Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Front Genet ; 15: 1412767, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948355

RESUMO

Introduction: The Euchromatic Histone Methyl Transferase Protein 2 (EHMT2), also known as G9a, deposits transcriptionally repressive chromatin marks that play pivotal roles in the maturation and homeostasis of multiple organs. Recently, we have shown that Ehmt2 inactivation in the mouse pancreas alters growth and immune gene expression networks, antagonizing Kras-mediated pancreatic cancer initiation and promotion. Here, we elucidate the essential role of Ehmt2 in maintaining a transcriptional landscape that protects organs from inflammation. Methods: Comparative RNA-seq studies between normal postnatal and young adult pancreatic tissue from Ehmt2 conditional knockout animals (Ehmt2 fl/fl ) targeted to the exocrine pancreatic epithelial cells (Pdx1-Cre and P48 Cre/+ ), reveal alterations in gene expression networks in the whole organ related to injury-inflammation-repair, suggesting an increased predisposition to damage. Thus, we induced an inflammation repair response in the Ehmt2 fl/fl pancreas and used a data science-based approach to integrate RNA-seq-derived pathways and networks, deconvolution digital cytology, and spatial transcriptomics. We also analyzed the tissue response to damage at the morphological, biochemical, and molecular pathology levels. Results and discussion: The Ehmt2 fl/fl pancreas displays an enhanced injury-inflammation-repair response, offering insights into fundamental molecular and cellular mechanisms involved in this process. More importantly, these data show that conditional Ehmt2 inactivation in exocrine cells reprograms the local environment to recruit mesenchymal and immunological cells needed to mount an increased inflammatory response. Mechanistically, this response is an enhanced injury-inflammation-repair reaction with a small contribution of specific Ehmt2-regulated transcripts. Thus, this new knowledge extends the mechanisms underlying the role of the Ehmt2-mediated pathway in suppressing pancreatic cancer initiation and modulating inflammatory pancreatic diseases.

2.
Elife ; 122024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856715

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD). However, whether LRRK2 mutations cause PD and degeneration of dopaminergic (DA) neurons via a toxic gain-of-function or a loss-of-function mechanism is unresolved and has pivotal implications for LRRK2-based PD therapies. In this study, we investigate whether Lrrk2 and its functional homolog Lrrk1 play a cell-intrinsic role in DA neuron survival through the development of DA neuron-specific Lrrk conditional double knockout (cDKO) mice. Unlike Lrrk germline DKO mice, DA neuron-restricted Lrrk cDKO mice exhibit normal mortality but develop age-dependent loss of DA neurons, as shown by the progressive reduction of DA neurons in the substantia nigra pars compacta (SNpc) at the ages of 20 and 24 months. Moreover, DA neurodegeneration is accompanied with increases in apoptosis and elevated microgliosis in the SNpc as well as decreases in DA terminals in the striatum, and is preceded by impaired motor coordination. Taken together, these findings provide the unequivocal evidence for the cell-intrinsic requirement of LRRK in DA neurons and raise the possibility that LRRK2 mutations may impair its protection of DA neurons, leading to DA neurodegeneration in PD.


Assuntos
Sobrevivência Celular , Neurônios Dopaminérgicos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Camundongos Knockout , Animais , Neurônios Dopaminérgicos/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Apoptose
3.
Chem Biol Interact ; 398: 111117, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38906501

RESUMO

Breast cancer resistance protein/ATP-binding cassette subfamily G2 (BCRP/ABCG2) is an ATP-binding cassette efflux (ABC) transporter expressed in the apical membrane of cells in tissues, such as the liver, intestine, kidney, testis, brain, and mammary gland. It is involved in xenobiotic pharmacokinetics, potentially affecting the efficacy and toxicity of many drugs. In this study, the role of ABCG2 in parasiticide monepantel (MNP) and its primary metabolite, monepantel sulfone (MNPSO2)'s systemic distribution and excretion in milk, was tested using female and male wild-type and Abcg2-/- mice. Liquid chromatography coupled with a tandem mass spectrometer (LC-MS/MS) was used for the analysis in a 10-min run time using positive-mode atmospheric pressure electrospray ionization (ESI+) and multiple reaction monitoring (MRM) scanning. For the primary metabolite tested, milk concentrations were 1.8-fold higher in wild-type mice than Abcg2-/- female lactating mice (P = 0.042) after intravenous administration of MNP. Finally, despite the lack of a difference between groups, we investigated potential differences in MNP and MNPSO2's plasma and tissue accumulation levels between wild-type and Abcg2-/- male mice. In this study, we demonstrated that MNPSO2 milk levels were affected by Abcg2, with potential pharmacological and toxicological consequences, contributing to the undesirable xenobiotic residues in milk.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Anti-Helmínticos , Leite , Animais , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Feminino , Camundongos , Masculino , Leite/química , Leite/metabolismo , Anti-Helmínticos/farmacocinética , Anti-Helmínticos/metabolismo , Anti-Helmínticos/sangue , Camundongos Knockout , Distribuição Tecidual , Espectrometria de Massas em Tandem
4.
eNeuro ; 11(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839305

RESUMO

Social behavior is important for our well-being, and its dysfunctions impact several pathological conditions. Although the involvement of glutamate is undeniable, the relevance of vesicular glutamate transporter type 3 (VGluT3), a specific vesicular transporter, in the control of social behavior is not sufficiently explored. Since midbrain median raphe region (MRR) is implicated in social behavior and the nucleus contains high amount of VGluT3+ neurons, we compared the behavior of male VGluT3 knock-out (KO) and VGluT3-Cre mice, the latter after chemogenetic MRR-VGluT3 manipulation. Appropriate control groups were included. Behavioral test battery was used for social behavior (sociability, social discrimination, social interaction, resident intruder test) and possible confounding factors (open field, elevated plus maze, Y-maze tests). Neuronal activation was studied by c-Fos immunohistochemistry. Human relevance was confirmed by VGluT3 gene expression in relevant human brainstem areas. VGluT3 KO mice exhibited increased anxiety, social interest, but also aggressive behavior in anxiogenic environment and impaired social memory. For KO animals, social interaction induced lower cell activation in the anterior cingulate, infralimbic cortex, and medial septum. In turn, excitation of MRR-VGluT3+ neurons was anxiolytic. Inhibition increased social interest 24 h later but decreased mobility and social behavior in aggressive context. Chemogenetic activation increased the number of c-Fos+ neurons only in the MRR. We confirmed the increased anxiety-like behavior and impaired memory of VGluT3 KO strain and revealed increased, but inadequate, social behavior. MRR-VGluT3 neurons regulated mobility and social and anxiety-like behavior in a context-dependent manner. The presence of VGluT3 mRNA on corresponding human brain areas suggests clinical relevance.


Assuntos
Ansiedade , Camundongos Knockout , Comportamento Social , Animais , Masculino , Humanos , Ansiedade/metabolismo , Núcleos da Rafe/metabolismo , Camundongos , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Comportamento Animal/fisiologia , Camundongos Transgênicos , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Agressão/fisiologia
5.
Hippocampus ; 34(3): 126-140, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38140716

RESUMO

The hippocampus has been implicated in temporal learning. Plasticity within the hippocampus requires NMDA receptor-dependent glutamatergic neurotransmission. We tested the prediction that hippocampal NMDA receptors are required for learning about time by testing mice that lack postembryonal NMDARs in the CA1 and dentate gyrus (DG) hippocampal subfields on three different appetitive temporal learning procedures. The conditional knockout mice (Grin1ΔDCA1 ) showed normal sensitivity to cue duration, responding at a higher level to a short duration cue than compared to a long duration cue. Knockout mice also showed normal precision and accuracy of response timing in the peak procedure in which reinforcement occurred after 10 s delay within a 30 s cue presentation. Mice were tested on the matching of response rates to reinforcement rates on instrumental conditioning with two levers reinforced on a concurrent variable interval schedule. Pressing on one lever was reinforced at a higher rate than the other lever. Grin1ΔDGCA1 mice showed normal sensitivity to the relative reinforcement rates of the levers. In contrast to the lack of effect of hippocampal NMDAR deletion on measures of temporal sensitivity, Grin1ΔDGCA1 mice showed increased baseline measures of magazine activity and lever pressing. Furthermore, reversal learning was enhanced when the reward contingencies were switched in the lever pressing task, but this was true only for mice trained with a large difference between relative reinforcement rates between the levers. The results failed to demonstrate a role for NMDARs in excitatory CA1 and DG neurons in learning about temporal information.


Assuntos
Aprendizagem , Receptores de N-Metil-D-Aspartato , Camundongos , Animais , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Camundongos Knockout , Aprendizagem/fisiologia , Hipocampo/fisiologia , Giro Denteado/metabolismo
6.
J Neurosci ; 43(48): 8231-8242, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37751999

RESUMO

Dopamine is a key neurotransmitter in the signaling cascade controlling ocular refractive development, but the exact role and site of action of dopamine D1 receptors (D1Rs) involved in myopia remains unclear. Here, we determine whether retinal D1Rs exclusively mediate the effects of endogenous dopamine and systemically delivered D1R agonist or antagonist in the mouse form deprivation myopia (FDM) model. Male C57BL/6 mice subjected to unilateral FDM or unobstructed vision were divided into the following four groups: one noninjected and three groups that received intraperitoneal injections of a vehicle, D1R agonist SKF38393 (18 and 59 nmol/g), or D1R antagonist SCH39166 (0.1 and 1 nmol/g). The effects of these drugs on FDM were further assessed in Drd1-knock-out (Drd1-KO), retina-specific conditional Drd1-KO (Drd1-CKO) mice, and corresponding wild-type littermates. In the visually unobstructed group, neither SKF38393 nor SCH39166 affected normal refractive development, whereas myopia development was attenuated by SKF38393 and enhanced by SCH39166 injections. In Drd1-KO or Drd1-CKO mice, however, these drugs had no effect on FDM development, suggesting that activation of retinal D1Rs is pertinent to myopia suppression by the D1R agonist. Interestingly, the development of myopia was unchanged by either Drd1-KO or Drd1-CKO, and neither SKF38393 nor SCH39166 injections, nor Drd1-KO, affected the retinal or vitreal dopamine and the dopamine metabolite DOPAC levels. Effects on axial length were less marked than effects on refraction. Therefore, activation of D1Rs, specifically retinal D1Rs, inhibits myopia development in mice. These results also suggest that multiple dopamine D1R mechanisms play roles in emmetropization and myopia development.SIGNIFICANCE STATEMENT While dopamine is recognized as a "stop" signal that inhibits myopia development (myopization), the location of the dopamine D1 receptors (D1Rs) that mediate this action remains to be addressed. Answers to this key question are critical for understanding how dopaminergic systems regulate ocular growth and refraction. We report here the results of our study showing that D1Rs are essential for controlling ocular growth and myopia development in mice, and for identifying the retina as the site of action for dopaminergic control via D1Rs. These findings highlight the importance of intrinsic retinal dopaminergic mechanisms for the regulation of ocular growth and suggest specific avenues for exploring the retinal mechanisms involved in the dopaminergic control of emmetropization and myopization.


Assuntos
Dopamina , Miopia , Masculino , Camundongos , Animais , Dopamina/metabolismo , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Camundongos Endogâmicos C57BL , Miopia/genética , Miopia/metabolismo , Retina/metabolismo , Receptores de Dopamina D1/metabolismo
7.
Cell Mol Life Sci ; 80(8): 211, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37462735

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a common malignancy worldwide with a low survival rate due to a lack of therapeutic targets. Here, our results showed that nuclear mitotic apparatus protein 1 (NUMA1) transcript and protein levels are significantly upregulated in ESCC patient samples and its high expression predicated poor prognosis. Knock-down of NUMA1 promoted cell apoptosis and suppressed cell proliferation and colony formation. By using cell-derived xenograft (CDX) and patient-derived xenograft (PDX) mice models, we found silencing the NUMA1 expression suppressed tumor progression. In addition, conditional knocking-out of NUMA1 reduced 4NQO-induced carcinogenesis in mice esophagus, which further confirmed the oncogenic role of NUMA1 in ESCC. Mechanistically, from the immunoprecipitation assay we revealed that NUMA1 interacted with GSTP1 and TRAF2, promoted the association of TRAF2 with GSTP1 while inhibited the interaction of TRAF2 and ASK1, thus to regulate sustained activation of JNK. In summary, our findings suggest that NUMA1 plays an important role during ESCC progression and it functions through regulating ASK1-MKK4-SAPK/JNK signaling pathway.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas do Esôfago/genética , Sistema de Sinalização das MAP Quinases , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Fator 2 Associado a Receptor de TNF/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
8.
Biomedicines ; 11(2)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36831152

RESUMO

BACKGROUND: Vitamin D deficiency has been associated with dry eye development during Sjögren's syndrome (SS). Here, we investigated whether repeated oral vitamin D3 supplementation could prevent the corneal epithelium damage in an SS mouse model. METHODS: 30 female mouse knock-out for the thrombospondin 1 gene were randomized (six per group) in untreated mice euthanized at 6 weeks as negative control (C-) or at 12 weeks as the positive control for dry eye (C+). Other mice were sacrificed after 6 weeks of oral vitamin D3 supplementation in the drinking water (1000, 8000, and 20,000 IU/kg/week, respectively). RESULTS: The C+ mice showed alterations in their corneal epithelial morphologies and thicknesses (p < 0.01 vs. C-), while the mice receiving 8000 (M) and 20,000 (H) IU/kg/week of vitamin D3 showed preservation of the corneal epithelium morphology and thickness (p < 0.01 vs. C+). Moreover, while the C+ mice exhibited high levels and activity of corneal tumor necrosis factor alpha converting enzyme (TACE), neovascularization and fibrosis markers; these were all reduced in the M and H mice. CONCLUSIONS: Oral vitamin D3 supplementation appeared to counteract the negative effect of TACE on corneal epithelium in a mouse model of SS-associated dry eye.

9.
Methods Mol Biol ; 2637: 161-180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36773146

RESUMO

The Cre/loxP system is a versatile and powerful tool that has been used to develop many kinds of genetically modified mice, such as conditional knockout mice and mutant protein-expressing mice through the excision of a STOP cassette. However, while numerous in vivo and in vitro applications of the Cre/loxP system have been reported, it remains difficult to target at one time more than one set of recognition sites in an identical single cell in mice using the Cre/loxP system. To overcome this barrier, we developed two novel site-specific recombination systems called VCre/VloxP and SCre/SloxP. These systems allow multiple independent site-specific recombination, for example, multiple targeted deletions in the same cell at different times. In this chapter, I describe the features of VCre/VloxP and SCre/SloxP, practical protocols and tips on how to use them in genomic engineering applications, potential problems in their use, and how problems can be identified and solved.


Assuntos
Genoma , Integrases , Camundongos , Animais , Integrases/genética , Camundongos Knockout , Genômica , Recombinação Genética
10.
J Neural Transm (Vienna) ; 130(9): 1097-1112, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36792833

RESUMO

The enzyme dimethylarginine dimethylaminohydrolase 1 (DDAH1) plays a pivotal role in the regulation of nitric oxide levels by degrading the main endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA). Growing evidence highlight the potential implication of DDAH/ADMA axis in the etiopathogenesis of several neuropsychiatric and neurological disorders, yet the underlying molecular mechanisms remain elusive. In this study, we sought to investigate the role of DDAH1 in behavioral endophenotypes with neuropsychiatric relevance. To achieve this, a global DDAH1 knock-out (DDAH1-ko) mouse strain was employed. Behavioral testing and brain region-specific neurotransmitter profiling have been conducted to assess the effect of both genotype and sex. DDAH1-ko mice exhibited increased exploratory behavior toward novel objects, altered amphetamine response kinetics and decreased dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) level in the piriform cortex and striatum. Females of both genotypes showed the most robust amphetamine response. These results support the potential implication of the DDAH/ADMA pathway in central nervous system processes shaping the behavioral outcome. Yet, further experiments are required to complement the picture and define the specific brain-regions and mechanisms involved.


Assuntos
Anfetamina , Dopamina , Animais , Feminino , Camundongos , Amidoidrolases/genética , Amidoidrolases/metabolismo , Anfetamina/farmacologia , Inibidores Enzimáticos/farmacologia , Genótipo , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/genética
11.
Eur J Nutr ; 62(1): 407-417, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36071290

RESUMO

PURPOSE: Protein synthesis and proteolysis are known to be controlled through mammalian target of rapamycin, AMP-activated kinase (AMPK) and general control non-derepressible 2 (GCN2) pathways, depending on the nutritional condition. This study aimed at investigating the contribution of liver AMPK and GCN2 on the adaptation to high variations in protein intake. METHODS: To evaluate the answer of protein pathways to high- or low-protein diet, male wild-type mice and genetically modified mice from C57BL/6 background with liver-specific AMPK- or GCN2-knockout were fed from day 25 diets differing in their protein level as energy: LP (5%), NP (14%) and HP (54%). Two hours after a 1 g test meal, protein synthesis rate was measured after a 13C valine flooding dose. The gene expression of key enzymes involved in proteolysis and GNC2 signaling pathway were quantified. RESULTS: The HP diet but not the LP diet was associated with a decrease in fractional synthesis rate by 29% in the liver compared to NP diet. The expression of mRNA encoding ubiquitin and Cathepsin D was not sensitive to the protein content. The deletion of AMPK or GCN2 in the liver did not affect nor protein synthesis rates and neither proteolysis markers in the liver or in the muscle, whatever the protein intake. In the postprandial state, protein level alters protein synthesis in the liver but not in the muscle. CONCLUSIONS: Taken together, these results suggest that liver AMPK and GCN2 are not involved in this adaptation to high- and low-protein diet observed in the postprandial period.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteínas Serina-Treonina Quinases , Camundongos , Masculino , Animais , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Dieta com Restrição de Proteínas , Período Pós-Prandial , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Mamíferos/metabolismo
12.
Cells ; 11(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36497152

RESUMO

In adoptive T cell therapy (ACT), the transfer of tumor-specific T cells is paralleled by the conditioning regimen to increase therapeutic efficacy. Pre-conditioning depletes immune-suppressive cells and post-conditioning increases homeostatic signals to improve the persistence of administered T cells. Identifying the favorable immunological factors involved in a conditioning regimen is important to design effective strategies in ACT. Here, by using an ACT model of murine melanoma, we evaluate the effect of the total body irradiation (TBI) and interleukin-2 (IL-2) treatment combination. The use of a Rag1 knock-out strain, which lacks endogenous T cells, enables the identification of factors in a way that focuses more on transferred T cells. We demonstrate that the TBI/IL-2 combination has no additive effect in ACT, although each conditioning improves the therapeutic outcome. While the combination increases the frequency of transferred T cells in lymphoid and tumor tissues, the activation intensity of the cells is reduced compared to that of the sole TBI treatment. Notably, we show that in the presence of TBI, the IL-2 treatment reduces the frequency of intra-tumoral dendritic cells, which are crucial for T cell activation. The current study provides insights into the immunological events involved in the TBI/IL-2 combination in ACT.


Assuntos
Imunoterapia Adotiva , Interleucina-2 , Melanoma , Animais , Camundongos , Terapia Baseada em Transplante de Células e Tecidos , Interleucina-2/farmacologia , Melanoma/terapia , Camundongos Knockout , Irradiação Corporal Total , Linfócitos T
13.
Neurotoxicology ; 93: 92-102, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36152728

RESUMO

Over the last decade, several clinical reports have outlined cases of early-onset manganese (Mn)-induced dystonia-parkinsonism, resulting from loss of function mutations of the Mn transporter gene SLC39A14. Previously, we have performed characterization of the behavioral, neurochemical, and neuropathological changes in 60-day old (PN60) Slc39a14-knockout (KO) murine model of the human disease. Here, we extend our studies to aging Slc39a14-KO mice to assess the progression of the disease. Our results indicate that 365-day old (PN365) Slc39a14-KO mice present with markedly elevated blood and brain Mn levels, similar to those found in the PN60 mice and representative of the human cases of the disease. Furthermore, aging Slc39a14-KO mice consistently manifest a hypoactive and dystonic behavioral deficits, similar to the PN60 animals, suggesting that the behavioral changes are established early in life without further age-associated deterioration. Neurochemical, neuropathological, and functional assessment of the dopaminergic system of the basal ganglia revealed absence of neurodegenerative changes of dopamine (DA) neurons in the substantia nigra pars compacta (SNc), with no changes in DA or metabolite concentrations in the striatum of Slc39a14-KO mice relative to wildtype (WT). Similar to the PN60 animals, aging Slc39a14-KO mice expressed a marked inhibition of potassium-stimulated DA release in the striatum. Together our findings indicate that the pathophysiological changes observed in the basal ganglia of aging Slc39a14-KO animals are similar to those at PN60 and aging does not have a significant effect on these parameters.


Assuntos
Proteínas de Transporte de Cátions , Distonia , Transtornos Parkinsonianos , Animais , Camundongos , Humanos , Manganês/metabolismo , Camundongos Knockout , Distonia/induzido quimicamente , Distonia/genética , Distonia/metabolismo , Proteínas de Transporte de Cátions/genética , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Envelhecimento , Substância Negra
14.
Front Mol Neurosci ; 15: 852171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782378

RESUMO

Glycogen synthase kinase-3 (GSK3) mediates phosphorylation of several hundred proteins, and its aberrant activity is associated with an array of prevalent disorders. The two paralogs, GSK3α and GSK3ß, are expressed ubiquitously and fulfill common as well as unique tasks throughout the body. In the CNS, it is established that GSK3 is involved in synaptic plasticity. However, the relative roles of GSK3 paralogs in synaptic plasticity remains controversial. Here, we used hippocampal slices obtained from adult mice to determine the role of each paralog in CA3-CA1 long-term potentiation (LTP) of synaptic transmission, a form of plasticity critically required in learning and memory. Conditional Camk2a Cre-driven neuronal deletion of the Gsk3a gene, but not Gsk3b, resulted in enhanced LTP. There were no changes in basal synaptic function in either of the paralog-specific knockouts, including several measures of presynaptic function. Therefore, GSK3α has a specific role in serving to limit LTP in adult CA1, a postsynaptic function that is not compensated by GSK3ß.

15.
Mol Brain ; 15(1): 56, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715811

RESUMO

Hippocampal CA1 parvalbumin-expressing interneurons (PV INs) play a central role in controlling principal cell activity and orchestrating network oscillations. PV INs receive excitatory inputs from CA3 Schaffer collaterals and local CA1 pyramidal cells, and they provide perisomatic inhibition. Schaffer collateral excitatory synapses onto PV INs express Hebbian and anti-Hebbian types of long-term potentiation (LTP), as well as elicit LTP of intrinsic excitability (LTPIE). LTPIE requires the activation of type 5 metabotropic glutamate receptors (mGluR5) and is mediated by downregulation of potassium channels Kv1.1. It is sensitive to rapamycin and thus may involve activation of the mammalian target of rapamycin complex 1 (mTORC1). LTPIE facilitates PV INs recruitment in CA1 and maintains an excitatory-inhibitory balance. Impaired CA1 PV INs activity or LTP affects network oscillations and memory. However, whether LTPIE in PV INs plays a role in hippocampus-dependent memory remains unknown. Here, we used conditional deletion of the obligatory component of mTORC1, the Regulatory-Associated Protein of mTOR (Raptor), to directly manipulate mTORC1 in PV INs. We found that homozygous, but not heterozygous, conditional knock-out of Rptor resulted in a decrease in CA1 PV INs of mTORC1 signaling via its downstream effector S6 phosphorylation assessed by immunofluorescence. In whole-cell recordings from hippocampal slices, repetitive firing of CA1 PV INs was impaired in mice with either homozygous or heterozygous conditional knock-out of Rptor. High frequency stimulation of Schaffer collateral inputs that induce LTPIE in PV INs of control mice failed to do so in mice with either heterozygous or homozygous conditional knock-out of Rptor in PV INs. At the behavioral level, mice with homozygous or heterozygous conditional knock-out of Rptor showed similar long-term contextual fear memory or contextual fear memory discrimination relative to control mice. Thus, mTORC1 activity in CA1 PV INs regulates repetitive firing and LTPIE but not consolidation of long-term contextual fear memory and context discrimination. Our results indicate that mTORC1 plays cell-specific roles in synaptic plasticity of hippocampal inhibitory interneurons that are differentially involved in hippocampus-dependent learning and memory.


Assuntos
Região CA1 Hipocampal , Medo , Hipocampo , Interneurônios , Potenciação de Longa Duração , Alvo Mecanístico do Complexo 1 de Rapamicina , Memória , Parvalbuminas , Animais , Região CA1 Hipocampal/metabolismo , Medo/fisiologia , Hipocampo/metabolismo , Interneurônios/metabolismo , Potenciação de Longa Duração/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Memória/fisiologia , Camundongos , Parvalbuminas/metabolismo , Sinapses/metabolismo
16.
Front Neurosci ; 16: 866161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573302

RESUMO

Cholinergic transmission is essential for survival and reproduction, as it is involved in several physiological responses. In the auditory system, both ascending and descending auditory pathways are modulated by cholinergic transmission, affecting the perception of sounds. The auditory efferent system is a neuronal network comprised of several feedback loops, including corticofugal and brainstem pathways to the cochlear receptor. The auditory efferent system's -final and mandatory synapses that connect the brain with the cochlear receptor- involve medial olivocochlear neurons and outer hair cells. A unique cholinergic transmission mediates these synapses through α9/α10 nicotinic receptors. To study this receptor, it was generated a strain of mice carrying a null mutation of the Chrna9 gene (α9-KO mice), lacking cholinergic transmission between medial olivocochlear neurons and outer hair cells, providing a unique opportunity to study the role of medial olivocochlear cholinergic transmission in auditory and cognitive functions. In this article, we review behavioral and physiological studies carried out to research auditory efferent function in the context of audition, cognition, and hearing impairments. Auditory studies have shown that hearing thresholds in the α9-KO mice are normal, while more complex auditory functions, such as frequency selectivity and sound localization, are altered. The corticofugal pathways have been studied in α9-KO mice using behavioral tasks, evidencing a reduced capacity to suppress auditory distractors during visual selective attention. Finally, we discuss the evolutionary role of the auditory efferent system detecting vocalizations in noise and its role in auditory disorders, such as the prevention of age-related hearing loss.

17.
J Neurosci ; 42(23): 4755-4765, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35534227

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD), but the pathogenic mechanism underlying LRRK2 mutations remains unresolved. In this study, we investigate the consequence of inactivation of LRRK2 and its functional homolog LRRK1 in male and female mice up to 25 months of age using behavioral, neurochemical, neuropathological, and ultrastructural analyses. We report that LRRK1 and LRRK2 double knock-out (LRRK DKO) mice exhibit impaired motor coordination at 12 months of age before the onset of dopaminergic neuron loss in the substantia nigra (SNpc). Moreover, LRRK DKO mice develop age-dependent, progressive loss of dopaminergic terminals in the striatum. Evoked dopamine (DA) release measured by fast-scan cyclic voltammetry in the dorsal striatum is also reduced in the absence of LRRK. Furthermore, LRRK DKO mice at 20-25 months of age show substantial loss of dopaminergic neurons in the SNpc. The surviving SNpc neurons in LRRK DKO mice at 25 months of age accumulate large numbers of autophagic and autolysosomal vacuoles and are accompanied with microgliosis. Surprisingly, the cerebral cortex is unaffected, as shown by normal cortical volume and neuron number as well as unchanged number of apoptotic cells and microglia in LRRK DKO mice at 25 months. These findings show that loss of LRRK function causes impairments in motor coordination, degeneration of dopaminergic terminals, reduction of evoked DA release, and selective loss of dopaminergic neurons in the SNpc, indicating that LRRK DKO mice are unique models for better understanding dopaminergic neurodegeneration in PD.SIGNIFICANCE STATEMENT Our current study employs a genetic approach to uncover the normal function of the LRRK family in the brain during mouse life span. Our multidisciplinary analysis demonstrates a critical normal physiological role of LRRK in maintaining the integrity and function of dopaminergic terminals and neurons in the aging brain, and show that LRRK DKO mice recapitulate several key features of PD and provide unique mouse models for elucidating molecular mechanisms underlying dopaminergic neurodegeneration in PD.


Assuntos
Transtornos Motores , Doença de Parkinson , Animais , Dopamina , Neurônios Dopaminérgicos/fisiologia , Feminino , Leucina , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Masculino , Camundongos , Camundongos Knockout , Transtornos Motores/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia
18.
J Clin Med ; 11(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35407369

RESUMO

Oestrogen receptor ß (ERß) knock-out female mice display increased anxiety and decreased threshold for synaptic plasticity induction in the basolateral amygdala. This may suggest that the γ-aminobutyric acid (GABA) inhibitory system is altered. Therefore, the immunoreactivity of main GABAergic markers-i.e., calbindin, parvalbumin, calretinin, somatostatin, α1 subunit-containing GABAA receptor and vesicular GABA transporter-were compared in the six subregions (LA, BL, BM, ME, CE and CO) of the amygdala of adult female wild-type and ERß knock-out mice using immunohistochemistry and quantitative methods. The influence of ERß knock-out on neuronal loss and glia was also elucidated using pan-neuronal and astrocyte markers. The results show severe neuronal deficits in all main amygdala regions in ERß knock-out mice accompanied by astroglia overexpression only in the medial, basomedial and cortical nuclei and a decrease in calbindin-expressing neurons (CB+) in the amygdala in ERß knock-out mice compared with controls, while other markers of the GABAergic system remain unchanged. Concluding, the lack of ERß led to failure in the structural integrity of the CB+ subpopulation, reducing interneuron firing and resulting in a disinhibitory effect over pyramidal function. This fear-promoting excitatory/inhibitory alteration may lead to the increased anxiety observed in these mice. The impact of neuronal deficits and astroglia overexpression on the amygdala functions remains unknown.

19.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328617

RESUMO

Formation of neutrophil extracellular traps (NETs) is a two-faced innate host defense mechanism, which, on the one hand, can counteract microbial infections, but on the other hand, can contribute to massive detrimental effects on the host. Cholesterol depletion from the cellular membrane by Methyl-ß-cyclodextrin (MßCD) is known as one of the processes initiating NET formation. Since neutrophils mainly act in an inflammatory environment with decreased, so-called hypoxic, oxygen conditions, we aimed to study the effect of oxygen and the oxygen stress regulator hypoxia-inducible factor (HIF)-1α on cholesterol-dependent NET formation. Thus, murine bone marrow-derived neutrophils from wild-type and HIF-knockout mice or human neutrophils were stimulated with MßCD under normoxic (21% O2) compared to hypoxic (1% O2) conditions, and the formation of NETs were studied by immunofluorescence microscopy. We found significantly induced NET formation after treatment with MßCD in murine neutrophils derived from wild-type as well as HIF-1α KO mice at both hypoxic (1% O2) as well as normoxic (21% O2) conditions. Similar observations were made in freshly isolated human neutrophils after stimulation with MßCD or statins, which block the HMG-CoA reductase as the key enzyme in the cholesterol metabolism. HPLC was used to confirm the reduction of cholesterol in treated neutrophils. In summary, we were able to show that NET formation via MßCD or statin-treatment is oxygen and HIF-1α independent.


Assuntos
Armadilhas Extracelulares , Animais , Colesterol/metabolismo , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Neutrófilos/metabolismo , Oxigênio/metabolismo
20.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35328819

RESUMO

Acid sphingomyelinase (ASM) regulates a variety of physiological processes and plays an important role in emotional behavior. The role of ASM in fear-related behavior has not been investigated so far. Using transgenic mice overexpressing ASM (ASMtg) and ASM deficient mice, we studied whether ASM regulates fear learning and expression of cued and contextual fear in a classical fear conditioning paradigm, a model used to investigate specific attributes of post-traumatic stress disorder (PTSD). We show that ASM does not affect fear learning as both ASMtg and ASM deficient mice display unaltered fear conditioning when compared to wild-type littermates. However, ASM regulates the expression of contextual fear in a sex-specific manner. While ASM overexpression enhances the expression of contextual fear in both male and female mice, ASM deficiency reduces the expression of contextual fear specifically in male mice. The expression of cued fear, however, is not regulated by ASM as ASMtg and ASM deficient mice display similar tone-elicited freezing levels. This study shows that ASM modulates the expression of contextual fear but not of cued fear in a sex-specific manner and adds a novel piece of information regarding the involvement of ASM in hippocampal-dependent aversive memory.


Assuntos
Memória , Esfingomielina Fosfodiesterase , Animais , Condicionamento Clássico/fisiologia , Sinais (Psicologia) , Medo/fisiologia , Feminino , Masculino , Memória/fisiologia , Camundongos , Esfingomielina Fosfodiesterase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA