and the lymphoid transcription factor gata3 were down-regulated. Furthermore, rgTPO and rgKITLA synergistically stimulated thrombocytic colony-formation. Our results demonstrate that goldfish TPO has similar functions to mammalian TPO as a regulator of thrombopoiesis, and suggests a highly conserved molecular mechanism of thrombocyte development throughout evolution of vertebrates.


Assuntos
Plaquetas/metabolismo , Proliferação de Células/genética , Proteínas de Peixes/genética , Fator de Células-Tronco/genética , Células-Tronco/metabolismo , Trombopoetina/genética , Sequência de Aminoácidos , Animais , Plaquetas/citologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Relação Dose-Resposta a Droga , Proteínas de Peixes/metabolismo , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Filogenia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Fator de Células-Tronco/metabolismo , Células-Tronco/citologia , Trombopoetina/classificação , Trombopoetina/metabolismo
4.
Mol Cell Endocrinol ; 402: 21-31, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25542847

RESUMO

Kit ligand (Kitl) is an important paracrine factor involved in the activation of primordial follicles from the quiescent pool and in the maintenance of meiotic arrest before germinal vesicle breakdown (GVBD). It has been reported that follicle-stimulating hormone (FSH) stimulates but luteinizing hormone (LH) suppresses the expression of Kitl in the granulosa cells in mammals. Considering that both gonadotropins signal in the follicle cells mainly by activating cyclic adenosine 3', 5'-monophosphate (cAMP) pathway, we are intrigued by how cAMP differentially regulates Kitl expression. In the present study, we demonstrated that both human chorionic gonadotropin (hCG) and pituitary adenylate cyclase activating polypeptide (PACAP) inhibited insulin-like growth factor I (IGF-I)-induced Akt phosphorylation and kitlga expression in the zebrafish follicle cells. Further experiments showed that cAMP was involved in regulating the expression of kitlga. However, two cAMP-activated effectors, protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac), had converse effects. PKA promoted whereas Epac inhibited the expression of kitlga, as demonstrated by the respective activators. Interestingly, cAMP also appeared to exert differential effects on kitlga expression at different stages of follicle development during folliculogenesis, significantly stimulating kitlga expression at the early growth stage but suppressing it at the full-grown stage before final oocyte maturation, implying a potential mechanism for differential effects of the same pathway at different stages. The inhibitory effect of forskolin (activator of adenylate cyclase) and H89 (inhibitor of PKA) on IGF-I-induced expression of kitlga suggested cross-talk between the cAMP and IGF-I-activated PI3K-Akt pathways. This study, together with our previous findings on IGF-I regulation of kitlga expression, provides important clues to the underlying mechanism that regulates Kit ligand expression during folliculogenesis in the ovary.


Assuntos
AMP Cíclico/metabolismo , Oogênese , Folículo Ovariano/metabolismo , Fator de Células-Tronco/genética , Proteínas de Peixe-Zebra/genética , Animais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hormônio Luteinizante/fisiologia , Folículo Ovariano/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sistemas do Segundo Mensageiro , Fator de Células-Tronco/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
5.
Dev Comp Immunol ; 41(2): 230-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23748037

RESUMO

The development of macrophages is a highly regulated process requiring coordination amongst transcription factors. The presence/absence, relative levels, antagonism, or synergy of all transcription factors involved is critical to directing lineage cell fate and differentiation. While relative levels of many key myeloid transcription factors have been determined in mammalian macrophage differentiation, a similar set of studies have yet to be conducted in a teleost system. In this study, we report on the mRNA levels of transcription factors (cebpa, cjun, cmyb, egr1, gata1, gata2, gata3, lmo2, mafb, pax5, pu.1 and runx1) in sorted goldfish progenitor cells, monocytes, and macrophages from primary kidney macrophage cultures. The mRNA levels of runx1 and pu.1 were significantly higher, gata3 and pax5 mRNA levels were lower, in monocytes compared to progenitors, and the mRNA levels of cjun, egr1, gata2, gata3, mafb and pax5 were significantly decreased in macrophages compared to progenitor cells. The relative mRNA levels of the interferon regulatory factor family of transcription factors, irf1, irf2, irf5, irf7, irf8 and irf9 in sorted progenitors, monocytes and macrophages were also measured. In contrast to other irf family transcription factors examined, irf8 mRNA levels were increased in monocytes compared to progenitors by greater than three-fold, suggesting that irf8 is important for monopoiesis. Lastly, we show the differential regulation of myeloid transcription factor mRNA levels in sorted progenitor cells from 1, 2, or 3-day old cultures in response to the recombinant goldfish growth factors, rgCSF-1 and rgKITLA.


Assuntos
Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Carpa Dourada/genética , Macrófagos/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Animais , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Fatores Reguladores de Interferon/genética , Rim/citologia , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Fatores de Tempo , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA