Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Microorganisms ; 12(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38399681

RESUMO

Marine virus diversity and their relationships with their hosts in the marine environment remain unclear. This study investigated the co-occurrence of marine DNA bacteriophages (phages) and bacteria in the sub-Arctic area of Kongsfjorden Bay in Svalbard (Norway) in April and June 2018 using metagenomics tools. Of the marine viruses identified, 48-81% were bacteriophages of the families Myoviridae, Siphoviridae, and Podoviridae. Puniceispirillum phage HMO-2011 was dominant (7.61%) in April, and Puniceispirillum phage HMO-2011 (3.32%) and Pelagibacter phage HTVC008M (3.28%) were dominant in June. Gammaproteobacteria (58%), including Eionea flava (14.3%) and Pseudomonas sabulinigri (12.2%), were dominant in April, whereas Alphaproteobacteria (87%), including Sulfitobacter profundi (51.5%) and Loktanella acticola (32.4%), were dominant in June. The alpha diversity of the bacteriophages and bacterial communities exhibited opposite patterns. The diversity of the bacterial community was higher in April and lower in June. Changes in water temperature and light can influence the relationship between bacteria and bacteriophages.

2.
Braz J Microbiol ; 55(1): 499-513, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38175355

RESUMO

The frosty polar environment houses diverse habitats mostly driven by psychrophilic and psychrotolerant microbes. Along with traditional cultivation methods, next-generation sequencing technologies have become common for exploring microbial communities from various extreme environments. Investigations on glaciers, ice sheets, ponds, lakes, etc. have revealed the existence of numerous microorganisms while details of microbial communities in the Arctic fjords remain incomplete. The current study focuses on understanding the bacterial diversity in two Arctic fjord sediments employing the 16S rRNA gene metabarcoding and its comparison with previous studies from various Arctic habitats. The study revealed that Proteobacteria was the dominant phylum from both the fjord samples followed by Bacteroidetes, Planctomycetes, Firmicutes, Actinobacteria, Cyanobacteria, Chloroflexi and Chlamydiae. A significant proportion of unclassified reads derived from bacteria was also detected. Psychrobacter, Pseudomonas, Acinetobacter, Aeromonas, Photobacterium, Flavobacterium, Gramella and Shewanella were the major genera in both the fjord sediments. The above findings were confirmed by the comparative analysis of fjord metadata with the previously reported (secondary metadata) Arctic samples. This study demonstrated the potential of 16S rRNA gene metabarcoding in resolving bacterial composition and diversity thereby providing new in situ insights into Arctic fjord systems.


Assuntos
Sedimentos Geológicos , Microbiota , RNA Ribossômico 16S/genética , Sedimentos Geológicos/microbiologia , Estuários , Bactérias/genética , Regiões Árticas
3.
Mar Genomics ; 72: 101068, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38008528

RESUMO

Polaribacter huanghezhanensis KCTC 32516T is an aerobic, non-flagellated, Gram-negative, orange-colony-forming bacterium that was isolated from the surficial glaciomarine sediment of inner basin of Kongsfjorden, Svalbard. The sampling site is characterized by a sedimentation of organic depleted lithogenous particles from the nearby glaciers, resulting in reduction of organic matter concentration. In order to understand microbial adaptation to the oligotrophic environment, we here sequenced the complete genome of the P. huanghezhanensis KCTC 32516T. The genome consists of 2,587,874 bp (G + C content of 31.5%) with a single chromosome, 2391 protein-coding genes, 39 tRNAs, and 2 rRNA operons. Our comparative analysis revealed that the P. huanghezhanensis possess the smallest genome in fifteen Polaribacter species with genome. The streamlined genome of this species, required less resource in replication, could evolved by the nutrient deficiency in surrounding environment. Simultaneously, the 15 KOs involved in amino acid biosynthesis and anaplerotic carbon fixation is uniquely absent in the P. huanghezhanensis. In addition, although the advantage of small genome, other 15 KOs involved in resource recycling and stress resistance is uniquely present in sequenced genome. This result demonstrates that the sequenced genome serves as a valuable model for further studies aimed at elucidating the molecular mechanisms associated with adaptation to oligotrophic habitat.


Assuntos
Estuários , Água do Mar , Svalbard , DNA Bacteriano/genética , Sequência de Bases , Filogenia , Análise de Sequência de DNA , RNA Ribossômico 16S , Água do Mar/microbiologia
4.
Mar Environ Res ; 192: 106195, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37769556

RESUMO

Atlantification, known as impacts of high-latitude Atlantic water inflows on the Arctic Ocean has strengthened owing to climate change, corresponding to the rapid ice retreat in the Arctic. The relationship between phytoplankton and environmental changes in the Arctic on the interannual scale is unclear because of the lack of long-time series data. In this study, we discuss the ecological response to Atlantic water intrusion in the Kongsfjorden,Svalbard. We measured chlorophyll a and photosynthesis pigments for the water column samples from a fixed section along the Kongsfjorden to study the response of phytoplankton biomass and communities to Atlantic water intrusion in the summer season from 2007 to 2018. The results showed that dinoflagellates, prasinophytes, cryptophytes, and chlorophytes consistently accounted for over 50% of the total biomass, with the distinct annual variation of chlorophyll a. Bioavailable nitrogen was the main limiting factor on phytoplankton growth in the study area, as inferred by its concentration and nutrients ratios. The relationship between phytoplankton and water mass analysis suggested that the intrusion of Atlantic water in Kongsfjorden may cause interannual variability of the phytoplankton biomass and community structure by influencing the nutrient supply and water stratification in the fjord region. Our study provides insights into the ongoing impact of Atlantification on the phytoplankton community in the Arctic fjord.


Assuntos
Fitoplâncton , Água , Svalbard , Clorofila A , Estações do Ano , Regiões Árticas
5.
Chemosphere ; 310: 136737, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36228726

RESUMO

The concentrations of five heavy metals (Cd, Cr, Cu, Pb, and Zn) in the sediments, water, phytoplankton, zooplankton, and macroalgae from Kongsfjorden Fjord and the freshwater lakes of Ny-Ålesund in the Svalbard archipelago were determined in order to describe the anthropogenic impacts related to the Ny-Ålesund town. Water samples from nine stations, sediment samples from 23 stations, plankton samples from five stations, and six species of macroalgae were collected and subjected to heavy metal analysis using atomic absorption spectrophotometry (AAS). Only Cu and Zn were detected in the water samples. The plankton samples had only Zn, Cu, and Cr. The average metal concentrations in macroalgae fell in the decreasing order of Cu > Zn > Cr > Cd > Pb. In sediment samples, the metal order was as follows: Zn > Cu > Cr > Pb > Cd. Multivariate statistical analyses including principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used to identify the source of the metal contamination. The metals were found to originate from a blend of both anthropogenic and geogenic sources. Pollution monitoring indices including geoaccumulation index (Igeo), contamination factor, contamination degree (Cdeg), pollution load index (PLI), and potential ecological risk (PER) were calculated using the metal data. In the study area, Igeo values of the metals showed pollution grades from 0 (uncontaminated) to 6 (extremely contaminated). Cdeg fell in classes from 1 (low contamination) to 4 (very high contamination). PLI values ranged between 0 and 5.68. PER values expressed that except for a few stations located at higher elevations in the glacial outwash plains, all other sites were highly polluted. The high level of pollution indices in the sites can be attributed to the anthropogenic activities persistent in the study area.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Lagos , Monitoramento Ambiental , Estuários , Svalbard , Cádmio/análise , Chumbo/análise , Metais Pesados/análise , Medição de Risco , Água/análise , Sedimentos Geológicos , Poluentes Químicos da Água/análise , China
6.
Ecol Evol ; 12(12): e9569, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36514547

RESUMO

Knowledge of environmental preferences of the key planktonic species, such as Calanus copepods in the Arctic, is crucial to understand ecosystem function and its future under climate change. Here, we assessed the environmental conditions influencing the development stages of Atlantic Calanus finmarchicus and Arctic Calanus glacialis, and we quantified the extent to which their niches overlap by incorporating multiple environmental data. We based our analysis on a 3-year seasonal collection of zooplankton by sediment traps, located on moorings in two contrasting Svalbard fjords: the Arctic Rijpfjorden and the Atlantic-influenced Kongsfjorden. Despite large differences in water temperature between the fjords, local realized ecological niches of the sibling Calanus species overlapped almost perfectly. The exception was the earliest copepodites of C. glacialis in Rijpfjorden, which probably utilized the local ice algal bloom in spring. However, during periods with no sea ice, like in Kongsfjorden, the siblings of both Calanus species showed high synchronization in the population structure. Interestingly, differences in temperature preferences of C. finmarchicus and C. glacialis were much higher between the studied fjords than between the species. Our analysis confirmed the high plasticity of Calanus copepods and their abilities to adapt to highly variable environmental settings, not only on an interannual basis but also in a climate warming context, indicating some resilience in the Calanus community.

7.
Environ Monit Assess ; 195(1): 168, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36450883

RESUMO

The Arctic regions experience strong seasonality and are largely affected by increasing temperature. This is particularly evident in the Kongsfjorden, which is surrounded by glaciers and is affected by seasonal and annual changes in temperature. It is largely influenced by glacial meltwater bringing in fluvial inputs such as total suspended matter (TSM) and warm Atlantic waters, which could alter the phytoplankton community. Seven stations in the Kongsfjorden representing glacier-influenced head (KF7, KF6, KF5), mid (KF4, KF3), and open region of the fjord (KF2 and KF1) were considered to evaluate the effect of TSM on phytoplankton community structure, abundance, chlorophyll a (Chl a), diversity index, evenness, and richness during summer 2011 (June) and 2018 (August) and related with atmospheric and hydrological parameters. The annual average atmospheric temperature (AAAT) over Ny-Ålesund showed an increase in temperature by a degree from -3.52 °C in 2011 to -2.44 °C in 2018, while the summer average atmospheric temperature (SAAT) over the same period increased from 5.80 to 6.16 °C. Increased freshening of the fjord led to an increase in TSM during 2018 which coincided with a decrease in Chl a by an order of magnitude. Although sea surface temperature (SST) was warmer in 2011, TSM was higher in 2018. The number of phytoplankton groups identified decreased from 11 in 2011 to 4 in 2018. A distinct alteration in phytoplankton community structure was observed from head fjord to open fjord with higher diversity observed during 2011 compared to 2018. This work highlights the effect of TSM on the phytoplankton community in the Kongsfjorden.


Assuntos
Estuários , Fitoplâncton , Estações do Ano , Clorofila A , Regiões Árticas , Monitoramento Ambiental , Sedimentos Geológicos
8.
Mar Pollut Bull ; 179: 113693, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35525059

RESUMO

The major sources and sinks of total mercury (THg) and methylmercury (MeHg) in Kongsfjorden were estimated based on spreadsheet-based ecological risk assessment for the fate of mercury (SERAFM). SERAFM was parameterized and calibrated to fit Kongsfjorden using the physical properties of the fjord, runoff coefficients of Hg, transformation rate constants of Hg, partition coefficients of Hg, Hg loadings from freshwater, and solid balance parameters. The modeled Hg concentrations in the seawater matched with the measured concentrations, with a mean bias of 12% and a calibration error of 0.035. The mass budget showed that the major THg sources were tidal inflow and glacial runoff, while the major MeHg sources were tidal inflow and in situ methylation in shallow halocline water, which agreed with the distributions of THg and MeHg in seawater. The coupling of observation and fate modeling in Kongsfjorden provides a basic understanding of Hg cycles in the Arctic fjords.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Monitoramento Ambiental , Camada de Gelo , Mercúrio/análise , Rios , Svalbard , Poluentes Químicos da Água/análise
9.
Mar Drugs ; 20(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35447908

RESUMO

We investigated pigment and mycosporine-like amino acid (MAA) concentrations of phytoplankton and Northern krill (Thysanoessa sp.) in sub-Arctic Kongsfjorden. Chlorophyll a (Chl-a) concentrations in the surface and middle-layer water were 0.44 µg L-1 (±0.17 µg L-1) and 0.63 µg L-1 (±0.25 µg L-1), respectively. Alloxanthin (Allo, a marker of cryptophytes) was observed at all stations, and its mean values for surface and middle-layer water were 0.09 µg L-1 (±0.05 µg L-1) and 0.05 (±0.02 µg L-1), respectively. The mean MAA-to-Chl-a ratios at the surface (3.31 ± 2.58 µg (µg Chl-a)-1) were significantly higher than those in the middle-layer water (0.88 ± 0.49 µg (µg Chl-a)-1), suggesting that these compounds play an important role in reducing UV photodamage. In gut pigment levels of Northern krill, the most abundant accessory pigment was Allo (2.79 ± 0.33 µg g-1 dry weight; d.w.), as was the accumulation of Chl-a (8.29 ± 1.13 µg g-1 d.w.). The average concentration of MAAs was 1.87 mg g-1 d.w. (±0.88 mg g-1 d.w.) in krill eyes, which was higher than that in all other body parts (0.99 ± 0.41 mg g-1 d.w.), except for the gut. Thysanoessa sp. was found to contain five identified MAAs (shinorine, palythine, porphyra-334, mycosporine-glycine, and M-332) in the krill eye, whereas shinorine and porphyra-334 were only observed in the krill body, not the eyes and gut. These findings suggest that Northern krill accumulate MAAs of various compositions through the diet (mainly cryptophytes) and translocate them among their body parts as an adaptation for photoprotection and physiological demands.


Assuntos
Euphausiacea , Fitoplâncton , Aminoácidos/química , Animais , Clorofila A , Estuários , Svalbard , Raios Ultravioleta , Água
10.
Environ Res ; 205: 112469, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863686

RESUMO

The concentration of n-alkanes (C17-C35) and sterols in marine particulate matter were investigated to trace the origin of organic carbon in Kongsfjorden in early spring (April). The spatial distributions of environmental factors (seawater temperature, salinity, density, turbidity, chlorophyll a (chl. a) and particulate organic carbon (POC) concentrations) and the cell density of phytoplankton differed between the inner and outer fjord regions. In addition, brassicasterol, diatom biomarker, showed a high concentration in the outer fjord and positive correlations with the chl. a and POC concentrations in the water column. In contrast, some sterols originating from terrestrial organic matter (OM), such as stigmasterol and campesterol, showed relatively higher concentrations in the inner fjord than in the outer fjord. Based on the distance-based redundancy analysis (db-RDA) result, the distributions of organic compounds are predominantly controlled by the water density and the POC and chl. a concentrations, and these distributions allowed us to divide the inner and outer fjord regions. However, the hierarchical clustering of principal components (HCPC) results obtained based on principal component analysis (PCA) using lipid biomarkers (C17-C35 alkanes and sterols) and environmental factors indicated that the clusters were distinguished by surface (0 m) and subsurface (>4 m) seawater samples rather than by any regional division. Notably, the concentration of relatively short-chain alkanes (average chain length (ACL): 24.6 ± 3.7) without a carbon preference for odd numbers (carbon preference index (CPI): 0.97 ± 0.11) in the sea surface layer was significantly higher than that of subsurface seawater (ACL: 31.1 ± 0.5 and CPI: 1.06 ± 0.03) in the early spring. This suggests the potential of these compounds as indicators for tidewater glacier-derived OM and freshwater input by snow melt into the fjord system. Hence, these results demonstrate that the distributions of lipid biomarkers in the water column possibly provide important information for a comprehensive understanding of the origin and transport of OM in an Arctic fjord.


Assuntos
Alcanos , Estuários , Alcanos/análise , Biomarcadores , Clorofila A/análise , Monitoramento Ambiental , Esteróis/análise
11.
FEMS Microbiol Ecol ; 97(11)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34626180

RESUMO

The assembly processes that underlie the composition and connectivity of free-living (FL) and particle-associated (PA) bacterial communities from surface to deep waters remain little understood. Here, using phylogenetic null modeling, we quantify the relative influence of selective and stochastic mechanisms that assemble FL and PA bacterial communities throughout the water column in a high Arctic fjord. We demonstrate that assembly processes acting on FL and PA bacterial communities are similar in surface waters, but become increasingly distinct in deep waters. As depth increases, the relative influence of homogeneous selection increases for FL but decreases for PA communities. In addition, dispersal limitation and variable selection increase with depth for PA, but not for FL communities, indicating increased residence time of taxa on particles and less frequent decolonization. As a consequence, beta diversity of PA communities is greater in bottom than in surface waters. The limited connectivity between these communities with increasing depth leads to highly distinct FL and PA bacterial communities in bottom waters. Finally, depth-related trends for FL and PA beta diversity and connectivity in this study are consistent with previous observations in the open ocean, suggesting that assembly processes for FL and PA bacterial communities may also be distinct in other aquatic environments.


Assuntos
Bactérias , Estuários , Regiões Árticas , Bactérias/genética , Filogenia
12.
Sci Total Environ ; 772: 145575, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33770875

RESUMO

The research on plastic pollution is increasing worldwide but little is known about the contamination levels in the Arctic by microplastics and other anthropogenic particles (APs) such as dyed fibres. In this study, two different sampling designs were developed to collect 68 sediment subsamples in five locations in a remote Arctic fjord, Kongsfjorden, northwest of Svalbard. Those five stations composed a transect from a sewage outlet recently installed close to the northernmost settlement, Ny-Ålesund, to an offshore site. Plastics and other APs were extracted by density separation and analysed by both Raman and Fourier Transform Infrared spectroscopy. Among the 37 APs found, 19 were microplastics. The others were classified as APs due to the presence of a dye or another additive. On average, 0.33 AP 100 g-1 were found in the surface sediment and their sizes ranged between 0.10 and 6.31 mm. The site most polluted by APs was located at the mouth of the fjord while the less polluted ones were the offshore and the outlet sites. We believe that currents in the fjord have carried APs towards the mouth of the fjord where an eddy could retain APs which might sink the seafloor due to various reasons (ingestion & packaging, fouling-induced changes in buoyancy). In the cores, several different APs were found down to a depth of 12 cm. These APs may have been present in the sediments for decades or been transported deeper by biota. Here we provided data on plastic but also on other anthropogenic particles from a remote fjord in Svalbard.

13.
Antonie Van Leeuwenhoek ; 114(5): 633-647, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33694023

RESUMO

Marine archaea are a significant component of the global oceanic ecosystems, including the polar oceans. However, only a few attempts have been made to study archaea in the high Arctic fjords. Given the importance of Archaea in carbon and nitrogen cycling, it is imperative to explore their diversity and community composition in the high Arctic fjords, such as Kongsfjorden (Svalbard). In the present study, we evaluated archaeal diversity and community composition in the size-fractionated microbial population, viz-a-viz free-living (FL; 0.2-3 µm) and particle-attached (PA; > 3 µm) using archaeal V3-V4 16S rRNA gene amplicon sequencing. Our results indicate that the overall archaeal community in the surface water of Kongsfjorden was dominated by the members of the marine group-II (MGII) archaea, followed by the MGI group members, including Nitrosopumilaceae and Nitrososphaeraceae. Although a clear niche partitioning between PA and FL archaeal communities was not observed, 2 OTUs among 682 OTUs, and 3 ASVs out of 1932 ASVs were differentially abundant among the fractions. OTU001/ASV0002, classified as MGIIa, was differentially abundant in the PA fraction. OTU006/ASV0006/ASV0010 affiliated with MGIIb were differentially abundant in the FL fraction. Particulate organic nitrogen and C:N ratio were the most significant variables (P < 0.05) explaining the observed variation in the FL and PA archaeal communities, respectively. These results indicate an exchange between archaeal communities or a generalist lifestyle switching between FL and PA fractions. Besides, the particles' elemental composition (carbon and nitrogen) seems to play an essential role in shaping the PA archaeal communities in the surface waters of Kongsfjorden.


Assuntos
Archaea , Água do Mar , Archaea/genética , Ecossistema , Filogenia , RNA Ribossômico 16S/genética , Svalbard
14.
World J Microbiol Biotechnol ; 37(3): 41, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33544264

RESUMO

Diazotrophy in the Arctic environment is poorly understood compared to tropical and subtropical regions. Hence in this study, we report the abundance and diversity of diazotrophs in Arctic fjord sediments and elucidate the role of environmental factors on the distribution of diazotrophs. The study was conducted during the boreal summer in the Kongsfjorden, an Arctic fjord situated in the western coast of Spitsbergen. The abundance of nifH gene was measured through quantitative real-time PCR and the diversity of diazotrophs was assessed by nifH targeted clone library and next generation sequence analysis. Results revealed that the abundance of nifH gene in the surface sediments ranged from 2.3 × 106 to 3.7 × 107 copies g- 1. The δ-proteobacterial diazotrophs (71% of total sequence) were the dominant class observed in this study. Major genera retrieved from the sequence analysis were Desulfovibrionaceae (25% of total sequence), Desulfuromonadaceae (18% of total sequence) and Desulfobacteriaceae (10% of total sequence); these are important diazotrophic iron and sulfur-reducing bacterial clade in the Kongsfjorden sediments. The abundance of nifH gene showed a significant positive correlation TOC/TN ratio (r2 = 0.96, p ≤ 0.05) and total organic carbon (p ≤ 0.05) content in the fjord sediments. The higher TOC/TN ratio (4.24-14.5) indicated low nitrogen content organic matter in the fjord sediments through glacier runoff, which enhances the abundance and diversity of nitrogen fixing microorganisms.


Assuntos
Bactérias/classificação , Sedimentos Geológicos/microbiologia , Camada de Gelo/microbiologia , Oxirredutases/genética , Regiões Árticas , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Fixação de Nitrogênio , Filogenia , Análise de Sequência de DNA/métodos
15.
Sci Total Environ ; 773: 145599, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33592480

RESUMO

Svalbard fjords are facing a significant increase in Atlantic water inflow, which influences all ecosystem components, thus the objective of this study was to assess how recent Atlantification impacts the functioning of zooplankton community. For this purpose, two year-round operating sediment traps and associated hydrographic instruments, providing continuous time series of zooplankton and sediment fluxes, were deployed in the Atlantic-influenced Kongsfjorden and the typical high Arctic fjord Rijpfjorden. We used multivariate statistical methods to analyze how environmental variables, including the sediment fluxes, influence the zooplankton communities in the fjords. We found out that sedimentation rates were an order of magnitude higher in Kongsfjorden (reaching 39.7 g m-2 d-1 in December) and increased in autumn, while in Rijpfjorden, they peaked in late winter - early spring (2.9 g m-2 d-1 in February). Such sediment flux patterns might result from the redeposition of sediments from shallower, subtidal areas and were probably connected to autumn/winter storms. According to multivariate analyses, zooplankton in Kongsfjorden were significantly influenced by water temperature, which explained 22% of their variation, and the flux of organic and mineral sediments explaining 15% and 7.8%, respectively; while in Rijpfjorden, it was sea ice (25.3%), water temperature (16.2%), salinity (8.1%), and mineral sedimentation (6.3%). The structure of zooplankton communities in both fjords was similar in winter; in Kongsfjorden, zooplankton kept developing through spring and summer, while in the Arctic Rijpfjorden, the community paused until the onset of phytoplankton bloom and sea ice break-up in summer, to finally achieve, in autumn, a similar species and development stage structure as summer in the Atlantic-influenced fjord. Our study demonstrates how integrating multiple pieces of information can provide key insights into the relations between Atlantification, sediment flux, and zooplankton community, thus helping to assess the functioning of high Arctic ecosystems under climate change conditions.


Assuntos
Estuários , Zooplâncton , Animais , Regiões Árticas , Ecossistema , Svalbard
16.
Microb Ecol ; 81(3): 579-591, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33067657

RESUMO

To understand bacterial biogeography in response to the hydrographic impact of climate change derived from the Arctic glacier melting, we surveyed bacterial diversity and community composition using bacterial 16S rRNA gene metabarcoding in the seawaters of Kongsfjorden, Svalbard, during summer 2016. In the present study, bacterial biogeography in the Kongsfjorden seawaters showed distinct habitat patterns according to water mass classification and habitat transition between Atlantic and fjord surface waters. Moreover, we estimated phylogenetic diversity of bacterial communities using the net relatedness, nearest taxon, and beta nearest taxon indices. We found the influence of freshwater input from glacier melting in shaping bacterial assemblage composition through the stochastic model. We further evaluated bacterial contributions to phytoplankton-derived dimethylsulfoniopropionate (DMSP) using a quantitative PCR (qPCR) measurement with demethylation (dmdA) and cleavage (dddP) genes of two fundamentally different processes. Our qPCR results imply that bacterial DMSP degradation follows the Atlantic inflow during summer in Kongsfjorden. These findings suggest that the Atlantic inflow and glacial melting influence bacterial community composition and assembly processes and thus affect the degradation of phytoplankton-derived organic matter in an Arctic fjord.


Assuntos
Estuários , Camada de Gelo , Regiões Árticas , Filogenia , RNA Ribossômico 16S/genética , Estações do Ano
17.
Mar Environ Res ; 162: 105176, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33096461

RESUMO

Climate change is leading to alterations in salinity and carbonate chemistry in arctic/sub-arctic marine ecosystems. We examined three nominal populations of the circumpolar arctic/subarctic amphipod, Gammarus setosus, along a salinity gradient in the Kongsfjorden-Krossfjorden area of Svalbard. Field and laboratory experiments assessed physiological (haemolymph osmolality and gill Na+/K+-ATPase activity, NKA) and energetic responses (metabolic rates, MO2, and Cellular Energy Allocation, CEA). In the field, all populations had similar osmregulatory capacities and MO2, but lower-salinity populations had lower CEA. Reduced salinity (S = 23) and elevated pCO2 (~1000 µatm) in the laboratory for one month increased gill NKA activities and reduced CEA in all populations, but increased MO2 in the higher-salinity population. Elevated pCO2 did not interact with salinity and had no effect on NKA activities or CEA, but reduced MO2 in all populations. Reduced CEA in lower-rather than higher-salinity populations may have longer term effects on other energy demanding processes (growth and reproduction).


Assuntos
Anfípodes , Salinidade , Animais , Regiões Árticas , Ecossistema , Brânquias , Concentração de Íons de Hidrogênio , Água do Mar , Svalbard
18.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190369, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32862805

RESUMO

The iconic picture of Arctic marine ecosystems shows an intense pulse of biological productivity around the spring bloom that is sustained while fresh organic matter (OM) is available, after which ecosystem activity declines to basal levels in autumn and winter. We investigated seasonality in benthic biogeochemical cycling at three stations in a high Arctic fjord that has recently lost much of its seasonal ice-cover. Unlike observations from other Arctic locations, we find little seasonality in sediment community respiration and bioturbation rates, although different sediment reworking modes varied through the year. Nutrient fluxes did vary, suggesting that, although OM was processed at similar rates, seasonality in its quality led to spring/summer peaks in inorganic nitrogen and silicate fluxes. These patterns correspond to published information on seasonality in vertical flux at the stations. Largely ice-free Kongsfjorden has a considerable detrital pool in soft sediments which sustain benthic communities over the year. Sources of this include macroalgae and terrestrial runoff. Climate change leading to less ice cover, higher light availability and expanded benthic habitat may lead to more detrital carbon in the system, dampening the quantitative importance of seasonal pulses of phytodetritus to seafloor communities in some areas of the Arctic. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Assuntos
Mudança Climática , Ecossistema , Regiões Árticas , Difusão , Sedimentos Geológicos/química , Camada de Gelo/química , Noruega , Oceanos e Mares , Compostos Orgânicos/análise , Oxigênio/análise , Estações do Ano , Água do Mar/química , Análise Espaço-Temporal
19.
J Environ Sci (China) ; 97: 186-193, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32933734

RESUMO

Kongsfjorden is known for its characteristic multi-layer water mass formed by the convergence of freshwaters from nearby glaciers and rivers and saline water from the Atlantic and Arctic. The distribution of polycyclic aromatic hydrocarbons (PAHs) in the water column of Kongsfjorden was investigated and their potential sources were analyzed. The total concentrations of 16 PAHs in the surface seawater and river water were in the range of 33.4-79.8 ng/L (mean 48.5 ng/L) and 2.3-201.4 ng/L (mean 126.1 ng/L), respectively. Horizontally, PAHs were mainly concentrated around river estuaries and the glacier front in the dissolved phase. Vertically, the PAHs in the particulate phase followed surface-enrichment and depth-depletion patterns in most stations, with the maximum concentration found at 50 m depth in the central area of Kongsfjorden. The compositions of PAHs in seawater and rivers were similar, with two-ring and tricyclic PAHs comprising the majority of the dissolved and particulate phases. PAHs found in Kongsfjorden waters appeared to be derived from multiple sources such as petroleum and coal combustion. PAHs in the bay mouth of Kongsfjorden were mainly introduced by the West Spitsbergen Current and the Arctic waters, while in the inner bay, atmospheric deposition and local sources were the major contributors. The distribution of PAHs was mainly attributed to the suspended particulate distribution.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , China , Monitoramento Ambiental , Sedimentos Geológicos , Rios
20.
Environ Int ; 139: 105511, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32278193

RESUMO

Human activities leave traces of marine litter around the globe. The Arctic is, despite its remoteness, emerging as an area of no exception to this environmental issue. Arctic sea ice has previously been found to constitute a temporal sink of microplastics, but the potential release and subsequent fate of microplastics in the marine environment are yet unknown. Furthermore, the relative importance of local sources of microplastics in the Arctic marine environment is under discussion. In this study, the concentration and distribution of anthropogenic microparticles (AMPs, <5 mm, including microplastics) have been investigated in marine waters and sea ice of Svalbard. Seawater samples throughout the water column and floating sea ice samples were collected along a transect originating in Rijpfjorden, reaching northwards to the sea ice-edge. Seawater samples were also collected along a transect extending westwards from head to mouth of Kongsfjorden. Samples were collected throughout the water column with stations positioned to enable detection of potential AMP emissions from the wastewater outlet in Ny-Ålesund. Along both transects, environmental parameters were measured to explore potential correlations with AMP distribution. High concentrations of AMPs were detected in sea ice (158 ±â€¯155 AMPs L-1). Based on both AMP concentrations and characteristics, AMPs identified in seawater of the marginal ice zone are to a large extent likely released during the melting of sea ice. The release of AMPs during summer melting of sea ice was concomitantly taking place with the ice-edge bloom, suggesting increased bioavailability to Arctic marine biota. Concentrations of AMPs were up to an order of magnitude higher in Kongsfjorden (up to 48.0 AMPs L-1) than in Rijpfjorden (up to 7.4 AMPs L-1). The distribution and composition of AMPs in Kongsfjorden suggest the wastewater outlet in Ny-Ålesund to be a likely source. Our results emphasize the importance of local point- and diffuse sources of AMPs in the Arctic and stress the urgency of considering their associated environmental impact. Implementation of regulatory policy is of importance, particularly since human activities and environmental pressures are increasing in the Arctic.


Assuntos
Camada de Gelo , Águas Residuárias , Regiões Árticas , Humanos , Plásticos , Água do Mar , Svalbard
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA