Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Gynecol Oncol ; 189: 9-15, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972089

RESUMO

OBJECTIVE: To assess the risk stratification of clinicopathologically and molecularly classified endometrial cancer based on estrogen receptor (ER) and L1 cell adhesion molecule (L1CAM) expression. METHODS: This was a retrospective study of patients who underwent primary treatment at a single tertiary center. Carcinomas were classified into 5 clinicopathological risk groups, as per European guidelines. Immunohistochemistry and polymerase-ϵ sequencing were conducted for molecular classification and determination of ER and L1CAM expression. RESULTS: Data from 1044 patients were analyzed. The median follow-up was 67.5 months. In univariable analyses, ER expression correlated with improved disease-specific survival (DSS) in the "no specific molecular profile" (NSMP) (P < 0.001) and mismatch repair deficient (MMRd) (P = 0.002) subgroups. Negative L1CAM expression was associated with enhanced DSS in the NSMP subgroup alone (P < 0.001). ER (hazard ratio [HR] 0.18), but not L1CAM, exhibited prognostic significance within NSMP when controlling for parameters available at the time of diagnosis (tumor histotype, grade, age). ER and L1CAM were not independently associated with DSS within NSMP when controlling for parameters available after surgery (clinicopathological risk groups, age, adjuvant therapy). However, in high-risk-advanced-metastatic cases, both ER (HR 0.26) and L1CAM (HR 3.9) independently correlated with DSS. Similarly, within MMRd, ER was associated with improved DSS in high-risk-advanced-metastatic carcinomas (HR 0.42). CONCLUSION: The prognostic significance of ER and L1CAM varies across clinicopathological risk groups and molecular subgroups of endometrial cancer. Notably, risk assessment for high-risk-advanced-metastatic NSMP and MMRd subtype carcinomas can be refined by ER status.

2.
J Extracell Vesicles ; 13(6): e12459, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38868956

RESUMO

Isolation of neuron-derived extracellular vesicles (NDEVs) with L1 Cell Adhesion Molecule (L1CAM)-specific antibodies has been widely used to identify blood biomarkers of CNS disorders. However, full methodological validation requires demonstration of L1CAM in individual NDEVs and lower levels or absence of L1CAM in individual EVs from other cells. Here, we used multiple single-EV techniques to establish the neuronal origin and determine the abundance of L1CAM-positive EVs in human blood. L1CAM epitopes of the ectodomain are shown to be co-expressed on single-EVs with the neuronal proteins ß-III-tubulin, GAP43, and VAMP2, the levels of which increase in parallel with the enrichment of L1CAM-positive EVs. Levels of L1CAM-positive EVs carrying the neuronal proteins VAMP2 and ß-III-tubulin range from 30% to 63%, in contrast to 0.8%-3.9% of L1CAM-negative EVs. Plasma fluid-phase L1CAM does not bind to single-EVs. Our findings support the use of L1CAM as a target for isolating plasma NDEVs and leveraging their cargo to identify biomarkers reflecting neuronal function.


Assuntos
Biomarcadores , Vesículas Extracelulares , Molécula L1 de Adesão de Célula Nervosa , Neurônios , Proteína 2 Associada à Membrana da Vesícula , Humanos , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo , Biomarcadores/sangue , Neurônios/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Tubulina (Proteína)/metabolismo
3.
J Extracell Vesicles ; 13(6): e12467, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898558

RESUMO

Extracellular vesicles (EVs) carry disease-specific molecular profiles, demonstrating massive potential in biomarker discovery. In this study, we developed an integrated biochip platform, termed EVID-biochip (EVs identification and detection biochip), which integrates in situ electrochemical protein detection with on-chip antifouling-immunomagnetic beads modified with CD81 antibodies and zwitterion molecules, enabling efficient isolation and detection of neuronal EVs. The capability of the EVID-biochip to isolate common EVs and detect neuronal EVs associated with Parkinson's disease in human serum is successfully demonstrated, using the transmembrane protein L1-cell adhesion molecule (L1CAM) as a target biomarker. The EVID-biochip exhibited high efficiency and specificity for the detection of L1CAM with a sensitivity of 1 pg/mL. Based on the validation of 76 human serum samples, for the first time, this study discovered that the level of L1CAM/neuronal EV particles in serum could serve as a reliable indicator to distinguish Parkinson's disease from control groups with AUC = 0.973. EVID-biochip represents a reliable and rapid liquid biopsy platform for the analysis of complex biofluids offering EVs isolation and detection in a single chip, requiring a small sample volume (300 µL) and an assay time of 1.5 h. This approach has the potential to advance the diagnosis and biomarker discovery of various neurological disorders and other diseases.


Assuntos
Biomarcadores , Vesículas Extracelulares , Molécula L1 de Adesão de Célula Nervosa , Doença de Parkinson , Doença de Parkinson/metabolismo , Doença de Parkinson/sangue , Doença de Parkinson/diagnóstico , Humanos , Vesículas Extracelulares/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Biomarcadores/sangue , Masculino , Feminino , Biópsia Líquida/métodos , Idoso , Pessoa de Meia-Idade
4.
Mod Pathol ; 37(8): 100540, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901674

RESUMO

Nephrogenic adenoma (NA) is a benign, reactive lesion seen predominantly in the urinary bladder and often associated with antecedent inflammation, instrumentation, or an operative history. Its histopathologic diversity can create diagnostic dilemmas and pathologists use morphologic evaluation along with available immunohistochemical (IHC) markers to navigate these challenges. IHC assays currently do not designate or specify NA's potential putative cell of origin. Leveraging single-cell RNA-sequencing technology, we nominated a principal (P) cell-collecting duct marker, L1 cell adhesion molecule (L1CAM), as a potential biomarker for NA. IHC characterization revealed L1CAM to be positive in all 35 (100%) patient samples of NA; negative expression was seen in the benign urothelium, benign prostatic glands, urothelial carcinoma (UCA) in situ, prostatic adenocarcinoma, majority of high-grade UCA, and metastatic UCA. In the study, we also used single-cell RNA sequencing to nominate a novel compendium of biomarkers specific for the proximal tubule, loop of Henle, and distal tubule (DT) (including P and intercalated cells), which can be used to perform nephronal mapping using RNA in situ hybridization and IHC technology. Employing this technique on NA we found enrichment of both the P-cell marker L1CAM and, the proximal tubule type-A and -B cell markers, PDZKI1P1 and PIGR, respectively. The cell-type markers for the intercalated cell of DTs (LINC01187 and FOXI1), and the loop of Henle (UMOD and IRX5), were found to be uniformly absent in NA. Overall, our findings show that based on cell type-specific implications of L1CAM expression, the shared expression pattern of L1CAM between DT P cells and NA. L1CAM expression will be of potential value in assisting surgical pathologists toward a diagnosis of NA in challenging patient samples.

5.
Drug Resist Updat ; 76: 101096, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38924996

RESUMO

Krüppel-like factor 12 (KLF12) has been characterized as a transcriptional repressor, and previous studies have unveiled its roles in angiogenesis, neural tube defect, and natural killer (NK) cell proliferation. However, the contribution of KLF12 to cancer treatment remains undefined. Here, we show that KLF12 is downregulated in various cancer types, and KLF12 downregulation promotes cisplatin resistance and cancer metastasis in esophageal squamous cell carcinoma (ESCC). Mechanistically, KLF12 binds to the promoters of L1 Cell Adhesion Molecule (L1CAM) and represses its expression. Depletion of L1CAM abrogates cisplatin resistance and cancer metastasis caused by KLF12 loss. Moreover, the E3 ubiquitin ligase tripartite motif-containing 27 (TRIM27) binds to the N-terminal region of KLF12 and ubiquitinates KLF12 at K326 via K33-linked polyubiquitination. Notably, TRIM27 depletion enhances the transcriptional activity of KLF12 and consequently inhibits L1CAM expression. Overall, our study elucidated a novel regulatory mechanism involving TRIM27, KLF12 and L1CAM, which plays a substantial role in cisplatin resistance and cancer metastasis in ESCC. Targeting these genes could be a promising approach for ESCC treatment.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like , Molécula L1 de Adesão de Célula Nervosa , Humanos , Cisplatino/farmacologia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Molécula L1 de Adesão de Célula Nervosa/genética , Linhagem Celular Tumoral , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Metástase Neoplásica , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/efeitos dos fármacos , Camundongos , Proliferação de Células/efeitos dos fármacos , Proteínas com Motivo Tripartido , Proteínas de Ligação a DNA , Proteínas Nucleares
6.
Brain Res ; 1841: 149087, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38871241

RESUMO

Three-needle electroacupuncture (TNEA) has shown promise as a non-pharmacological treatment for post-stroke depression (PSD). However, the underlying mechanisms of its therapeutic effects remain unclear. In this study, we investigated the potential molecular and synaptic mechanisms by which TNEA ameliorates depressive-like behaviors in a mouse model of PSD. Male C57BL/6 mice were subjected to middle cerebral artery occlusion (MCAO) to induce PSD and subsequently treated with TNEA for three weeks at specific acupoints (GV24 and bilateral GB13). Through a combination of behavioral tests, neuronal activation assessment, synaptic function examination, transcriptomic analysis, and various molecular techniques, we found that TNEA treatment significantly improved anxiety and depressive-like behaviors in PSD mice. These improvements were accompanied by enhanced neuronal activation in the medial prefrontal cortex (mPFC) and primary somatosensory cortex (PSC), as well as the promotion of excitatory synapse formation and transmission function in the mPFC. Transcriptomic analysis revealed that TNEA upregulated the expression of Netrin-G Ligand-3 (NGL-3), a postsynaptic cell adhesion molecule, in the mPFC. Further investigation showed that the extracellular domain of NGL-3 binds to the presynaptic protein L1cam, promoting the formation of Vesicular Glutamate Transporter 1 (vGluT1) puncta on neuronal dendrites. Notably, cortical neuron-specific knockout of NGL-3 abolished the antidepressant-like effects of TNEA in PSD mice, confirming the crucial role of the NGL-3/L1cam pathway in mediating the therapeutic effects of TNEA. These findings provide novel insights into the molecular and synaptic mechanisms underlying the therapeutic effects of acupuncture in the treatment of PSD and highlight the potential of targeting the NGL-3/L1cam pathway for the development of alternative interventions for PSD and other depressive disorders.


Assuntos
Depressão , Modelos Animais de Doenças , Eletroacupuntura , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral , Sinapses , Animais , Eletroacupuntura/métodos , Masculino , Depressão/terapia , Depressão/etiologia , Depressão/metabolismo , Camundongos , Sinapses/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Córtex Pré-Frontal/metabolismo , Transdução de Sinais/fisiologia
7.
Cell Calcium ; 121: 102894, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38728789

RESUMO

TRPV2 voltage-insensitive, calcium-permeable ion channels play important roles in cancer progression, immune response, and neuronal development. Despite TRPV2's physiological impact, underlying endogenous proteins mediating TRPV2 responses and affected signaling pathways remain elusive. Using quantitative peroxidase-catalyzed (APEX2) proximity proteomics we uncover dynamic changes in the TRPV2-proximal proteome and identify calcium signaling and cell adhesion factors recruited to the molecular channel neighborhood in response to activation. Quantitative TRPV2 proximity proteomics further revealed activation-induced enrichment of protein clusters with biological functions in neural and cellular projection. We demonstrate a functional connection between TRPV2 and the neural immunoglobulin cell adhesion molecules NCAM and L1CAM. NCAM and L1CAM stimulation robustly induces TRPV2 [Ca2+]I flux in neuronal PC12 cells and this TRPV2-specific [Ca2+]I flux requires activation of the protein kinase PKCα. TRPV2 expression directly impacts neurite lengths that are modulated by NCAM or L1CAM stimulation. Hence, TRPV2's calcium signaling plays a previously undescribed, yet vital role in cell adhesion, and TRPV2 calcium flux and neurite development are intricately linked via NCAM and L1CAM cell adhesion proteins.


Assuntos
Cálcio , Molécula L1 de Adesão de Célula Nervosa , Moléculas de Adesão de Célula Nervosa , Crescimento Neuronal , Proteoma , Canais de Cátion TRPV , Animais , Humanos , Ratos , Cálcio/metabolismo , Sinalização do Cálcio , Adesão Celular , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neuritos/metabolismo , Células PC12 , Proteína Quinase C-alfa/metabolismo , Proteoma/metabolismo , Canais de Cátion TRPV/metabolismo , Antígeno CD56/metabolismo
8.
Cell Biochem Funct ; 42(4): e4034, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38715189

RESUMO

L1 syndrome, a neurological disorder with an X-linked inheritance pattern, mainly results from mutations occurring in the L1 cell adhesion molecule (L1CAM) gene. The L1CAM molecule, belonging to the immunoglobulin (Ig) superfamily of neurocyte adhesion molecules, plays a pivotal role in facilitating intercellular signal transmission across membranes and is indispensable for proper neuronal development and function. This study identified a rare missense variant (c.1759G>C; p.G587R) in the L1CAM gene within a male fetus presenting with hydrocephalus. Due to a lack of functional analysis, the significance of the L1CAM mutation c.1759G>C (p.G587R) remains unknown. We aimed to perform further verification for its pathogenicity. Blood samples were obtained from the proband and his parents for trio clinical exome sequencing and mutation analysis. Expression level analysis was conducted using western blot techniques. Immunofluorescence was employed to investigate L1CAM subcellular localization, while cell aggregation and cell scratch assays were utilized to assess protein function. The study showed that the mutation (c.1759G>C; p.G587R) affected posttranslational glycosylation modification and induced alterations in the subcellular localization of L1-G587R in the cells. It resulted in the diminished expression of L1CAM on the cell surface and accumulation in the endoplasmic reticulum. The p.G587R altered the function of L1CAM protein and reduced homophilic adhesion capacity of proteins, leading to impaired adhesion and migration of proteins between cells. Our findings provide first biological evidence for the association between the missense mutation (c.1759G>c; p.G587R) in the L1CAM gene and L1 syndrome, confirming the pathogenicity of this missense mutation.


Assuntos
Mutação de Sentido Incorreto , Molécula L1 de Adesão de Célula Nervosa , Humanos , Masculino , Células HEK293 , Hidrocefalia/genética , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Molécula L1 de Adesão de Célula Nervosa/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Linhagem , Recém-Nascido
9.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732030

RESUMO

Melanoma, the deadliest type of skin cancer, has a high propensity to metastasize to other organs, including the brain, lymph nodes, lungs, and bones. While progress has been made in managing melanoma with targeted and immune therapies, many patients do not benefit from these current treatment modalities. Tumor cell migration is the initial step for invasion and metastasis. A better understanding of the molecular mechanisms underlying metastasis is crucial for developing therapeutic strategies for metastatic diseases, including melanoma. The cell adhesion molecule L1CAM (CD171, in short L1) is upregulated in many human cancers, enhancing tumor cell migration. Earlier studies showed that the small-molecule antagonistic mimetics of L1 suppress glioblastoma cell migration in vitro. This study aims to evaluate if L1 mimetic antagonists can inhibit melanoma cell migration in vitro and in vivo. We showed that two antagonistic mimetics of L1, anagrelide and 2-hydroxy-5-fluoropyrimidine (2H5F), reduced melanoma cell migration in vitro. In in vivo allograft studies, only 2H5F-treated female mice showed a decrease in tumor volume.


Assuntos
Movimento Celular , Melanoma , Molécula L1 de Adesão de Célula Nervosa , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico
10.
Biomolecules ; 14(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38672483

RESUMO

The X-chromosome-linked cell adhesion molecule L1 (L1CAM), a glycoprotein mainly expressed by neurons in the central and peripheral nervous systems, has been implicated in many neural processes, including neuronal migration and survival, neuritogenesis, synapse formation, synaptic plasticity and regeneration. L1 consists of extracellular, transmembrane and cytoplasmic domains. Proteolytic cleavage of L1's extracellular and transmembrane domains by different proteases generates several L1 fragments with different functions. We found that myelin basic protein (MBP) cleaves L1's extracellular domain, leading to enhanced neuritogenesis and neuronal survival in vitro. To investigate in vivo the importance of the MBP-generated 70 kDa fragment (L1-70), we generated mice with an arginine to alanine substitution at position 687 (L1/687), thereby disrupting L1's MBP cleavage site and obliterating L1-70. Young adult L1/687 males showed normal anxiety and circadian rhythm activities but enhanced locomotion, while females showed altered social interactions. Older L1/687 males were impaired in motor coordination. Furthermore, L1/687 male and female mice had a larger hippocampus, with more neurons in the dentate gyrus and more proliferating cells in the subgranular layer, while the thickness of the corpus callosum and the size of lateral ventricles were normal. In summary, subtle mutant morphological changes result in subtle behavioral changes.


Assuntos
Encéfalo , Molécula L1 de Adesão de Célula Nervosa , Animais , Molécula L1 de Adesão de Célula Nervosa/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Camundongos , Masculino , Feminino , Encéfalo/metabolismo , Fibronectinas/metabolismo , Fibronectinas/genética , Mutação , Comportamento Animal , Domínios Proteicos , Neurônios/metabolismo , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL
11.
Biomed Pharmacother ; 174: 116565, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38603888

RESUMO

Neural cell adhesion molecule L1 (L1CAM) is a cell-surface glycoprotein involved in cancer occurrence and migration. Up to today, L1CAM-targeted therapy appeared limited efficacy in clinical trials although quite a few attempts by monoclonal antibody (mAb) or chimeric antigen receptor T-cell therapy (CAR-T) have been reported. Therefore, the development of new effective therapies targeting L1CAM is highly desirable. It has been demonstrated that T cell-engaging bispecific antibody (TCE) plays an effective role in cancer immunotherapy by redirecting the cytotoxic activity of CD3+ T cells to tumor cells, resulting in tumor cell death. In this study, we designed and characterized a novel bispecific antibody (CE7-TCE) based on the IgG-(L)-ScFv format, which targets L1CAM and CD3 simultaneously. In vitro, CE7-TCE induced specific killing of L1CAM-positive tumor cells through T cells. In vivo, CE7-TCE inhibited tumor growth in human peripheral blood mononuclear cell/tumor cell co-grafting models. To overcome the adaptive immune resistance (AIR) that impairs the efficacy of TCEs, we conducted a combination therapy of CE7-TCE with Pembrolizumab (anti-PD1 mAb), which enhanced the anti-tumor activity of CE7-TCE. Our results confirmed the feasibility of using L1CAM as a TCE target for the treatment of solid tumors and revealed the therapeutic potential of CE7-TCE combined with immune checkpoint inhibitors.


Assuntos
Anticorpos Biespecíficos , Molécula L1 de Adesão de Célula Nervosa , Linfócitos T , Animais , Feminino , Humanos , Camundongos , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/imunologia , Antineoplásicos Imunológicos/farmacologia , Complexo CD3/imunologia , Linhagem Celular Tumoral , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Molécula L1 de Adesão de Célula Nervosa/imunologia , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cureus ; 16(2): e55142, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38558627

RESUMO

We present the case of a 35-year-old pregnant woman who visited our department for a routine ultrasonography screening scan for fetus anatomy during the 22nd week of gestation. Our report revealed a male fetus with marked hydrocephalus and severe intrauterine growth retardation. After extensive counseling, the couple decided to proceed with an invasive diagnosis via amniocentesis. The cytogenetic analysis showed findings related to clinical history and ultrasound findings related to the presence of a nucleotide change in c.578T>C with an amino acid change in p.Leu198Pro of the L1CAM gene. The result was reported as a hemizygote missense L1CAM gene variant of unknown significance. After extensive parental counseling, the couple decided on pregnancy termination. We report the present case of L1CAM mutation in p.Leu198Pro to add to the limited knowledge regarding the clinical presentation of mutations of the L1CAM gene with emphasis on prenatal diagnosis.

13.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612641

RESUMO

Long COVID (LongC) is associated with a myriad of symptoms including cognitive impairment. We reported at the beginning of the COVID-19 pandemic that neuronal-enriched or L1CAM+ extracellular vesicles (nEVs) from people with LongC contained proteins associated with Alzheimer's disease (AD). Since that time, a subset of people with prior COVID infection continue to report neurological problems more than three months after infection. Blood markers to better characterize LongC are elusive. To further identify neuronal proteins associated with LongC, we maximized the number of nEVs isolated from plasma by developing a hybrid EV Microfluidic Affinity Purification (EV-MAP) technique. We isolated nEVs from people with LongC and neurological complaints, AD, and HIV infection with mild cognitive impairment. Using the OLINK platform that assesses 384 neurological proteins, we identified 11 significant proteins increased in LongC and 2 decreased (BST1, GGT1). Fourteen proteins were increased in AD and forty proteins associated with HIV cognitive impairment were elevated with one decreased (IVD). One common protein (BST1) was decreased in LongC and increased in HIV. Six proteins (MIF, ENO1, MESD, NUDT5, TNFSF14 and FYB1) were expressed in both LongC and AD and no proteins were common to HIV and AD. This study begins to identify differences and similarities in the neuronal response to LongC versus AD and HIV infection.


Assuntos
Doença de Alzheimer , COVID-19 , Vesículas Extracelulares , Infecções por HIV , Humanos , Síndrome de COVID-19 Pós-Aguda , Microfluídica , Pandemias
14.
Brain Dev ; 46(6): 230-233, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38480026

RESUMO

BACKGROUND: Heterozygous L1CAM variants cause L1 syndrome with hydrocephalus and aplasia/hypoplasia of the corpus callosum. L1 syndrome usually has an X-linked recessive inheritance pattern; however, we report a rare case occurring in a female child. CASE PRESENTATION: The patient's family history was unremarkable. Fetal ultrasonography revealed enlarged bilateral ventricles of the brain and hypoplasia of the corpus callosum. The patient was born at 38 weeks and 4 days of gestation. Brain MRI performed on the 8th day of life revealed enlargement of the brain ventricles, marked in the lateral and third ventricles with irregular margins, and hypoplasia of the corpus callosum. Exome sequencing at the age of 2 years and 3 months revealed a de novo heterozygous L1CAM variant (NM_000425.5: c.2934_2935delp. (His978Glnfs * 25). X-chromosome inactivation using the human androgen receptor assay revealed that the pattern of X-chromosome inactivation in the patients was highly skewed (96.6 %). The patient is now 4 years and 11 months old and has a mild developmental delay (developmental quotient, 56) without significant progression of hydrocephalus. CONCLUSION: In this case, we hypothesized that the dominant expression of the variant allele arising from skewed X inactivation likely caused L1 syndrome. Symptomatic female carriers may challenge the current policies of prenatal and preimplantation diagnoses.


Assuntos
Hidrocefalia , Molécula L1 de Adesão de Célula Nervosa , Inativação do Cromossomo X , Humanos , Feminino , Inativação do Cromossomo X/genética , Molécula L1 de Adesão de Célula Nervosa/genética , Hidrocefalia/genética , Hidrocefalia/diagnóstico por imagem , Pré-Escolar , Agenesia do Corpo Caloso/genética
15.
Mod Pathol ; 37(5): 100467, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460672

RESUMO

Renal low-grade oncocytic tumor (LOT) is a recently recognized renal cell neoplasm designated within the "other oncocytic tumors" category in the 2022 World Health Organization classification system. Although the clinicopathologic, immunohistochemical, and molecular features reported for LOT have been largely consistent, the data are relatively limited. The morphologic overlap between LOT and other low-grade oncocytic neoplasms, particularly eosinophilic chromophobe renal cell carcinoma (E-chRCC), remains a controversial area in renal tumor classification. To address this uncertainty, we characterized and compared large cohorts of LOT (n = 67) and E-chRCC (n = 69) and revealed notable differences between the 2 entities. Clinically, LOT predominantly affected women, whereas E-chRCC showed a male predilection. Histologically, although almost all LOTs were dominated by a small-nested pattern, E-chRCC mainly showed solid and tubular architectures. Molecular analysis revealed that 87% of LOT cases harbored mutations in the tuberous sclerosis complex (TSC)-mTOR complex 1 (mTORC1) pathway, most frequently in MTOR and RHEB genes; a subset of LOT cases had chromosomal 7 and 19q gains. In contrast, E-chRCC lacked mTORC1 mutations, and 60% of cases displayed chromosomal losses characteristic of chRCC. We also explored the cell of origin for LOT and identified L1 cell adhesion molecule (L1CAM), a collecting duct and connecting tubule principal cell marker, as a highly sensitive and specific ancillary test for differentiating LOT from E-chRCC. This distinctive L1CAM immunohistochemical labeling suggests the principal cells as the cell of origin for LOT, unlike the intercalated cell origin of E-chRCC and oncocytoma. The ultrastructural analysis of LOT showed normal-appearing mitochondria and intracytoplasmic lumina with microvilli, different from what has been described for chRCC. Our study further supports LOT as a unique entity with a benign clinical course. Based on the likely cell of origin and its clinicopathologic characteristics, we propose that changing the nomenclature of LOT to "Oncocytic Principal Cell Adenoma of the Kidney" may be a better way to define and describe this entity.


Assuntos
Adenoma Oxífilo , Biomarcadores Tumorais , Carcinoma de Células Renais , Neoplasias Renais , Molécula L1 de Adesão de Célula Nervosa , Humanos , Neoplasias Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/química , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/química , Feminino , Masculino , Pessoa de Meia-Idade , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Molécula L1 de Adesão de Célula Nervosa/genética , Molécula L1 de Adesão de Célula Nervosa/análise , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Idoso , Adulto , Adenoma Oxífilo/patologia , Adenoma Oxífilo/genética , Diagnóstico Diferencial , Idoso de 80 Anos ou mais , Imuno-Histoquímica , Gradação de Tumores , Mutação
16.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542381

RESUMO

Alzheimer's disease (AD) is the most common progressive neurodegenerative disease. The accumulation of amyloid-beta (Aß) plaques is a distinctive pathological feature of AD patients. The aims of this study were to evaluate the therapeutic effect of chicoric acid (CA) on AD models and to explore its underlying mechanisms. APPswe/Ind SH-SY5Y cells and 5xFAD mice were treated with CA. Soluble Aß1-42 and Aß plaque levels were analyzed by ELISA and immunohistochemistry, respectively. Transcriptome sequencing was used to compare the changes in hippocampal gene expression profiles among the 5xFAD mouse groups. The specific gene expression levels were quantified by qRT-PCR and Western blot analysis. It was found that CA treatment reduced the Aß1-42 levels in the APPswe/Ind cells and 5xFAD mice. It also reduced the Aß plaque levels as well as the APP and BACE1 levels. Transcriptome analysis showed that CA affected the synaptic-plasticity-related genes in the 5xFAD mice. The levels of L1CAM, PSD-95 and synaptophysin were increased in the APPswe/Ind SH-SY5Y cells and 5xFAD mice treated with CA, which could be inhibited by administering siRNA-L1CAM to the CA-treated APPswe/Ind SH-SY5Y cells. In summary, CA reduced Aß levels and increased the expression levels of synaptic-function-related markers via L1CAM in AD models.


Assuntos
Doença de Alzheimer , Ácidos Cafeicos , Molécula L1 de Adesão de Célula Nervosa , Neuroblastoma , Doenças Neurodegenerativas , Succinatos , Humanos , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Ácido Aspártico Endopeptidases/metabolismo , Peptídeos beta-Amiloides/metabolismo
17.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474289

RESUMO

The L1 cell adhesion molecule (L1) has demonstrated a range of beneficial effects in animal models of spinal cord injury, neurodegenerative disease, and ischemia; however, the role of L1 in TBI has not been fully examined. Mutations in the L1 gene affecting the extracellular domain of this type 1 transmembrane glycoprotein have been identified in patients with L1 syndrome. These patients suffer from hydrocephalus, MASA (mental retardation, adducted thumbs, shuffling gait, aphasia) symptoms, and corpus callosum agenesis. Clinicians have observed that recovery post-traumatic brain injury (TBI) varies among the population. This variability may be explained by the genetic differences present in the general population. In this study, we utilized a novel mouse model of L1 syndrome with a mutation at aspartic acid position 201 in the extracellular domain of L1 (L1-201). We assessed the impact of this specific single nucleotide polymorphism (SNP) localized to the X-chromosome L1 gene on recovery outcomes following TBI by comparing the L1-201 mouse mutants with their wild-type littermates. We demonstrate that male L1-201 mice exhibit significantly worse learning and memory outcomes in the Morris water maze after lateral fluid percussion (LFP) injury compared to male wild-type mice and a trend to worse motor function on the rotarod. However, no significant changes were observed in markers for inflammatory responses or apoptosis after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Doenças Genéticas Ligadas ao Cromossomo X , Hidrocefalia , Deficiência Intelectual , Molécula L1 de Adesão de Célula Nervosa , Doenças Neurodegenerativas , Paraplegia Espástica Hereditária , Humanos , Masculino , Animais , Camundongos , Molécula L1 de Adesão de Célula Nervosa/genética , Polimorfismo de Nucleotídeo Único , Hidrocefalia/genética
18.
Gynecol Oncol ; 184: 132-138, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38309030

RESUMO

OBJECTIVE: We investigate the prognostic role of ß-catenin and L1 neuronal cell-adhesion molecule (L1CAM) according to risk groups in endometrial carcinomas (EC). METHODS: A total of 335 EC patients were classified according to the Proactive Molecular Risk Classifier for Endometrial Cancer. We evaluated the expression of ß-catenin and L1CAM using immunohistochemistry, and their association with clinicopathological characteristics and survival. RESULTS: The expressions of ß-catenin and L1CAM were observed in 10.4% of all patients, respectively, and showed mutually exclusive pattern. While ß-catenin expression was associated with endometrioid histology (p = 0.035) and low tumor grade (p = 0.045), L1CAM expression was associated with non-endometrioid histology (p < 0.001), high tumor grade (p < 0.001), lymphovascular space invasion (p = 0.006), and advanced International Federation of Gynecology and Obstetrics (FIGO) stage (p = 0.001). ß-catenin expression was most frequent in the no specific molecular (NSMP) group (26/35, 74.3%), followed by the DNA polymerase-ε-mutated (POLE-mut) (6/35, 17.1%), and mismatch repair-deficiency (dMMR) (3/35, 8.6%). L1CAM expression was most frequent in the p53-abnormal group (22/35, 62.9%), followed by the NSMP (6/35, 17.1%), dMMR (4/35, 11.4%), and POLE-mut (3/35, 8.6%). Although both markers did not show statistical significance in multivariate analysis for both progression-free survival (PFS) and overall survival in entire cohort, ß-catenin positivity was identified as the sole factor associated with worse PFS in the high-intermediate risk subgroup (p = 0.001). CONCLUSION: The expression of nuclear ß-catenin may serve as a potential biomarker for predicting recurrence and guiding therapeutic strategies in high-intermediate risk EC patients.


Assuntos
Neoplasias do Endométrio , Molécula L1 de Adesão de Célula Nervosa , beta Catenina , Humanos , Feminino , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Molécula L1 de Adesão de Célula Nervosa/biossíntese , Molécula L1 de Adesão de Célula Nervosa/genética , beta Catenina/metabolismo , beta Catenina/biossíntese , beta Catenina/genética , Pessoa de Meia-Idade , Idoso , Prognóstico , Adulto , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Idoso de 80 Anos ou mais , Carcinoma Endometrioide/patologia , Carcinoma Endometrioide/metabolismo , Carcinoma Endometrioide/genética , Gradação de Tumores , Estadiamento de Neoplasias
19.
J Cell Sci ; 137(3)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38206094

RESUMO

During early postnatal brain development, the formation of proper synaptic connections between neurons is crucial for the development of functional neural networks. Recent studies have established the involvement of protease-mediated modulations of extracellular components in both synapse formation and elimination. The secretory serine protease neuropsin (also known as kallikrein-8) cleaves a few transmembrane or extracellular matrix proteins in a neural activity-dependent manner and regulates neural plasticity. However, neuropsin-dependent proteolysis of extracellular components and the involvement of these components in mouse brain development are poorly understood. We have observed that during hippocampus development, expression of neuropsin and levels of full-length or cleaved fragments of the neuropsin substrate protein L1 cell adhesion molecule (L1CAM) positively correlate with synaptogenesis. Our subcellular fractionation studies show that the expression of neuropsin and its proteolytic activity on L1CAM are enriched at developing hippocampal synapses. Activation of neuropsin expression upregulates the transcription and cleavage of L1CAM. Furthermore, blocking of neuropsin activity, as well as knockdown of L1CAM expression, significantly downregulates in vitro hippocampal synaptogenesis. Taken together, these findings provide evidence for the involvement of neuropsin activity-dependent regulation of L1CAM expression and cleavage in hippocampal synaptogenesis.


Assuntos
Calicreínas , Molécula L1 de Adesão de Célula Nervosa , Animais , Camundongos , Hipocampo/metabolismo , Calicreínas/metabolismo , Molécula L1 de Adesão de Célula Nervosa/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Plasticidade Neuronal/fisiologia , Serina Proteases/metabolismo
20.
Arch Gynecol Obstet ; 309(3): 789-799, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37454351

RESUMO

INTRODUCTION: Molecular and genomic profiling in endometrial cancer is increasing popularity. L1 cell adhesion molecule (L1CAM) is frequently mutated in endometrial cancer. In this paper, we aim to evaluate the prognostic role of L1CAM in patients with stage I endometrial cancer. METHODS: We performed a systematic review and meta-analysis searching in PubMed (MEDLINE), EMBASE, and Web of Science database to identify studies reporting the expression of L1CAM in endometrial cancer. The primary endpoint measure was to assess and evaluate the impact of L1CAM on survival outcomes. This study was performed according to the Preferred Reporting Items for Systematic review and Meta-Analysis Protocols (PRISMA-P) statement. RESULTS: Five studies were included. The pooled results suggested that L1CAM expression influences survival outcomes in stage I endometrial cancer. High L1CAM expression correlated with worse disease-free survival (HR 4.11, 95% CI 1.02-16.59, p = 0.047) and overall survival (HR 3.62, 95% CI 1.32-9.31, p = 0.012). High L1CAM level was also associated with a more aggressive FIGO grade and with older age. CONCLUSION: This systematic review supported that L1CAM have a prognostic role in stage I endometrial cancer, thus providing a potential useful tool for tailoring the need of adjuvant therapy.


Assuntos
Neoplasias do Endométrio , Molécula L1 de Adesão de Célula Nervosa , Feminino , Humanos , Molécula L1 de Adesão de Célula Nervosa/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Estadiamento de Neoplasias , Biomarcadores Tumorais/genética , Revisões Sistemáticas como Assunto , Metanálise como Assunto , Neoplasias do Endométrio/patologia , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA