Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Orthop Surg Res ; 16(1): 97, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514429

RESUMO

BACKGROUND: In orthopedic application, stress-shielding effects of implant materials cause bone loss, which often induces porosis, delayed bone healing, and other complications. We aimed to compare the stress-shielding effects of locked compression plate (LCP) and limited-contact dynamic compression plate (LC-DCP) in dogs with plate-fixed femurs. METHODS: Bilateral intact femurs of 24 adult dogs were fixed by adult forearm 9-hole titanium plates using minimally invasive plate osteosynthesis (MIPPO) technology, with LCP on the left and LC-DCP on the right femurs. Dogs were sacrificed at 6 weeks, 12 weeks, and 24 weeks after surgery, and bone specimens were used to evaluate the efficacies of different fixing methods on bones through X-ray, dual-energy X-ray absorptiometry (DEXA), histology, MicroCT, and biomechanics analyses. RESULTS: X-ray results showed significant callus formation and periosteal reaction in the LC-DCP group. Bone cell morphology, degree of osteoporosis, and bone mineral density (BMD) changes of the LCP group were significantly better than that of the LC-DCP group. MicroCT results showed that the LCP group had significantly reduced degree of cortical bone osteoporosis than the LC-DCP group. Tissue mineral density (TMD) in the LCP group was higher than that in the LC-DCP group at different time points (6 weeks, 12 weeks, and 24 weeks). Biomechanics analyses demonstrated that the compressive strength and flexural strength of bones fixed by LCP were better than that by LC-DCP. CONCLUSIONS: Stress-shielding effects of LCP are significantly weaker than that of LC-DCP, which is beneficial to new bone formation and fracture healing, and LCP can be widely used in clinic for fracture fixation.


Assuntos
Placas Ósseas/efeitos adversos , Interface Osso-Implante/fisiologia , Fêmur/cirurgia , Fixação Interna de Fraturas/efeitos adversos , Fixação Interna de Fraturas/métodos , Fraturas Ósseas/cirurgia , Osteoporose/etiologia , Próteses e Implantes/efeitos adversos , Estresse Mecânico , Animais , Cães , Feminino , Consolidação da Fratura , Fraturas Ósseas/fisiopatologia , Masculino , Osteogênese , Fatores de Tempo
2.
Vet Comp Orthop Traumatol ; 28(6): 433-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26449348

RESUMO

OBJECTIVE: To compare the bending properties of String-of-Pearls® (SOP) and Limited Contact Dynamic Compression Plate® (LC-DCP) constructs in orthogonal bending directions. METHODS: 3.5 mm SOP and LC-DCP plates were fixed to a bone model simulating a comminuted tibial fracture. Specimens were non-destructively tested in both mediolateral and craniocaudal bending for 10 cycles. Bending stiffness and total angular deformation were compared using parametric analyses (p <0.05). RESULTS: For both constructs, stiffness was significantly less when bending moments were applied against the thickness of the plates (mediolateral bending) than against the width (craniocaudal bending). When compared to the mediolateral plane, bending constructs in the craniocaudal plane resulted in a 49% (SOP group) and 370% (LC-DCP group) increase in stiffness (p <0.001). Mediolateral bending stiffness was significantly greater in the SOP than the LC-DCP constructs. Conversely, in craniocaudal bending, SOP constructs stiffness was significantly less than that of the LC-DCP constructs. The differences between the two constructs in total angular deformation had an identical pattern of significance. CLINICAL SIGNIFICANCE: This study found that SOP showed less variability between the orthogonal bending directions than LC-DCP in a comminuted fracture model, and also described the bi-planar bending behaviour of both constructs. Although not exhibiting identical bending properties in both planes, SOP constructs had a more homogenous bending behaviour in orthogonal loading directions. The difference between the SOP with a circular cross sectional shape compared to the rectangular shape of standard plates is probably responsible for this difference.


Assuntos
Placas Ósseas/veterinária , Análise de Falha de Equipamento/métodos , Teste de Materiais , Teste de Materiais/métodos , Mecânica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA