Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Heliyon ; 9(3): e14029, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36911881

RESUMO

Acute lung injury (ALI) is a clinically severe lung illness with high incidence rate and mortality. Especially, coronavirus disease 2019 (COVID-19) poses a serious threat to world wide governmental fitness. It has distributed to almost from corner to corner of the universe, and the situation in the prevention and control of COVID-19 remains grave. Traditional Chinese medicine plays a vital role in the precaution and therapy of sicknesses. At present, there is a lack of drugs for treating these diseases, so it is necessary to develop drugs for treating COVID-19 related ALI. Fagopyrum dibotrys (D. Don) Hara is an annual plant of the Polygonaceae family and one of the long-history used traditional medicine in China. In recent years, its rhizomes (medicinal parts) have attracted the attention of scholars at home and abroad due to their significant anti-inflammatory, antibacterial and anticancer activities. It can work on SARS-COV-2 with numerous components, targets, and pathways, and has a certain effect on coronavirus disease 2019 (COVID-19) related acute lung injury (ALI). However, there are few systematic studies on its aerial parts (including stems and leaves) and its potential therapeutic mechanism has not been studied. The phytochemical constituents of rhizome of F. dibotrys were collected using TCMSP database. And metabolites of F. dibotrys' s aerial parts were detected by metabonomics. The phytochemical targets of F. dibotrys were predicted by the PharmMapper website tool. COVID-19 and ALI-related genes were retrieved from GeneCards. Cross targets and active phytochemicals of COVID-19 and ALI related genes in F. dibotrys were enriched by gene ontology (GO) and KEGG by metscape bioinformatics tools. The interplay network entre active phytochemicals and anti COVID-19 and ALI targets was established and broke down using Cytoscape software. Discovery Studio (version 2019) was used to perform molecular docking of crux active plant chemicals with anti COVID-19 and ALI targets. We identified 1136 chemicals from the aerial parts of F. dibotrys, among which 47 were active flavonoids and phenolic chemicals. A total of 61 chemicals were searched from the rhizome of F. dibotrys, and 15 of them were active chemicals. So there are 6 commonly key active chemicals at the aerial parts and the rhizome of F. dibotrys, 89 these phytochemicals's potential targets, and 211 COVID-19 and ALI related genes. GO enrichment bespoken that F. dibotrys might be involved in influencing gene targets contained numerous biological processes, for instance, negative regulation of megakaryocyte differentiation, regulation of DNA metabolic process, which could be put down to its anti COVID-19 associated ALI effects. KEGG pathway indicated that viral carcinogenesis, spliceosome, salmonella infection, coronavirus disease - COVID-19, legionellosis and human immunodeficiency virus 1 infection pathway are the primary pathways obsessed in the anti COVID-19 associated ALI effects of F. dibotrys. Molecular docking confirmed that the 6 critical active phytochemicals of F. dibotrys, such as luteolin, (+) -epicatechin, quercetin, isorhamnetin, (+) -catechin, and (-) -catechin gallate, can combine with kernel therapeutic targets NEDD8, SRPK1, DCUN1D1, and PARP1. In vitro activity experiments showed that the total antioxidant capacity of the aerial parts and rhizomes of F. dibotrys increased with the increase of concentration in a certain range. In addition, as a whole, the antioxidant capacity of the aerial part of F. dibotrys was stronger than that of the rhizome. Our research afford cues for farther exploration of the anti COVID-19 associated ALI chemical compositions and mechanisms of F. dibotrys and afford scientific foundation for progressing modern anti COVID-19 associated ALI drugs based on phytochemicals in F. dibotrys. We also fully developed the medicinal value of F. dibotrys' s aerial parts, which can effectively avoid the waste of resources. Meanwhile, our work provides a new strategy for integrating metabonomics, network pharmacology, and molecular docking techniques which was an efficient way for recognizing effective constituents and mechanisms valid to the pharmacologic actions of traditional Chinese medicine.

2.
J Mass Spectrom Adv Clin Lab ; 28: 99-104, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36937810

RESUMO

Introduction: Therapeutic drug monitoring (TDM) of immunosuppressants is essential for optimal care of transplant patients. Immunoassays and liquid chromatography-mass spectrometry (LC-MS) are the most commonly used methods for TDM. However, immunoassays can suffer from interference from heterophile antibodies and structurally similar drugs and metabolites. Additionally, nominal-mass LC-MS assays can be difficult to optimize and are limited in the number of detectable compounds. Objectives: The aim of this study was to implement a mass spectrometry-based test for immunosuppressant TDM using online solid-phase extraction (SPE) and accurate-mass full scan-single ion monitoring (FS-SIM) data acquisition mode. Methods: LC-MS analysis was performed on a TLX-2 multi-channel HPLC with a Q-Exactive Plus mass spectrometer. TurboFlow online SPE was used for sample clean up. The accurate-mass MS was set to positive electrospray ionization mode with FS-SIM for quantitation of tacrolimus, sirolimus, everolimus, and cyclosporine A. MS2 fragmentation pattern was used for compound confirmation. Results: The method was validated in terms of precision, analytical bias, limit of quantitation, linearity, carryover, sample stability, and interference. Quantitation of tacrolimus, sirolimus, everolimus, and cyclosporine A correlated well with results from an independent reference laboratory (r = 0.926-0.984). Conclusions: Accurate-mass FS-SIM can be successfully utilized for immunosuppressant TDM with good correlation with results generated by standard methods. TurboFlow online SPE allows for a simple "protein crash and shoot" sample preparation protocol. Compared to traditional MRM, analyte quantitation by FS-SIM facilitates a streamlined assay optimization process.

3.
Mol Genet Metab Rep ; 35: 100967, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36967723

RESUMO

The deficiency of CITRIN, the liver mitochondrial aspartate-glutamate carrier (AGC), is the cause of four human clinical phenotypes, neonatal intrahepatic cholestasis caused by CITRIN deficiency (NICCD), silent period, failure to thrive and dyslipidemia caused by CITRIN deficiency (FTTDCD), and citrullinemia type II (CTLN2). Clinical symptoms can be traced back to disruption of the malate-aspartate shuttle due to the lack of citrin. A potential therapy for this condition is the expression of aralar, the AGC present in brain, to replace citrin. To explore this possibility we have first verified that the NADH/NAD+ ratio increases in hepatocytes from citrin(-/-) mice, and then found that exogenous aralar expression reversed the increase in NADH/NAD+ observed in these cells. Liver mitochondria from citrin (-/-) mice expressing liver specific transgenic aralar had a small (~ 4-6 nmoles x mg prot-1 x min-1) but consistent increase in malate aspartate shuttle (MAS) activity over that of citrin(-/-) mice. These results support the functional replacement between AGCs in the liver. To explore the significance of AGC replacement in human therapy we studied the relative levels of citrin and aralar in mouse and human liver through absolute quantification proteomics. We report that mouse liver has relatively high aralar levels (citrin/aralar molar ratio of 7.8), whereas human liver is virtually devoid of aralar (CITRIN/ARALAR ratio of 397). This large difference in endogenous aralar levels partly explains the high residual MAS activity in liver of citrin(-/-) mice and why they fail to recapitulate the human disease, but supports the benefit of increasing aralar expression to improve the redox balance capacity of human liver, as an effective therapy for CITRIN deficiency.

4.
Biochem Biophys Rep ; 33: 101407, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36593870

RESUMO

Traditional Chinese medicine injection (TCMI) refers to the use of modern technology to make Chinese patent medicines in injectable forms, which shorten the onset time of the traditional Chinese medicine (TCM). Although there have been clinical cases in which Shenmai injection (SMI) was used to treat cardiovascular diseases (CVDs), there are no pharmacological experiments that investigate the efficacy of the drug in vitro or the underlying mechanisms. Aim of the study: We aimed to systemically evaluate the efficacy and investigate the mechanisms of SMI in modulating electrophysiology and calcium (Ca2+) signaling using a microelectrode array (MEA) and a genetically encoded Ca2+ indicator, GCaMP6s, respectively, in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Materials and methods: A MEA system was employed to record field potentials (FPs) in hiPSC-CMs. The QT interval is corrected by the RR interval, the reciprocal of the beating rate. GCaMP6s was used to measure Ca2+ signaling in hiPSC-CMs. Meanwhile, the transcriptome changes in hiPSC-CMs treated with 2% SMI were examined using RNAseq. In addition, the ingredients of SMI were investigated using liquid chromatography-mass spectrometry (LC-MS). Results: It was found that 0.5%, 1%, and 2% (v/v) SMIs could increase corrected QT (QTc) but did not change other FP parameters. GCaMP6s was successfully applied to measure the chronic function of SMI. The full width at half maximum (FWHM), rise time, and decay time significantly decreased after treatment with SMI for 1 h and 24 h, whereas an increased Ca2+ transient frequency was observed. Conclusions: We first used the Ca2+ indicator to measure the chronic effects of TCM. We found that SMI treatment can modulate electrophysiology and calcium signaling and regulate oxidative phosphorylation, cardiac muscle contraction, and the cell cycle pathway in hiPSC-CMs.

5.
Food Chem X ; 16: 100504, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36519090

RESUMO

The producing area of Chinese white tea has been expanded to Xinyang and Yunnan from Fuding region. In this study, six sensory tastes and fifty-one chemical components including seventeen phenolic compounds, three purine alkaloids and twenty amino acids were determined in eighteen Bai mudan sub-type of white tea by electronic tongue, high performance liquid chromatography and amino acid analyzer for geographical identification, respectively. Additionally, in vitro antioxidant activities were evaluated by five various assays. Multivariate statistical analyses such as PCA, HCA and PLS-DA, completely divided these white teas into Xinyang, Yunnan and Fuding groups, indicating the feasibility of white tea classification by the production region. Twelve characteristic compounds (VIP > 1.0, P < 0.05) like gallic acid, theaflavin and L-glutamic acid contributed to the geographical identification. In conclusion, this study explored the chemical, taste and antioxidant capacity differences among three main production regions, and revealed their potential relations in white tea.

6.
Comput Struct Biotechnol J ; 20: 6458-6466, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467587

RESUMO

Various groups of antihypertensive drugs targeting different pathways have been developed; however, the pharmacometabolic responses to these drugs have rarely been compared to elucidate the common pathway of blood pressure regulation. Here, we performed a comparative multi-dimensional pharmacometabolic study on the four major lines of antihypertensive drugs, namely angiotensin-converting enzyme inhibitors (ACEis), angiotensin receptor blockers (ARBs), calcium channel blockers (CCBs), and diuretics (DIURs), through ultra-performance liquid chromatography coupled to quantum time-of-flight mass spectrometry. Two hundred fifty patients with young-onset hypertension, who were equally divided among five study groups: non-medicated, ACEi, ARB, CCB, and DIUR groups, were recruited. In a metabolome-wide association study conducted through analysis of covariance, 37 molecular features significantly associated with pharmacometabolic responses to antihypertensive drugs were identified. One-third of these features were shared by multiple medications. ACEis, ARBs, and DIURs shared more features than CCB, partially reflecting that ACEis, ARBs, and DIURs affect the renin-angiotensin-aldosterone system. Thirteen molecular features were consistently identified by all four models of the analysis of covariance. A tandem mass spectrometry (or MS/MS) experiment was performed to decipher the chemical structure of these 13 molecular features, including ARB-associated lysophosphatidylcholine (P4135), CCB-associated diacylglycerol(15:0/18:2) (P1175), and DIUR-associated oleamide (P1516). In addition, diacylglycerol(15:0/14:2) (P408) was significantly associated with the pharmacometabolic response to all four antihypertensive drugs. The identified metabolites provide insights into the mechanisms of blood pressure regulation and potential predictive markers of pharmacometabolic responses to antihypertensive drugs.

7.
Regen Ther ; 21: 560-573, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36475023

RESUMO

Introduction: Bone marrow mesenchymal stem cells (BMSCs) are a promising cell type for tissue engineering, however, the application of BMSCs is largely hampered by the limited number harvested from bone marrow cells. The methods or strategies that focused on promoting the capacity of BMSCs expansion ex vivo become more and more important. Tanshinone IIA (Tan IIA), the main active components of Danshen, has been found to promote BMSCs proliferation, but the underlying mechanism is still unclear. The aim of this study is to explore the effect and underlying mechanism of Tan IIA on the expansion capacity of hBMSCs ex vivo. Methods: In this present study, the effect of Tan IIA on the expansion capacity of BMSCs from human was investigated, and quantitative proteome analysis was applied furtherly to identify the differentially expressed proteins (DEPs) and the molecular signaling pathways in Tan IIA-treated hBMSCs. Finally, molecular biology skills were employed to verify the proposed mechanism of Tan IIA in promoting hBMSCs expansion. Results: The results showed that a total of 84 DEPs were identified, of which 51 proteins were upregulated and 33 proteins were downregulated. Besides, Tan IIA could promote hBMSCs proliferation by regulating the progression of S phase via increasing the release of fibroblast growth factor 2 (FGF2), FGF-mediated PI3K/AKT signaling pathways may play an important role in Tan IIA's effect on hBMSCs expansion. Conclusions: This study employed molecular biology skills combined with quantitative proteome analysis, to some extent, clarified the mechanism of Tan IIA's effect on promoting hBMSCs proliferation, and will give a hint that Tan IIA may have the potential to be used for BMSCs applications in cell therapies in the future.

8.
Curr Res Toxicol ; 3: 100057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504921

RESUMO

Bartogenic acid (BA), an active pentacyclic triterpenoid, has been reported for anti-diabetic, anti-inflammatory, anti-arthritic, anti-cancer, and anti-tumor activity. However, toxicity profiling of BA has not been reported till date. Hence, this study is designed to evaluate the single dose (12.5, 25, 50 and 100 mg/kg) and repeated dose (1.5, 6, and 24 mg/kg) intravenous toxicity of BA in BALB/c mice. Control group received vehicle. In single dose toxicity study, two mortalities were observed at 100 mg/kg of BA whereas lower doses were well tolerated. In repeated dose toxicity study, no mortality was observed. 1.5 mg/kg of BA was well tolerated in mice of both sexes. At 6 mg/kg of BA, female mice showed significant reduction in the body weight as compared to the control group however no significant change was observed in male mice. 24 mg/kg of BA showed significant reduction in the body weight in mice of both sexes. Further, these mice showed significant change in the relative organ weight. However, no toxicologically relevant changes were observed in hematology, biochemistry, and histopathology. Based on the findings, No-Observed-Adverse-Effect-Level (NOAEL) for BA were found to be<24 mg/kg for male mice and<6 mg/kg for female mice.

9.
Bone Rep ; 17: 101629, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36325166

RESUMO

Compromises to collagen and mineral lead to a decrease in whole bone quantity and quality in a variety of systemic diseases, yet, clinically, disease manifestations differ between craniofacial and long bones. Collagen alterations can occur through post-translational modification via lysyl oxidase (LOX), which catalyzes enzymatic collagen cross-link formation, as well as through non-enzymatic advanced glycation end products (AGEs) such as pentosidine and carboxymethyl-lysine (CML). Characterization of the cross-links and AGEs, and comparison of the mineral and collagen modifications in craniofacial and long bones represent a critical gap in knowledge. However, alterations to either the mineral or collagen in bone may contribute to disease progression and, subsequently, the anatomical site dependence of a variety of diseases. Therefore, we hypothesized that collagen cross-links and AGEs differ between craniofacial and long bones and that altered collagen cross-linking reduces mineral quality in an anatomic location dependent. To study the effects of cross-link inhibition on mineralization between anatomical sites, beta-aminoproprionitrile (BAPN) was administered to rapidly growing, 5-8 week-old male mice. BAPN is a dose-dependent inhibitor of LOX that pharmacologically alters enzymatic cross-link formation. Long bones (femora) and craniofacial bones (mandibles) were compared for mineral quantity and quality, collagen cross-link and AGE profiles, and tissue level mechanics, as well as the response to altered cross-links via BAPN. A highly sensitive liquid chromatography/mass spectrometry (LC-MS) method was developed which allowed for quantification of site-dependent accumulation of the advanced glycation end-product, carboxymethyl-lysine (CML). CML was ∼8.3× higher in the mandible than the femur. The mandible had significantly higher collagen maturation, mineral crystallinity, and Young's modulus, but lower carbonation, than the femur. BAPN also had anatomic specific effects, leading to significant decreases in mature cross-links in the mandible, and an increase in mineral carbonation in the femur. This differential response of both the mineral and collagen composition to BAPN between the mandible and femur highlights the need to further understand how inherent compositional differences in collagen and mineral contribute to anatomic-site specific manifestations of disease in both craniofacial and long bones.

10.
Comput Struct Biotechnol J ; 20: 2402-2414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664229

RESUMO

Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is a set of clinically chronic, relapsing gastrointestinal inflammatory disease and lacks of an absolute cure. Although the precise etiology is unknown, developments in high-throughput microbial genomic sequencing significantly illuminate the changes in the intestinal microbial structure and functions in patients with IBD. The application of microbial metabolomics suggests that the microbiota can influence IBD pathogenesis by producing metabolites, which are implicated as crucial mediators of host-microbial crosstalk. This review aims to elaborate the current knowledge of perturbations of the microbiome-metabolome interface in IBD with description of altered composition and metabolite profiles of gut microbiota. We emphasized and elaborated recent findings of several potentially protective metabolite classes in IBD, including fatty acids, amino acids and derivatives and bile acids. This article will facilitate a deeper understanding of the new therapeutic approach for IBD by applying metabolome-based adjunctive treatment.

11.
Clin Transl Radiat Oncol ; 35: 44-55, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35601799

RESUMO

Radiotherapy (RT) is a cornerstone treatment strategy for brain tumours. Besides cytotoxicity, RT can cause disruption of the blood-brain barrier (BBB), resulting in an increased permeability into the surrounding brain parenchyma. Although this effect is generally acknowledged, it remains unclear how and to what extent different radiation schemes affect BBB integrity. The aim of this systematic review and meta-analysis is to investigate the effect of photon RT regimens on BBB permeability, including its reversibility, in clinical and preclinical studies. We systematically reviewed relevant clinical and preclinical literature in PubMed, Embase, and Cochrane search engines. A total of 69 included studies (20 clinical, 49 preclinical) were qualitatively and quantitatively analysed by meta-analysis and evaluated on key determinants of RT-induced BBB permeability in different disease types and RT protocols. Qualitative data synthesis showed that 35% of the included clinical studies reported BBB disruption following RT, whereas 30% were inconclusive. Interestingly, no compelling differences were observed between studies with different calculated biological effective doses based on the fractionation schemes and cumulative doses; however, increased BBB disruption was noted during patient follow-up after treatment. Qualitative analysis of preclinical studies showed RT BBB disruption in 78% of the included studies, which was significantly confirmed by meta-analysis (p < 0.01). Of note, a high risk of bias, publication bias and a high heterogeneity across the studies was observed. This systematic review and meta-analysis sheds light on the impact of RT protocols on BBB integrity and opens the discussion for integrating this factor in the decision-making process of future RT, with better study of its occurrence and influence on concomitant or adjuvant therapies.

12.
HardwareX ; 11: e00305, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35518277

RESUMO

We describe a complete open-source hardware/software solution for high performance thermostatted peptide fraction collection to support mass spectrometry experiments with complex proteomes. The instrument is easy to assemble using parts readily available through retail channels at a fraction of the cost compared to typical commercial systems. Control software is written in Python allowing for rapid customization. We demonstrate several useful applications, including the automated deposition of LC separated peptides for matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) as well as collection and concatenation of peptide fractions from nanoflow HPLC separations.

13.
Comput Struct Biotechnol J ; 20: 1778-1784, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495115

RESUMO

Background: The gut microbiota plays an important role in the early stages of human life. Our previous study showed that the abundance of intestinal flora involved in galactose metabolism was altered and correlated with increased serum bilirubin levels in children with jaundice. We conducted the present study to systematically evaluate alterations in the meconium metabolome of neonates with jaundice and search for metabolic markers associated with neonatal jaundice. Methods: We included 68 neonates with neonatal hyperbilirubinemia, also known as neonatal jaundice (NJ) and 68 matched healthy controls (HC), collected meconium samples from them at birth, and performed metabolomic analysis via liquid chromatography-mass spectrometry. Results: Gut metabolites enabled clearly distinguishing the neonatal jaundice (NJ) and healthy control (HC) groups. We also identified the compositions of the gut metabolites that differed significantly between the NJ and HC groups; these differentially significant metabolites were enriched in aminyl tRNA biosynthesis; pantothenic acid and coenzyme biosynthesis; and the valine, leucine and isoleucine biosynthesis pathways. Gut branched-chain amino acid (BCAA) levels were positively correlated with serum bilirubin levels, and the area under the receiver operating characteristic curve of the random forest classifier model based on BCAAs, proline, methionine, phenylalanine and total bilirubin reached 96.9%, showing good potential for diagnostic applications. Machine learning-based causal inference analysis revealed the causal effect of BCAAs on serum total bilirubin and NJ. Conclusions: Altered gut metabolites in neonates with jaundice showed that increased BCAAs and total serum bilirubin were positively correlated. BCAAs proline, methionine, phenylalanine are potential biomarkers of NJ.

14.
J Adv Res ; 37: 19-31, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35499050

RESUMO

Introduction: The functional relevance of intra-species diversity in natural microbial communities remains largely unexplored. The guts of two closely related honey bee species, Apis cerana and A. mellifera, are colonised by a similar set of core bacterial species composed of host-specific strains, thereby providing a good model for an intra-species diversity study. Objectives: We aim to assess the functional relevance of intra-species diversity of A. cerana and A. mellifera gut microbiota. Methods: Honey bee workers were collected from four regions of China. Their gut microbiomes were investigated by shotgun metagenomic sequencing, and the bacterial compositions were compared at the species level. A cross-species colonisation assay was conducted, with the gut metabolomes being characterised by LC-MS/MS. Results: Comparative analysis showed that the strain composition of the core bacterial species was host-specific. These core bacterial species presented distinctive functional profiles between the hosts. However, the overall functional profiles of the A. cerana and A. mellifera gut microbiomes were similar; this was further supported by the consistency of the honey bees' gut metabolome, as the gut microbiota of different honey bee species showed rather similar metabolic profiles in the cross-species colonisation assay. Moreover, this experiment also demonstrated that the gut microbiota of A. cerana and A. mellifera could cross colonise between the two honey bee species. Conclusion: Our findings revealed functional differences in most core gut bacteria between the guts of A. cerana and A. mellifera, which may be associated with their inter-species diversity. However, the functional profiles of the overall gut microbiomes between the two honey bee species converge, probably as a result of the overlapping ecological niches of the two species. Our findings provide critical insights into the evolution and functional roles of the mutualistic microbiota of honey bees and reveal that functional redundancy could stabilise the gene content diversity at the strain-level within the gut community.


Assuntos
Microbioma Gastrointestinal , Animais , Bactérias/genética , Abelhas/genética , Cromatografia Líquida , Microbioma Gastrointestinal/genética , Metagenoma , Espectrometria de Massas em Tandem
15.
J Tradit Complement Med ; 12(3): 287-301, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35493312

RESUMO

Background and aim: Metabolic syndrome (MetS) is a complex disease of physiological imbalances interrelated to abnormal metabolic conditions, such as abdominal obesity, type II diabetes, dyslipidemia and hypertension. In the present pilot study, we investigated the nutraceutical bitter melon (Momordica charantia L) -intake induced transcriptome and metabolome changes and the converging metabolic signaling networks underpinning its inhibitory effects against MetS-associated risk factors. Experimental procedure: Metabolic effects of lyophilized bitter melon juice (BMJ) extract (oral gavage 200 mg/kg/body weight-daily for 40 days) intake were evaluated in diet-induced obese C57BL/6J male mice [fed-high fat diet (HFD), 60 kcal% fat]. Changes in a) serum levels of biochemical parameters, b) gene expression in the hepatic transcriptome (microarray analysis using Affymetrix Mouse Exon 1.0 ST arrays), and c) metabolite abundance levels in lipid-phase plasma [liquid chromatography mass spectrometry (LC-MS)-based metabolomics] after BMJ intervention were assessed. Results and conclusion: BMJ-mediated changes showed a positive trend towards enhanced glucose homeostasis, vitamin D metabolism and suppression of glycerophospholipid metabolism. In the liver, nuclear peroxisome proliferator-activated receptor (PPAR) and circadian rhythm signaling, as well as bile acid biosynthesis and glycogen metabolism targets were modulated by BMJ (p < 0.05). Thus, our in-depth transcriptomics and metabolomics analysis suggests that BMJ-intake lowers susceptibility to the onset of high-fat diet associated MetS risk factors partly through modulation of PPAR signaling and its downstream targets in circadian rhythm processes to prevent excessive lipogenesis, maintain glucose homeostasis and modify immune responses signaling.

16.
Food Chem X ; 14: 100302, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35434600

RESUMO

Kombucha, originated in China 2000  years ago, is a sour and sweet-tasted drink, prepared traditionally through fermentation of black tea. During the fermentation of kombucha, consisting of mainly acidic compounds, microorganisms, and a tiny amount of alcohol, a biofilm called SCOBY forms. The bacteria in kombucha has been generally identified as Acetobacteraceae. Kombucha is a noteworthy source of B complex vitamins, polyphenols, and organic acids (mainly acetic acid). Nowadays, kombucha is tended to be prepared with some other plant species, which, therefore, lead to variations in its composition. Pre-clinical studies conducted on kombucha revealed that it has desired bioactivities such as antimicrobial, antioxidant, hepatoprotective, anti-hypercholestorelomic, anticancer, anti-inflammatory, etc. Only a few clinical studies have been also reported. In the current review, we aimed to overhaul pre-clinical bioactivities reported on kombucha as well as its brief compositional chemistry. The literature data indicate that kombucha has valuable biological effects on human health.

17.
J Mass Spectrom Adv Clin Lab ; 24: 31-40, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35252948

RESUMO

BACKGROUND: Cardiac surgery-associated acute kidney injury (AKI) can increase the mortality and morbidity, and the incidence of chronic kidney disease, in critically ill survivors. The purpose of this research was to investigate possible links between urinary metabolic changes and cardiac surgery-associated AKI. METHODS: Using ultra-high-performance liquid chromatography coupled with Q-Exactive Orbitrap mass spectrometry, non-targeted metabolomics was performed on urinary samples collected from groups of patients with cardiac surgery-associated AKI at different time points, including Before_AKI (uninjured kidney), AKI_Day1 (injured kidney) and AKI_Day14 (recovered kidney) groups. The data among the three groups were analyzed by combining multivariate and univariate statistical methods, and urine metabolites related to AKI in patients after cardiac surgery were screened. Altered metabolic pathways associated with cardiac surgery-induced AKI were identified by examining the Kyoto Encyclopedia of Genes and Genomes database. RESULTS: The secreted urinary metabolome of the injured kidney can be well separated from the urine metabolomes of uninjured or recovered patients using multivariate and univariate statistical analyses. However, urine samples from the AKI_Day14 and Before_AKI groups cannot be distinguished using either of the two statistical analyses. Nearly 4000 urinary metabolites were identified through bioinformatics methods at Annotation Levels 1-4. Several of these differential metabolites may also perform essential biological functions. Differential analysis of the urinary metabolome among groups was also performed to provide potential prognostic indicators and changes in signalling pathways. Compared with the uninjured kidney group, the patients with cardiac surgery-associated AKI displayed dramatic changes in renal metabolism, including sulphur metabolism and amino acid metabolism. CONCLUSIONS: Urinary metabolite disorder was observed in patients with cardiac surgery-associated AKI due to ischaemia and medical treatment, and the recovered patients' kidneys were able to return to normal. This work provides data on urine metabolite markers and essential resources for further research on AKI.

18.
J Mass Spectrom Adv Clin Lab ; 23: 14-25, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34993503

RESUMO

Infrared multiple photon dissociation (IRMPD) spectroscopy is a powerful tool used to probe the vibrational modes-and, by extension, the structure-of an ion within an ion trap mass spectrometer. Compared to traditional FTIR spectroscopy, IRMPD spectroscopy has advantages including its sensitivity and its relative ability to handle complex mixtures. While IRMPD has historically been a technique for fundamental analyses, it is increasingly being applied in a more analytical fashion. Notable recent demonstrations pertinent to the clinical laboratory and adjacent interests include analysis of modified amino acids/residues and carbohydrates, structural elucidation (including isomeric differentiation) of metabolites, identification of novel illicit drugs, and structural studies of various biomolecules and pharmaceuticals. Improvements in analysis time, coupling to commercial instruments, and integration with separations methods are all drivers toward the realization of these analytical applications. Additional improvements in these areas, along with advances in benchtop tunable IR sources and increased cross-discipline collaboration, will continue to drive innovation and widespread adoption. The goal of this tutorial article is to briefly present the fundamentals and instrumentation of IRMPD spectroscopy, as an overview of the utility of this technique for helping to answer questions relevant to clinical analysis, and to highlight limitations to widespread adoption, as well as promising directions in which the field may be heading.

19.
Data Brief ; 40: 107760, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35005149

RESUMO

This work presents new data on human endonuclease VIII-like 2 protein (hNEIL2), a part of DNA glycosylases of the helix-two-turn-helix structural superfamily. While X-ray structure of oNEIL2 (opossum Monodelphis) was resolved partially [1], the structure of hNEIL2 has not yet been determined. This data article describes a powerful combination of hydrogen-deuterium exchange mass spectrometry, homology modeling, and molecular dynamics simulations for protein conformational dynamics analysis. The data supplied in this work are related to the research article entitled "Dynamics and Conformational Changes in Human NEIL2 DNA Glycosylase Analyzed by Hydrogen/Deuterium Exchange Mass Spectrometry".

20.
Comput Struct Biotechnol J ; 20: 15-25, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34976308

RESUMO

In nature, bacteria frequently reside in differentiated communities or biofilms. These multicellular communities are held together by self-produced polymers that allow the community members to adhere to the surface as well as to neighbor bacteria. Here, we report that exopolysaccharides prevent Bacillus subtilis from co-aggregating with a distantly related bacterium Bacillus mycoides, while maintaining their role in promoting self-adhesion and co-adhesion with phylogenetically related bacterium, Bacillus atrophaeus. The defensive role of the exopolysaccharides is due to the specific regulation of bacillaene. Single cell analysis of biofilm and free-living bacterial cells using imaging flow cytometry confirmed a specific role for the exopolysaccharides in microbial competition repelling B. mycoides. Unlike exopolysaccharides, the matrix protein TasA induced bacillaene but inhibited the expression of the biosynthetic clusters for surfactin, and therefore its overall effect on microbial competition during floating biofilm formation was neutral. Thus, the exopolysaccharides provide a dual fitness advantage for biofilm-forming cells, as it acts to promote co-aggregation of related species, as well as, a secreted cue for chemical interference with non-compatible partners. These results experimentally demonstrate a general assembly principle of complex communities and provides an appealing explanation for how closely related species are favored during community assembly. Furthermore, the differential regulation of surfactin and bacillaene by the extracellular matrix may explain the spatio-temporal gradients of antibiotic production within biofilms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA