Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Sci Rep ; 14(1): 18696, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134565

RESUMO

In this paper, an enhanced equilibrium optimization (EO) version named Levy-opposition-equilibrium optimization (LOEO) is proposed to select effective features in network intrusion detection systems (IDSs). The opposition-based learning (OBL) approach is applied by this algorithm to improve the diversity of the population. Also, the Levy flight method is utilized to escape local optima. Then, the binary rendition of the algorithm called BLOEO is employed to feature selection in IDSs. One of the main challenges in IDSs is the high-dimensional feature space, with many irrelevant or redundant features. The BLOEO algorithm is designed to intelligently select the most informative subset of features. The empirical findings on NSL-KDD, UNSW-NB15, and CIC-IDS2017 datasets demonstrate the effectiveness of the BLOEO algorithm. This algorithm has an acceptable ability to effectively reduce the number of data features, maintaining a high intrusion detection accuracy of over 95%. Specifically, on the UNSW-NB15 dataset, BLOEO selected only 10.8 features on average, achieving an accuracy of 97.6% and a precision of 100%.

2.
Biomimetics (Basel) ; 9(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39056829

RESUMO

The Sine-Levy tuna swarm optimization (SLTSO) algorithm is a novel method based on the sine strategy and Levy flight guidance. It is presented as a solution to the shortcomings of the tuna swarm optimization (TSO) algorithm, which include its tendency to reach local optima and limited capacity to search worldwide. This algorithm updates locations using the Levy flight technique and greedy approach and generates initial solutions using an elite reverse learning process. Additionally, it offers an individual location optimization method called golden sine, which enhances the algorithm's capacity to explore widely and steer clear of local optima. To plan UAV flight paths safely and effectively in complex obstacle environments, the SLTSO algorithm considers constraints such as geographic and airspace obstacles, along with performance metrics like flight environment, flight space, flight distance, angle, altitude, and threat levels. The effectiveness of the algorithm is verified by simulation and the creation of a path planning model. Experimental results show that the SLTSO algorithm displays faster convergence rates, better optimization precision, shorter and smoother paths, and concomitant reduction in energy usage. A drone can now map its route far more effectively thanks to these improvements. Consequently, the proposed SLTSO algorithm demonstrates both efficacy and superiority in UAV route planning applications.

3.
Biomimetics (Basel) ; 9(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39056840

RESUMO

The recently introduced coati optimization algorithm suffers from drawbacks such as slow search velocity and weak optimization precision. An enhanced coati optimization algorithm called CMRLCCOA is proposed. Firstly, the Sine chaotic mapping function is used to initialize the CMRLCCOA as a way to obtain better-quality coati populations and increase the diversity of the population. Secondly, the generated candidate solutions are updated again using the convex lens imaging reverse learning strategy to expand the search range. Thirdly, the Lévy flight strategy increases the search step size, expands the search range, and avoids the phenomenon of convergence too early. Finally, utilizing the crossover strategy can effectively reduce the search blind spots, making the search particles constantly close to the global optimum solution. The four strategies work together to enhance the efficiency of COA and to boost the precision and steadiness. The performance of CMRLCCOA is evaluated on CEC2017 and CEC2019. The superiority of CMRLCCOA is comprehensively demonstrated by comparing the output of CMRLCCOA with the previously submitted algorithms. Besides the results of iterative convergence curves, boxplots and a nonparametric statistical analysis illustrate that the CMRLCCOA is competitive, significantly improves the convergence accuracy, and well avoids local optimal solutions. Finally, the performance and usefulness of CMRLCCOA are proven through three engineering application problems. A mathematical model of the hypersonic vehicle cruise trajectory optimization problem is developed. The result of CMRLCCOA is less than other comparative algorithms and the shortest path length for this problem is obtained.

4.
Biomimetics (Basel) ; 9(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38921231

RESUMO

Path planning is an important research direction in the field of robotics; however, with the advancement of modern science and technology, the study of efficient, stable, and safe path-planning technology has become a realistic need in the field of robotics research. This paper introduces an improved sparrow search algorithm (ISSA) with a fusion strategy to further improve the ability to solve challenging tasks. First, the sparrow population is initialized using circle chaotic mapping to enhance diversity. Second, the location update formula of the northern goshawk is used in the exploration phase to replace the sparrow search algorithm's location update formula in the security situation. This improves the discoverer model's search breadth in the solution space and optimizes the problem-solving efficiency. Third, the algorithm adopts the Lévy flight strategy to improve the global optimization ability, so that the sparrow jumps out of the local optimum in the later stage of iteration. Finally, the adaptive T-distribution mutation strategy enhances the local exploration ability in late iterations, thus improving the sparrow search algorithm's convergence speed. This was applied to the CEC2021 function set and compared with other standard intelligent optimization algorithms to test its performance. In addition, the ISSA was implemented in the path-planning problem of mobile robots. The comparative study shows that the proposed algorithm is superior to the SSA in terms of path length, running time, path optimality, and stability. The results show that the proposed method is more effective, robust, and feasible in mobile robot path planning.

5.
Front Physiol ; 15: 1366910, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812881

RESUMO

Introduction: Eye movement is one of the cues used in human-machine interface technologies for predicting the intention of users. The developing application in eye movement event detection is the creation of assistive technologies for paralyzed patients. However, developing an effective classifier is one of the main issues in eye movement event detection. Methods: In this paper, bidirectional long short-term memory (BILSTM) is proposed along with hyperparameter tuning for achieving effective eye movement event classification. The Lévy flight and interactive crossover-based reptile search algorithm (LICRSA) is used for optimizing the hyperparameters of BILSTM. The issues related to overfitting are avoided by using fuzzy data augmentation (FDA), and a deep neural network, namely, VGG-19, is used for extracting features from eye movements. Therefore, the optimization of hyperparameters using LICRSA enhances the classification of eye movement events using BILSTM. Results and Discussion: The proposed BILSTM-LICRSA is evaluated by using accuracy, precision, sensitivity, F1-score, area under the receiver operating characteristic (AUROC) curve measure, and area under the precision-recall curve (AUPRC) measure for four datasets, namely, Lund2013, collected dataset, GazeBaseR, and UTMultiView. The gazeNet, human manual classification (HMC), and multi-source information-embedded approach (MSIEA) are used for comparison with the BILSTM-LICRSA. The F1-score of BILSTM-LICRSA for the GazeBaseR dataset is 98.99%, which is higher than that of the MSIEA.

6.
Sci Rep ; 14(1): 10301, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705906

RESUMO

The Manta Ray Foraging Optimization Algorithm (MRFO) is a metaheuristic algorithm for solving real-world problems. However, MRFO suffers from slow convergence precision and is easily trapped in a local optimal. Hence, to overcome these deficiencies, this paper proposes an Improved MRFO algorithm (IMRFO) that employs Tent chaotic mapping, the bidirectional search strategy, and the Levy flight strategy. Among these strategies, Tent chaotic mapping distributes the manta ray more uniformly and improves the quality of the initial solution, while the bidirectional search strategy expands the search area. The Levy flight strategy strengthens the algorithm's ability to escape from local optimal. To verify IMRFO's performance, the algorithm is compared with 10 other algorithms on 23 benchmark functions, the CEC2017 and CEC2022 benchmark suites, and five engineering problems, with statistical analysis illustrating the superiority and significance of the difference between IMRFO and other algorithms. The results indicate that the IMRFO outperforms the competitor optimization algorithms.

7.
Biomimetics (Basel) ; 9(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786508

RESUMO

In recent years, swarm intelligence optimization methods have been increasingly applied in many fields such as mechanical design, microgrid scheduling, drone technology, neural network training, and multi-objective optimization. In this paper, a multi-strategy particle swarm optimization hybrid dandelion optimization algorithm (PSODO) is proposed, which is based on the problems of slow optimization speed and being easily susceptible to falling into local extremum in the optimization ability of the dandelion optimization algorithm. This hybrid algorithm makes the whole algorithm more diverse by introducing the strong global search ability of particle swarm optimization and the unique individual update rules of the dandelion algorithm (i.e., rising, falling and landing). The ascending and descending stages of dandelion also help to introduce more changes and explorations into the search space, thus better balancing the global and local search. The experimental results show that compared with other algorithms, the proposed PSODO algorithm greatly improves the global optimal value search ability, convergence speed and optimization speed. The effectiveness and feasibility of the PSODO algorithm are verified by solving 22 benchmark functions and three engineering design problems with different complexities in CEC 2005 and comparing it with other optimization algorithms.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38688507

RESUMO

A seamless connection between the Internet and people is provided by the Internet of Things (IoT). Furthermore, lives are enhanced using the integration of the cloud layer. In the healthcare domain, a reactive healthcare strategy is turned into a proactive one using predictive analysis. The challenges faced by existing techniques are inaccurate prediction and a time-consuming process. This paper introduces an Artificial Intelligence (AI) and IoT-based disease prediction method, the TriKernel Support Vector-based Levy Gazelle (TriKSV-LG) Algorithm, which aims to improve accuracy, and reduce the time of predicting diseases (kidney and heart) in healthcare systems. The IoT sensors collect information about patients' health conditions, and the AI employs the information in disease prediction. TriKSV utilizes multiple kernel functions, including linear, polynomial, and radial basis functions, to classify features more effectively. By learning from different representations of the data, TriKSV better handles variations and complexities within the dataset, leading to more robust disease prediction models. The Levy Flight strategy with Gazelle optimization algorithm tunes the hyperparameters and balances the exploration and exploitation for optimal hyperparameter configurations in predicting chronic kidney disease (CKD) and heart disease (HD). Furthermore, TriKSV's incorporation of multiple kernel functions, combined with the Gazelle optimization strategy, helps mitigate overfitting by providing a more comprehensive search space for optimal hyperparameter selection. The proposed TriKSV-LG method is applied to two different datasets, namely the CKD dataset and the HD dataset, and evaluated using performance measures such as AUC-ROC, specificity, F1-score, recall, precision, and accuracy. The results demonstrate that the proposed TriKSV-LG method achieved an accuracy of 98.56% in predicting kidney disease using the CKD dataset and 98.11% accuracy in predicting HD using the HD dataset.

9.
J Appl Crystallogr ; 57(Pt 2): 555-566, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38596735

RESUMO

This work introduces X-Ray Calc (XRC), an open-source software package designed to simulate X-ray reflectivity (XRR) and address the inverse problem of reconstructing film structures on the basis of measured XRR curves. XRC features a user-friendly graphical interface that facilitates interactive simulation and reconstruction. The software employs a recursive approach based on the Fresnel equations to calculate XRR and incorporates specialized tools for modeling periodic multilayer structures. This article presents the latest version of the X-Ray Calc software (XRC3), with notable improvements. These enhancements encompass an automatic fitting capability for XRR curves utilizing a modified flight particle swarm optimization algorithm. A novel cost function was also developed specifically for fitting XRR curves of periodic structures. Furthermore, the overall user experience has been enhanced by developing a new single-window interface.

10.
Heliyon ; 10(4): e26516, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38434065

RESUMO

As industrial technology continues to advance through integration, society's demand for electricity is rapidly increasing. To meet the requirements of refined grid management and address the elevated challenges arising from the increased electrical load, this paper delves into the investigation of distribution vehicle scheduling for the practical scenario of batch rotation of smart meters. Initially, based on the practical distribution task requirements of a provincial metrology verification center, a multi-level optimization model is constructed for the batch rotation and distribution vehicle scheduling of smart meters. The primary objective is to maximize the enhancement of smart meter distribution efficiency while minimizing the overall distribution cost. Moreover, this paper introduces a refined Grey Wolf Optimization algorithm (OLC-GWO) based on Opposition-based Learning, Levy flight strategy, and Cauchy mutation to solve the model. By generating an opposite population to improve the quality of initial feasible solutions and further harnessing the global search capabilities of Levy flight and Cauchy mutation operators, the algorithm's effectiveness is enhanced. The algorithm is subjected to testing using multiple benchmark functions and its performance is compared with variants of GWO, as well as several cutting-edge intelligent optimization algorithms including Particle Swarm Optimization (PSO), Harris Hawks Optimization (HHO), and Honey Bee Algorithm (HBA). The results indicate that OLC-GWO exhibits excellent performance in terms of convergence speed and optimization capability. Finally, the improved algorithm is subjected to simulation experiments by incorporating order data from the practical distribution operations of a provincial metrology verification center. The outcomes verify the efficiency of the proposed algorithm, reinforcing the practical significance of the established model in addressing the real-world challenge of batch rotation and distribution vehicle scheduling for smart meters.

11.
Sci Rep ; 14(1): 7445, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548845

RESUMO

The original Harris hawks optimization (HHO) algorithm has the problems of unstable optimization effect and easy to fall into stagnation. However, most of the improved HHO algorithms can not effectively improve the ability of the algorithm to jump out of the local optimum. In this regard, an integrated improved HHO (IIHHO) algorithm is proposed. Firstly, the linear transformation escape energy used by the original HHO algorithm is relatively simple and lacks the escape law of the prey in the actual nature. Therefore, intermittent energy regulator is introduced to adjust the energy of Harris hawks, which is conducive to improving the local search ability of the algorithm while restoring the prey's rest mechanism; Secondly, to adjust the uncertainty of random vector, a more regular vector change mechanism is used instead, and the attenuation vector is obtained by modifying the composite function. Finally, the search scope of Levy flight is further clarified, which is conducive to the algorithm jumping out of the local optimum. Finally, in order to modify the calculation limitations caused by the fixed step size, Cardano formula function is introduced to adjust the step size setting and improve the accuracy of the algorithm. First, the performance of IIHHO algorithm is analyzed on the Computational Experimental Competition 2013 (CEC 2013) function test set and compared with seven improved evolutionary algorithms, and the convergence value of the iterative curve obtained is better than most of the improved algorithms, verifying the effectiveness of the proposed IIHHO algorithm. Second, the IIHHO is compared with another three state of the art (SOTA) algorithms with the Computational Experimental Competition 2022 (CEC 2022) function test set, the experiments show that the proposed IIHHO algorithm still has a strong ability to search for the optimal value. Third, IIHHO algorithm is applied in two different engineering experiments. The calculation results of minimum cost prove that IIHHO algorithm has certain advantages in dealing with the problem of search space. All these demonstrate that the proposed IIHHO is promising for numeric optimization and engineering applications.

12.
Sensors (Basel) ; 24(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38543998

RESUMO

To solve the problems of high computational cost and the long time required by the simulation and calculation of aeroengines' exhaust systems, a method of predicting the characteristics of infrared radiation based on the hybrid kernel extreme learning machine (HKELM) optimized by the improved dung beetle optimizer (IDBO) was proposed. Firstly, the Levy flight strategy and variable spiral strategy were introduced to improve the optimization performance of the dung beetle optimizer (DBO) algorithm. Secondly, the superiority of IDBO algorithm was verified by using 23 benchmark functions. In addition, the Wilcoxon signed-rank test was applied to evaluate the experimental results, which proved the superiority of the IDBO algorithm over other current prominent metaheuristic algorithms. Finally, the hyperparameters of HKELM were optimized by the IDBO algorithm, and the IDBO-HKELM model was applied to the prediction of characteristics of infrared radiation of a typical axisymmetric nozzle. The results showed that the RMSE and MAE of the IDBO-HKELM model were 20.64 and 8.83, respectively, which verified the high accuracy and feasibility of the proposed method for predictions of aeroengines' infrared radiation characteristics.

13.
Mov Ecol ; 12(1): 23, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528635

RESUMO

We record and analyze the movement patterns of the marsupial Didelphis aurita at different temporal scales. Animals trajectories are collected at a daily scale by using spool-and-line techniques and, with the help of radio-tracking devices, animals traveled distances are estimated at intervals of weeks. Small-scale movements are well described by truncated Lévy flight, while large-scale movements produce a distribution of distances which is compatible with a Brownian motion. A model of the movement behavior of these animals, based on a truncated Lévy flight calibrated on the small scale data, converges towards a Brownian behavior after a short time interval of the order of 1 week. These results show that whether Lévy flight or Brownian motion behaviors apply, will depend on the scale of aggregation of the animals paths. In this specific case, as the effect of the rude truncation present in the daily data generates a fast convergence towards Brownian behaviors, Lévy flights become of scarce interest for describing the local dispersion properties of these animals, which result well approximated by a normal diffusion process and not a fast, anomalous one. Interestingly, we are able to describe two movement phases as the consequence of a statistical effect generated by aggregation, without the necessity of introducing ecological constraints or mechanisms operating at different spatio-temporal scales. This result is of general interest, as it can be a key element for describing movement phenomenology at distinct spatio-temporal scales across different taxa and in a variety of systems.

14.
Am Nat ; 203(4): 513-527, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38489781

RESUMO

AbstractThe survival of an animal depends on its success as a forager, and understanding the adaptations that result in successful foraging strategies is an enduring endeavour of behavioral ecology. Random walks are one of the primary mathematical descriptions of foraging behavior. Power law distributions are often used to model random walks, as they can characterize a wide range of behaviors, including Lévy walks. Empirical evidence indicates the prevalence and efficiency of Lévy walks as a foraging strategy, and theoretical work suggests an evolutionary origin. However, previous evolutionary models have assumed a priori that move lengths are drawn from a power law or other families of distributions. Here, we remove this restriction with a model that allows for the evolution of any distribution. Instead of Lévy walks, our model unfailingly results in the evolution of intermittent search, a random walk composed of two disjoint modes-frequent localized walks and infrequent extensive moves-that consistently outcompeted Lévy walks. We also demonstrate that foraging using intermittent search may resemble a Lévy walk because of interactions with the resources within an environment. These extrinsically generated Lévy-like walks belie an underlying behavior and may explain the prevalence of Lévy walks reported in the literature.


Assuntos
Ecologia , Modelos Biológicos , Animais
15.
Math Biosci Eng ; 20(12): 20881-20913, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124580

RESUMO

The Archimedes optimization algorithm (AOA) has attracted much attention for its few parameters and competitive optimization effects. However, all agents in the canonical AOA are treated in the same way, resulting in slow convergence and local optima. To solve these problems, an improved hierarchical chain-based AOA (HCAOA) is proposed in this paper. The idea of HCAOA is to deal with individuals at different levels in different ways. The optimal individual is processed by an orthogonal learning mechanism based on refraction opposition to fully learn the information on all dimensions, effectively avoiding local optima. Superior individuals are handled by an Archimedes spiral mechanism based on Levy flight, avoiding clueless random mining and improving optimization speed. For general individuals, the conventional AOA is applied to maximize its inherent exploration and exploitation abilities. Moreover, a multi-strategy boundary processing mechanism is introduced to improve population diversity. Experimental outcomes on CEC 2017 test suite show that HCAOA outperforms AOA and other advanced competitors. The competitive optimization results achieved by HCAOA on four engineering design problems also demonstrate its ability to solve practical problems.

16.
Biomimetics (Basel) ; 8(6)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37887613

RESUMO

This paper presents a hybrid algorithm based on the slime mould algorithm (SMA) and the mixed dandelion optimizer. The hybrid algorithm improves the convergence speed and prevents the algorithm from falling into the local optimal. (1) The Bernoulli chaotic mapping is added in the initialization phase to enrich the population diversity. (2) The Brownian motion and Lévy flight strategy are added to further enhance the global search ability and local exploitation performance of the slime mould. (3) The specular reflection learning is added in the late iteration to improve the population search ability and avoid falling into local optimality. The experimental results show that the convergence speed and precision of the improved algorithm are improved in the standard test functions. At last, this paper optimizes the parameters of the Extreme Learning Machine (ELM) model with the improved method and applies it to the power load forecasting problem. The effectiveness of the improved method in solving practical engineering problems is further verified.

17.
Biomimetics (Basel) ; 8(4)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37622959

RESUMO

The wireless sensor network (WSN) is an essential technology of the Internet of Things (IoT) but has the problem of low coverage due to the uneven distribution of sensor nodes. This paper proposes a novel enhanced whale optimization algorithm (WOA), incorporating Lévy flight and a genetic algorithm optimization mechanism (WOA-LFGA). The Lévy flight technique bolsters the global search ability and convergence speed of the WOA, while the genetic optimization mechanism enhances its local search and random search capabilities. WOA-LFGA is tested with 29 mathematical optimization problems and a WSN coverage optimization model. Simulation results demonstrate that the improved algorithm is highly competitive compared with mainstream algorithms. Moreover, the practicality and the effectiveness of the improved algorithm in optimizing wireless sensor network coverage are confirmed.

18.
Behav Ecol ; 34(4): 695-699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37434636

RESUMO

Of widespread interest in animal behavior and ecology is how animals search their environment for resources, and whether these search strategies are optimal. However, movement also affects predation risk through effects on encounter rates, the conspicuousness of prey, and the success of attacks. Here, we use predatory fish attacking a simulation of virtual prey to test whether predation risk is associated with movement behavior. Despite often being demonstrated to be a more efficient strategy for finding resources such as food, we find that prey displaying Lévy motion are twice as likely to be targeted by predators than prey utilizing Brownian motion. This can be explained by the predators, at the moment of the attack, preferentially targeting prey that were moving with straighter trajectories rather than prey that were turning more. Our results emphasize that costs of predation risk need to be considered alongside the foraging benefits when comparing different movement strategies.

19.
Sensors (Basel) ; 23(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37514908

RESUMO

Coal is an important resource that is closely related to people's lives and plays an irreplaceable role. However, coal mine safety accidents occur from time to time in the process of working underground. Therefore, this paper proposes a coal mine environmental safety early warning model to detect abnormalities and ensure worker safety in a timely manner by assessing the underground climate environment. In this paper, support vector machine (SVM) parameters are optimized using an improved artificial hummingbird algorithm (IAHA), and its safety level is classified by combining various environmental parameters. To address the problems of insufficient global exploration capability and slow convergence of the artificial hummingbird algorithm during iterations, a strategy incorporating Tent chaos mapping and backward learning is used to initialize the population, a Levy flight strategy is introduced to improve the search capability during the guided foraging phase, and a simplex method is introduced to replace the worst value before the end of each iteration of the algorithm. The IAHA-SVM safety warning model is established using the improved algorithm to classify and predict the safety of the coal mine environment as one of four classes. Finally, the performance of the IAHA algorithm and the IAHA-SVM model are simulated separately. The simulation results show that the convergence speed and the search accuracy of the IAHA algorithm are improved and that the performance of the IAHA-SVM model is significantly improved.

20.
Wirel Pers Commun ; : 1-14, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37360135

RESUMO

The worldwide pandemic of COVID-19 illness has wreaked havoc on the health and lives of countless individuals in more than 200 countries. More than 44 million individuals have been afflicted by October 2020, with over 1,000,000 fatalities reported. This disease, which is classified as a pandemic, is still being researched for diagnosis and therapy. It is critical to diagnose this condition early in order to save a person's life. Diagnostic investigations based on deep learning are speeding up this procedure. As a result, in order to contribute to this sector, our research proposes a deep learning-based technique that may be employed for illness early detection. Based on this insight, gaussian filter is applied to the collected CT images and the filtered images are subjected to the proposed tunicate dilated convolutional neural network, whereas covid and non-covid disease are categorized to improve the accuracy requirement. The hyperparameters involved in the proposed deep learning techniques are optimally tuned using the proposed levy flight based tunicate behaviour. To validate the proposed methodology, evaluation metrics are tested and shows superiority of the proposed approach during COVID-19 diagnostic studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA