Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
1.
Int J Biol Macromol ; 281(Pt 1): 136254, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39366606

RESUMO

Biomaterials and synthetic polymers have been widely used to replicate the regenerative microenvironment of the peripheral nervous system. Chitosan-based conduits have shown promise in the regeneration of nerve injuries. However, to mimic the regenerative microenvironment, the scaffold structure should possess bioactive properties. This can be achieved by the incorporation of biomolecules (e.g., proteins, peptides) or trophic factors that should preferably be aligned and/or released with controlled kinetics to activate the process of positive axon chemotaxis. In this study, sodium L-lactate has been used to enhance the bioactive properties of chitosan-hydroxyapatite/polycaprolactone electrodeposits. Next, two methods have been developed to incorporate NGF-loaded microspheres - Method 1 involves entrapment and co-deposition of NGF-loaded microspheres, while Method 2 is based on absorption of NGF-loaded microspheres. The study shows that modification of chitosan-hydroxyapatite/polycaprolactone conduits by sodium L-lactate significantly improves their bioactive, biological, and physicochemical properties. The obtained implants are cytocompatible, enhancing the neurite regeneration process by stimulating its elongation. The absorption of NGF-loaded microspheres into the conduit structure may be considered more favorable for the stimulation of axonal elongation compared to entrapment, as it allows for trophic factor dose-dependent controlled release. The developed conduits possess properties essential for the successful treatment of peripheral nerve discontinuities.

2.
Plant Mol Biol ; 114(5): 98, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254882

RESUMO

L-Lactate is a commodity chemical used in various fields. Microorganisms have produced L-lactate via lactic fermentation using saccharides derived from crops as carbon sources. Recently, L-lactate production using microalgae, whose carbon source is carbon dioxide, has been spotlighted because the prices of the crops have increased. A red alga Cyanidioschyzon merolae produce L-lactate via lactic fermentation under dark anaerobic conditions. The L-lactate titer of C. merolae is higher than those of other microalgae but lower than those of heterotrophic bacteria. Therefore, an increase in the L-lactate titer is required in C. merolae. L-Lactate dehydrogenase (L-LDH) catalyzes the reduction of pyruvate to L-lactate during lactic fermentation. C. merolae possesses five isozymes of L-LDH. The results of previous transcriptome analysis suggested that L-LDHs are the key enzymes in the lactic fermentation of C. merolae. However, their biochemical characteristics, such as catalytic efficiency and tolerance for metabolites, have not been revealed. We compared the amino acid sequences of C. merolae L-LDHs (CmLDHs) and characterized one of the isozymes, CmLDH1. BLAST analysis revealed that the sequence similarities of CmLDH1 and the other isozymes were above 99%. The catalytic efficiency of CmLDH1 under its optimum conditions was higher than those of L-LDHs of other organisms. ATP decreased the affinity and turnover number of CmLDH1 for NADH. These findings contribute to understanding the characteristics of L-LDHs of microalgae and the regulatory mechanisms of lactic fermentation in C. merolae.


Assuntos
Trifosfato de Adenosina , L-Lactato Desidrogenase , Ácido Pirúvico , Rodófitas , Rodófitas/enzimologia , Rodófitas/genética , Rodófitas/metabolismo , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/genética , Ácido Pirúvico/metabolismo , Trifosfato de Adenosina/metabolismo , Fermentação , Sequência de Aminoácidos , Ácido Láctico/metabolismo , Microalgas/metabolismo , Microalgas/genética , Microalgas/enzimologia , Catálise
3.
Front Vet Sci ; 11: 1375518, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39234172

RESUMO

Bovine hemolytic anemia has a negative impact on animal welfare and productivity due to its associated clinical symptoms. Hemolysis is generally known to cause reticulocytosis, increased indirect bilirubin, decreased concentration of haptoglobin, and increased lactate dehydrogenase. Additionally, tissue hypoperfusion due to concomitant anemia increases blood lactate concentration. However, few studies have reported the correlation between these indicators and hemolytic anemia in cattle. We expected that alterations in hematological and biochemical parameters could identify cattle with hemolytic anemia. Therefore, in addition to reporting differences in indicators according to hemolytic anemia, this study aimed to derive indicators and set criteria for identification of bovine hemolytic anemia. In cattle with hemolytic anemia, reticulocytosis, increased indirect bilirubin, and increased L-lactate were observed, and the correlation of these indicators with hematocrit (HCT) was confirmed. And since HCT alone has limitations in identifying hemolytic anemia, we suggest additional criteria to identify hemolytic anemia in cattle.

4.
FEBS Lett ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284787

RESUMO

Escherichia coli small heat-shock protein IbpB (MW: 16 KDa) has holding chaperone activity and is present in cells at 30 °C as two large oligomers of MW 2.0-3.0 MDa and 600-700 KDa. We report here about the presence of two additional oligomers of MW around 400 and 130 KDa in cells under heat-stress at 50 °C. These two smaller oligomers possess the most chaperone activity, as observed from the extent of inhibition of inactivation and aggregation separately, of L-Lactate dehydrogenase in the presence of the individual oligomers at 52 and 60 °C, respectively. It is suggested here that the two larger oligomers act as poorly active storage forms, which under heat stress dissociate partially into smaller oligomers with high holdase activity.

5.
Br J Pharmacol ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39295124

RESUMO

BACKGROUND AND PURPOSE: Diabetic patients have an increased risk of psychiatric disorders. Because hyperglycaemia increases L-lactate in the brain and L-lactate inhibits AMP-activated protein kinase (AMPK), this study investigated the role of L-lactate and AMPK in strengthened fear memory, a model for human psychiatric disorders, in diabetic mice. EXPERIMENTAL APPROACH: The diabetic model was mice injected with streptozotocin. Fear memory was measured using the conditioned fear test with low (0.45 mA) or high (0.50 mA) foot shock to cause low and high freezing, respectively. Protein levels of AMPK and phosphorylated AMPK (pAMPK) were measured by western blotting and immunohistochemistry. KEY RESULTS: At 0.45 mA, the AMPK inhibitor dorsomorphin increased freezing, which was inhibited by the AMPK activator acadesine. In contrast, at 0.50 mA, acadesine decreased freezing, which was inhibited by dorsomorphin. In diabetic mice, pAMPK was decreased in the amygdala and hippocampus. Diabetic mice showed increased freezing at 0.45 mA, which was inhibited by acadesine. In the amygdala and hippocampus, L-lactate was increased in diabetic mice and injection of L-lactate into non-diabetic mice increased freezing at 0.45 mA. In addition, L-lactate decreased pAMPK in the hippocampus, but not the amygdala, and increase in freezing induced by L-lactate was inhibited by acadesine. Dorsomorphin-induced increase in freezing was inhibited by the AMPA receptor antagonist NBQX. CONCLUSIONS AND INTERPRETATION: In diabetic mice, L-lactate is increased in the amygdala and hippocampus, possibly through hyperglycaemia, which strengthens fear memory through inhibition of AMPK and activation of glutamatergic function.

6.
Sci Rep ; 14(1): 19578, 2024 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179636

RESUMO

Large-scale production of cultured meat requires bulk culture medium containing growth-promoting proteins from animal serum. However, animal serum for mammalian cell culture is associated with high costs, ethical concerns, and contamination risks. Owing to its growth factor content, conditioned medium from rat liver epithelial RL34 cells can replace animal serum for myoblast proliferation. More seeded cells and longer culture periods are thought to yield higher growth factor levels, resulting in more effective muscle cell proliferation. However, RL34 cells can deplete nutrients and release harmful metabolites into the culture medium over time, potentially causing growth inhibition and apoptosis. This issue highlights the need for waste clearance during condition medium production. To address this issue, we introduced a lactate permease gene (lldP) and an L-lactate-to-pyruvate conversion enzyme gene (lldD) to generate a recombinant L-lactate-assimilating cyanobacterium Synechococcus sp. KC0110 strain. Transwell co-culture of this strain with RL34 cells exhibited a marked reduction in the levels of harmful metabolites, lactate and ammonium, while maintaining higher concentrations of glucose, pyruvate, and pyruvate-derived amino acids than those seen with RL34 cell monocultures. The co-culture medium supported myoblast proliferation without medium dilution or additional nutrients, which was attributed to the waste clearance and nutrient replenishment effects of the KC0110 strain. This culture system holds potential for the production of low-cost, and animal-free cultured meat.


Assuntos
Técnicas de Cocultura , Ácido Láctico , Carne , Animais , Ácido Láctico/metabolismo , Ratos , Técnicas de Cocultura/métodos , Meios de Cultura Livres de Soro , Proliferação de Células , Synechococcus/metabolismo , Synechococcus/genética , Synechococcus/crescimento & desenvolvimento , Linhagem Celular , Mioblastos/metabolismo , Mioblastos/citologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Carne in vitro
7.
Int J Mol Sci ; 25(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39201607

RESUMO

Astrocytes play a pivotal role in maintaining brain energy homeostasis, supporting neuronal function through glycolysis and lipid metabolism. This review explores the metabolic intricacies of astrocytes in both physiological and pathological conditions, highlighting their adaptive plasticity and diverse functions. Under normal conditions, astrocytes modulate synaptic activity, recycle neurotransmitters, and maintain the blood-brain barrier, ensuring a balanced energy supply and protection against oxidative stress. However, in response to central nervous system pathologies such as neurotrauma, stroke, infections, and neurodegenerative diseases like Alzheimer's and Huntington's disease, astrocytes undergo significant morphological, molecular, and metabolic changes. Reactive astrocytes upregulate glycolysis and fatty acid oxidation to meet increased energy demands, which can be protective in acute settings but may exacerbate chronic inflammation and disease progression. This review emphasizes the need for advanced molecular, genetic, and physiological tools to further understand astrocyte heterogeneity and their metabolic reprogramming in disease states.


Assuntos
Astrócitos , Doenças Neurodegenerativas , Astrócitos/metabolismo , Astrócitos/patologia , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Animais , Metabolismo Energético , Glicólise , Metabolismo dos Lipídeos , Reprogramação Celular , Reprogramação Metabólica
8.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189164, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39096976

RESUMO

As a solid tumor with high glycolytic activity, hepatocellular carcinoma (HCC) produces excess lactic acid and increases extracellular acidity, thus forming a unique immunosuppressive microenvironment. L-lactate dehydrogenase (LDH) and monocarboxylate transporters (MCTs) play a very important role in glycolysis. LDH is the key enzyme for lactic acid (LA) production, and MCT is responsible for the cellular import and export of LA. The synergistic effect of the two promotes the formation of an extracellular acidic microenvironment. In the acidic microenvironment of HCC, LA can not only promote the proliferation, survival, transport and angiogenesis of tumor cells but also have a strong impact on immune cells, ultimately leading to an inhibitory immune microenvironment. This article reviews the role of LA in HCC, especially its effect on immune cells, summarizes the progress of LDH and MCT-related drugs, and highlights the potential of immunotherapy targeting lactate combined with HCC.


Assuntos
Carcinoma Hepatocelular , Ácido Láctico , Neoplasias Hepáticas , Transportadores de Ácidos Monocarboxílicos , Microambiente Tumoral , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/imunologia , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/imunologia , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , L-Lactato Desidrogenase/metabolismo , Animais , Glicólise
9.
BMC Vet Res ; 20(1): 373, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164760

RESUMO

BACKGROUND: Calf diarrhea leads to high mortality rates and decreases in growth and productivity, causing negative effects on the livestock industry. Lactate is closely associated with metabolic acidosis in diarrheic calves. However, there have been no reports on lactate concentrations in Korean indigenous (Hanwoo) calves, especially those with diarrhea. This study aimed to determine the reference range of L-lactate and D-lactate concentrations in Hanwoo calves and to better understand the utility of lactate as predictive factors for acidemia in diarrheic calves. RESULTS: L-lactate and D-lactate concentrations were measured in healthy (n = 44) and diarrheic (n = 93) calves, and blood gas analysis was performed on diarrheic calves. The reference range in healthy calves was 0.2-2.25 mmol/L for L-lactate and 0.42-1.38 mmol/L for D-lactate. Diarrheic calves had higher concentrations of L-lactate and D-lactate than healthy calves. In diarrheic calves, L-lactate and D-lactate each had weak negative correlation with pH (r = - 0.31 and r = - 0.35). In diarrheic calves with hyper-L-lactatemia, the combined concentrations of L-lactate and D-lactate had moderate correlation with pH (r = - 0.51) and anion gap (r = 0.55). Receiver operating characteristic analysis showed D-lactate had fair predictive performance (AUC = 0.74) for severe acidemia, with an optimal cut-off value of > 1.43 mmol/L. The combined concentrations of L-lactate and D-lactate showed fair predictive performance for predicting acidemia (AUC = 0.74) and severe acidemia (AUC = 0.72), with cut-off values of > 6.05 mmol/L and > 5.95 mmol/L. CONCLUSIONS: The determined reference ranges for L-lactate and D-lactate in Hanwoo calves enable the identification of hyper-L-lactatemia and hyper-D-lactatemia. Diarrheic calves exhibited increased lactate concentrations correlated with acid-base parameters. While the concentrations of L-lactate and D-lactate have limitations as single diagnostic biomarkers for predicting acidemia or severe acidemia, their measurement remains important, and L-lactate has the advantage of being measurable at the point-of-care. Assessing lactate concentrations should be considered by clinicians, especially when used alongside other clinical indicators and diagnostic tests. This approach can improve calf diarrhea management, contributing positively to animal welfare and providing economic benefits to farms.


Assuntos
Acidose , Doenças dos Bovinos , Diarreia , Ácido Láctico , Animais , Bovinos , Diarreia/veterinária , Diarreia/sangue , Doenças dos Bovinos/sangue , Doenças dos Bovinos/diagnóstico , Ácido Láctico/sangue , Acidose/veterinária , Acidose/sangue , Acidose/diagnóstico , República da Coreia , Masculino , Feminino , Valores de Referência , Gasometria/veterinária
10.
Pharmacol Res ; 208: 107357, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39159732

RESUMO

Aberrant energy metabolism in the brain is a common pathological feature in the preclinical Alzheimer's Disease (AD). Recent studies have reported the early elevations of glycolysis-involved enzymes in AD brain and cerebrospinal fluid according to a large-scale proteomic analysis. It's well-known that astrocytes exhibit strong glycolytic metabolic ability and play a key role in the regulation of brain homeostasis. However, its relationship with glycolytic changes and cognitive deficits in early AD patients is unclear. Here, we investigated the mechanisms by which astrocyte glycolysis is involved in early AD and its potential as a therapeutic target. Our results suggest that Aß-activated microglia can induce glycolytic-enhanced astrocytes in vitro, and that these processes are dependent on the activation of the AKT-mTOR-HIF-1α pathway. In early AD models, the increase in L-lactate produced by enhanced glycolysis of astrocytes leads to spatial cognitive impairment by disrupting synaptic plasticity and accelerating Aß aggregation. Furthermore, we find rapamycin, the mTOR inhibitor, can rescue the impaired spatial memory and Aß burden by inhibiting the glycolysis-derived L-lactate in the early AD models. In conclusion, we highlight that astrocytic glycolysis plays a critical role in the early onset of AD and that the modulation of glycolysis-derived L-lactate by rapamycin provides a new strategy for the treatment of AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Astrócitos , Glicólise , Ácido Láctico , Animais , Feminino , Masculino , Camundongos , Ratos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Glicólise/efeitos dos fármacos , Ácido Láctico/metabolismo , Transtornos da Memória/metabolismo , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
11.
Psychoneuroendocrinology ; 168: 107146, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39079447

RESUMO

The prevalence of depression significantly increases during puberty and adolescence. Puberty is the period during which sexual maturity is attained, while adolescence persists beyond puberty and includes physiological, social, emotional, and cognitive maturation. A stressor that has been shown previously to induce depression is chronic sleep disruption. Probiotics can prevent stress-induced depression. However, it was unclear whether probiotics could prevent depression following chronic sleep disruption and what mechanism may be involved. Therefore, we investigated whether pubertal probiotic treatment could prevent depression-like behavior in mice following chronic sleep disruption. We also examined whether probiotic treatment could improve sleep quality, and increase serotonin, tryptophan, glucose, and L-lactate concentrations in chronically sleep-disrupted mice. We hypothesized that probiotic treatment would prevent depression-like behavior, improve sleep quality, and increase serotonin, tryptophan, glucose, and L-lactate concentrations in sleep-disrupted mice. Male and female mice (N=120) received cannula and electroencephalogram (EEG) electrode implants at postnatal day (PND) 26. Mice received Lacidofil® or Cerebiome® probiotics (PND 33-51) and were sleep-disrupted for the first 4 hours of the light phase (sleep period) (PND 40-51). Hippocampal L-lactate and glucose concentrations and sleep were measured over a 24-h period (PND 48-49). Depression-like behaviour was evaluated using tail suspension (PND 49) and forced swim tests (PND 50). Chronic sleep disruption increased depression-like behaviour and NREM duration in the dark phase, and reduced all metabolites and neuromodulating biomolecules measured within the brain. However, mice treated with probiotics did not display depression-like behaviour or decreased hippocampal L-lactate following chronic sleep disruption. Cerebiome prevented decreases to prefrontal serotonin and hippocampal glucose concentrations, while Lacidofil increased NREM duration in the latter half of the light phase. The current study not only replicates previous findings linking chronic sleep disruption to depression, but also demonstrates that pubertal probiotic treatment can mitigate the effects of chronic sleep disruption on depression-like behaviour and on the neural mechanisms underlying depression in a strain-dependent manner.


Assuntos
Depressão , Glucose , Hipocampo , Ácido Láctico , Probióticos , Serotonina , Maturidade Sexual , Sono , Animais , Probióticos/farmacologia , Camundongos , Feminino , Depressão/metabolismo , Masculino , Ácido Láctico/metabolismo , Glucose/metabolismo , Sono/fisiologia , Hipocampo/metabolismo , Serotonina/metabolismo , Maturidade Sexual/fisiologia , Maturidade Sexual/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Transtornos do Sono-Vigília/metabolismo , Triptofano/metabolismo , Camundongos Endogâmicos C57BL
12.
Int J Biol Macromol ; 271(Pt 2): 132667, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38801850

RESUMO

Fibroblast growth factor 21 (FGF21) is one endogenous metabolic molecule that functions as a regulator in glucose and lipid homeostasis. However, the effect of FGF21 on L-lactate homeostasis and its mechanism remains unclear until now. Forty-five Six-week-old male C57BL/6 mice were divided into three groups: control, L-lactate, and FGF21 (1.5 mg/kg) groups. At the end of the treatment, nuclear magnetic resonance-based metabolomics, and key proteins related to L-lactate homeostasis were determined respectively to evaluate the efficacy of FGF21 and its mechanisms. The results showed that, compared to the vehicle group, the L-lactate-treated mice displayed learning and memory performance impairments, as well as reduced hippocampal ATP and NADH levels, but increased oxidative stress, mitochondrial dysfunction, and apoptosis, which suggesting inhibited L-lactate-pyruvate conversion in the brain. Conversely, FGF21 treatment ameliorated the L-lactate accumulation state, accompanied by restoration of the learning and memory defects, indicating enhanced L-lactate uptake and utilization in hippocampal neurons. We demonstrated that maintaining constant L-lactate-pyruvate flux is essential for preserving neuronal bioenergetic and redox levels. FGF21 contributed to preparing the brain for situations of high availability of L-lactate, thus preventing neuronal vulnerability in metabolic reprogramming.


Assuntos
Fatores de Crescimento de Fibroblastos , Hipocampo , Homeostase , Ácido Láctico , Memória , Camundongos Endogâmicos C57BL , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Camundongos , Memória/efeitos dos fármacos , Ácido Láctico/metabolismo , Masculino , Homeostase/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Apoptose/efeitos dos fármacos
13.
J Dairy Sci ; 107(8): 6148-6160, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38608954

RESUMO

Subclinical mastitis reduces milk yield and elicits undesirable changes in milk composition, but the mechanisms resulting in reduced milk production in affected mammary glands are incompletely understood. This study investigated the effects of sterile inflammation on mammary gland metabolism by assessing changes in milk and venous blood composition. Mid-lactation primiparous Holstein cows (n = 4) had udder halves randomly allocated to treatments; quarters of 1 udder half were infused with 2 billion cfu of formalin-fixed Staphylococcus aureus (FX-STAPH) and quarters of the opposite udder half were infused with saline (SAL). Blood samples were collected from the right and left subcutaneous abdominal veins in 2.6 h intervals until 40 h postchallenge and analyzed for blood gas and metabolite concentrations. Milk from FX-STAPH udder halves had significantly increased SCS by the first milking at 8 h postchallenge. By 16 h postchallenge, FX-STAPH udder halves had increased concentrations of protein and lactate and lower lactose concentrations than SAL udder halves. Milk fat concentrations, milk yields, ECM yields, and the ferric reducing antioxidant power of milk were not significantly different between SAL and FX-STAPH udder halves. Venous blood of FX-STAPH halves had marginally greater concentrations of saturated O2, partial pressures of O2, and glucose concentrations than SAL halves. Conversely, total and partial pressures of CO2 did not differ between udder half treatments, suggesting a shift in local metabolite utilization in FX-STAPH udder halves. These results indicate that changes in milk composition resulting from mastitis are accompanied by changes in some key blood metabolite concentrations. The shift in venous blood metabolite concentrations, along with the marked increase in milk lactate, suggests that local mammary tissue or recruited immune cells, or both, alter metabolite usage in mammary tissues. Future studies are needed to quantify the uptake of key milk precursors during mastitis.


Assuntos
Lactação , Glândulas Mamárias Animais , Mastite Bovina , Leite , Animais , Feminino , Leite/química , Mastite Bovina/metabolismo , Glândulas Mamárias Animais/metabolismo , Bovinos , Staphylococcus aureus
14.
Adv Biol (Weinh) ; 8(6): e2300409, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38596839

RESUMO

Schizophrenia (SCZ) is a complex neuropsychiatric disorder widely recognized for its impaired bioenergy utilization. The astrocyte-neuron lactate shuttle (ANLS) plays a critical role in brain energy supply. Recent studies have revealed abnormal lactate metabolism in SCZ, which is associated with mitochondrial dysfunction, tissue hypoxia, gastric acid retention, oxidative stress, neuroinflammation, abnormal brain iron metabolism, cerebral white matter hypermetabolic activity, and genetic susceptibility. Furthermore, astrocytes, neurons, and glutamate abnormalities are prevalent in SCZ with abnormal lactate metabolism, which are essential components for maintaining ANLS in the brain. Therefore, an in-depth study of the pathophysiological mechanisms of ANLS in SCZ with abnormal lactate metabolism will contribute to a better understanding of the pathogenesis of SCZ and provide new ideas and approaches for the diagnosis and treatment of SCZ.


Assuntos
Astrócitos , Ácido Láctico , Neurônios , Esquizofrenia , Astrócitos/metabolismo , Astrócitos/patologia , Humanos , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Neurônios/metabolismo , Neurônios/patologia , Ácido Láctico/metabolismo , Animais , Metabolismo Energético , Encéfalo/metabolismo , Encéfalo/patologia
15.
Vet Med Sci ; 10(3): e1434, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38567942

RESUMO

BACKGROUND: No tick-borne pathogens (TBPs) causing haemolytic anaemia in cattle have been reported, except Theileria orientalis and complete blood count (CBC) profile is the only haematological parameter to determine the severity of regenerative haemolytic anaemia. OBJECTIVES: To identify the causative agents of TBP-induced haemolytic anaemia and determine haematological parameters that indicate haemolytic anaemia in grazing cattle. METHODS: Eighty-two Korean indigenous cattle (Hanwoo) were divided into two groups: grazing (n = 67) and indoor (n = 15) groups. CBC and serum biochemistry were performed. PCR was conducted using whole blood-extracted DNA to investigate the prevalence of TBPs. RESULTS: TBP-induced haemolytic anaemia was observed in the grazing group. In grazing cattle, co-infection (43.3%, 29/67) was most frequently detected, followed by T. orientalis (37.6%, 25/67) and Anaplasma phagocytophilum infections (1.5%, 1/67). In indoor cattle, only co-infection (20%, 3/15) was identified. Grazing cattle exhibited regenerative haemolytic anaemia with marked monocytosis, mild neutropenia, and thrombocytopenia. According to grazing frequency, the 1st-time grazing group had more severe anaemia than the 2nd-time grazing group. Elevations in indirect bilirubin and L-lactate due to haemolytic anaemia were identified, and correlations with the respective markers were determined in co-infected grazing cattle. CONCLUSIONS: Quantitative evaluation of haematocrit, mean corpuscular volume, and reticulocytes (markers of regenerative haemolytic anaemia in cattle) was performed for the first time. Our results show that, in addition to T. orientalis, A. phagocytophilum is strongly associated with anaemia. The correlation between haemolytic anaemia severity and haematological parameters (indirect bilirubin, reticulocytes, and L-lactate) was confirmed.


Assuntos
Anemia Hemolítica , Doenças dos Bovinos , Coinfecção , Theileriose , Carrapatos , Bovinos , Animais , Theileriose/epidemiologia , Doenças dos Bovinos/epidemiologia , Coinfecção/veterinária , Anemia Hemolítica/etiologia , Anemia Hemolítica/veterinária , Bilirrubina , Lactatos
16.
Biomedicines ; 12(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38672113

RESUMO

Growth differentiation factor 15 (GDF-15) is a stress-induced cytokine associated with acute and chronic inflammatory states. This prospective observational study aimed to investigate the prognostic roles of GDF-15 and routine clinical laboratory parameters in COVID-19 patients. Upon the admission of 95 adult hospitalized COVID-19 patients in Croatia, blood analysis was performed, and medical data were collected. The patients were categorized based on survival, ICU admission, and hospitalization duration. Logistic regression and ROC curve methods were employed for the statistical analysis. Logistic regression revealed two independent predictors of negative outcomes: CURB-65 score (OR = 2.55) and LDH (OR = 1.005); one predictor of ICU admission: LDH (OR = 1.004); and one predictor of prolonged hospitalization: the need for a high-flow nasal cannula (HFNC) upon admission (OR = 4.75). The ROC curve showed diagnostic indicators of negative outcomes: age, CURB-65 score, LDH, and GDF-15. The largest area under the curve (AUC = 0.767, specificity = 65.6, sensitivity = 83.9) was represented by GDF-15, with a cutoff value of 3528 pg/mL. For ICU admission, significant diagnostic indicators were LDH, CRP, and IL-6. Significant diagnostic indicators of prolonged hospitalization were CK, GGT, and oxygenation with an HFNC upon admission. This study reaffirms the significance of the commonly used laboratory parameters and clinical scores in evaluating COVID-19. Additionally, it introduces the potential for a new diagnostic approach and research concerning GDF-15 levels in this widespread disease.

17.
Anal Chim Acta ; 1303: 342523, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609265

RESUMO

BACKGROUND: l-lactate detection is important for not only assessing exercise intensity, optimizing training regimens, and identifying the lactate threshold in athletes, but also for diagnosing conditions like L-lactateosis, monitoring tissue hypoxia, and guiding critical care decisions. Moreover, l-lactate has been utilized as a biomarker to represent the state of human health. However, the sensitivity of the present l-lactate detection technique is inadequate. RESULTS: Here, we reported a sensitive ratiometric fluorescent probe for l-lactate detection based on platinum octaethylporphyrin (PtOEP) doped semiconducting polymer dots (Pdots-Pt) with enzymatic cascade reaction. With the help of an enzyme cascade reaction, the l-lactate was continuously oxidized to pyruvic and then reduced back to l-lactate for the next cycle. During this process, oxygen and NADH were continuously consumed, which increased the red fluorescence of Pdots-Pt that responded to the changes of oxygen concentration and decreased the blue fluorescence of NADH at the same time. By comparing the fluorescence intensities at these two different wavelengths, the concentration of l-lactate was accurately measured. With the optimal conditions, the probes showed two linear detection ranges from 0.5 nM to 5.0 µM and 5.0 µM-50.0 µM for l-lactate detection. The limit of detection was calculated to be 0.18 nM by 3σ/slope method. Finally, the method shows good detection performance of l-lactate in both bovine serum and artificial serum samples, indicating its potential usage for the selective analysis of l-lactate for health monitoring and disease diagnosis. SIGNIFICANCE: The successful application of the sensing system in the complex biological sample (bovine serum and artificial serum samples) demonstrated that this method could be used for sensitive l-lactate detection in practical clinical applications. This detection system provided an extremely low detection limit, which was several orders of magnitude lower than methods proposed in other literatures.


Assuntos
Ácido Láctico , NAD , Humanos , Atletas , Compostos Orgânicos , Oxigênio , Polímeros
18.
Int J Parasitol ; 54(7): 367-378, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492780

RESUMO

Lactate dehydrogenase (LDH) from Schistosoma mansoni has peculiar properties for a eukaryotic LDH. Schistosomal LDH (SmLDH) isolated from schistosomes, and the recombinantly expressed protein, are strongly inhibited by ATP, which is neutralized by fructose-1,6-bisphosphate (FBP). In the conserved FBP/anion binding site we identified two residues in SmLDH (Val187 and Tyr190) that differ from the conserved residues in LDHs of other eukaryotes, but are identical to conserved residues in FBP-sensitive prokaryotic LDHs. Three-dimensional (3D) models were generated to compare the structure of SmLDH with other LDHs. These models indicated that residues Val187, and especially Tyr190, play a crucial role in the interaction of FBP with the anion pocket of SmLDH. These 3D models of SmLDH are also consistent with a competitive model of SmLDH inhibition in which ATP (inhibitor) and FBP (activator) compete for binding in a well-defined anion pocket. The model of bound ATP predicts a distortion of the nearby key catalytic residue His195, resulting in enzyme inhibition. To investigate a possible physiological role of this allosteric regulation of LDH in schistosomes we made a kinetic model in which the allosteric regulation of the glycolytic enzymes can be varied. The model showed that inhibition of LDH by ATP prevents fermentation to lactate in the free-living stages in water and ensures complete oxidation via the Krebs cycle of the endogenous glycogen reserves. This mechanism of allosteric inhibition by ATP prevents the untimely depletion of these glycogen reserves, the only fuel of the free-living cercariae. Neutralization by FBP of this ATP inhibition of LDH prevents accumulation of glycolytic intermediates when S. mansoni schistosomula are confronted with the sudden large increase in glucose availability upon penetration of the final host. It appears that the LDH of S. mansoni is special and well suited to deal with the variations in glucose availability the parasite encounters during its life cycle.


Assuntos
Trifosfato de Adenosina , L-Lactato Desidrogenase , Modelos Moleculares , Schistosoma mansoni , Schistosoma mansoni/enzimologia , Schistosoma mansoni/metabolismo , Animais , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/genética , Cinética , Trifosfato de Adenosina/metabolismo , Frutosedifosfatos/metabolismo , Camundongos , Sequência de Aminoácidos , Biomphalaria/parasitologia , Sítios de Ligação
19.
Molecules ; 29(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543032

RESUMO

Short-chain fatty acids (SCFA) and lactate in ruminal fluid are products resulting from the microbial fermentation of substrates and can be used to reflect the composition and activity of the ruminal microbiome. Determination of SCFA and D-/L-lactate in ruminal fluid currently requires two separate protocols, which is time-consuming and costly. In this study, we have optimised and validated a simple and unified 3-nitrophenylhydrazine (3-NPH) derivatisation protocol and a 20 min chiral-LC-MS method for the simultaneous quantification of all SCFA and D- and L-lactate in ruminal fluid. This method, which requires no sample pretreatment or purification shows adequate sensitivity (limit of detection (LOD): 0.01 µg/mL), satisfactory accuracy (recovery: 88-103%), and excellent reproducibility (relative standard deviation (RSD) for repeated analyses < 3% for most analytes). The application of this method to a cohort of 24 animals allowed us to reveal a large inter-cow variation in ruminal SCFA and lactate level, the concentration range for each species, the widespread correlation between different SCFA, and the strong correlation between D- and L-lactate.


Assuntos
Lactação , Leite , Humanos , Animais , Feminino , Bovinos , Leite/química , Dieta/veterinária , Cromatografia Líquida , Espectrometria de Massa com Cromatografia Líquida , Reprodutibilidade dos Testes , Rúmen/metabolismo , Espectrometria de Massas em Tandem , Ácidos Graxos Voláteis/metabolismo , Fermentação , Ácido Láctico/metabolismo , Ração Animal/análise , Compostos Orgânicos/análise , Ácidos Graxos/análise
20.
J Biotechnol ; 382: 88-96, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38280467

RESUMO

l-Lactate oxidase has important applications in biosensing and finds increased use in biocatalysis. The enzyme has been characterized well, yet its immobilization has not been explored in depth. Here, we studied immobilization of Aerococcus viridansl-lactate oxidase on porous carriers of variable matrix material (polymethacrylate, polyurethane, agarose) and surface functional group (amine, Ni2+-loaded nitrilotriacetic acid (NiNTA), epoxide). Carrier activity (Ac) and immobilized enzyme effectiveness (ɳ) were evaluated in dependence of protein loading. Results show that efficient immobilization (Ac: up to 1450 U/g carrier; ɳ: up to 65%) requires a hydrophilic carrier (agarose) equipped with amine groups. The value of ɳ declines sharply as Ac increases, probably due to transition into diffusional regime. Untagged l-lactate oxidase binds to NiNTA carrier similarly as N-terminally His-tagged enzyme. Lixiviation studies reveal quasi-irreversible enzyme adsorption on NiNTA carrier while partial release of activity (≤ 25%) is shown from amine carrier. The desorbed enzyme exhibits the same specific activity as the original l-lactate oxidase. Collectively, our study identifies basic requirements of l-lactate oxidase immobilization on solid carrier and highlights the role of ionic interactions in enzyme-surface adsorption.


Assuntos
Aerococcus , Aerococcus/metabolismo , Sefarose , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Enzimas Imobilizadas/metabolismo , Aminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA