Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 41(15): 7069-7083, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36017823

RESUMO

In the present study little explored halotolerant wall-less green alga Dunaliella salina was found to be a potent source of antibacterial and antifungal biomolecules. Both the target pathogens, bacteria (Escherischia coli, Klebsiella pneumoniae, and Acinetobacter baumannii) and fungi (Candida albicans, C. tropicalis, and Cryptococus sp.) were WHO prioritized. The bioassay guided approach led us to evaluate antibacterial and antifungal lead molecule(s) from an array of compounds using spectroscopic and in silico studies. The methanol derived crude extract was purified via thin layer chromatography (TLC) using solvent system methanol: chloroform (1:19). Maximum antimicrobial activity was observed in fractions D5, D6 and D7, the components of which were then recognized using high resolution-liquid chromatography/mass spectroscopy (Orbitrap) (HR-LC/MS). The screened compounds were then docked with target enzymes sterol-14-alpha demethylase and OmpF porin protein. The energy scores revealed that amongst all, lariciresinol-4-O-glucoside showed better binding affinity, in silico, using the Schrödinger Maestro 2018-1 platform. The 3-dimensional crystal structures of both the proteins were retrieved from the protein data bank (PDB), and showed binding energies of -14.35 kcal/mol, and -11.0 kcal/mol against respective drug targets. The molecular dynamics (MD) simulations were performed for 100 ns, using Desmond package, Schrödinger to evaluate the conformational stability and alteration of protein-ligand complexes during the simulation. Thus, our findings confirmed that lariciresinol-4-O-glucoside, a lignan derivative and known strong antioxidant, may be used as an important "lead" molecule to be developed as antibacterial and antifungal drugs in the future.Communicated by Ramaswamy H. Sarma.

2.
Foods ; 11(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35681300

RESUMO

The increasing attention on the impact of food on human and environmental health has led to a greater awareness about nutrition, food processing, and food waste. In this perspective, the present work deals with the investigation of the chemical non-volatile and volatile profiles of two Citrus-based products, produced through a conscious process, using Citrus peels as natural gelling agents. Moreover, the total polyphenol content (TPC) and the antioxidant properties were evaluated, as well as their sensorial properties. Chemical and antioxidant results were compared with those of Citrus fresh fruits (C. reticulata, C. sinensis, and C. limon). Concerning the non-volatile fingerprint, the two samples showed a very similar composition, characterized by flavanones (naringenin, hesperetin, and eriodyctiol O-glycosides), flavones (diosmetin and apigenin C-glucosides), and limonoids (limonin, nomilinic acid, and its glucoside). The amount of both flavonoids and limonoids was higher in the Lemon product than in the Mixed Citrus one, as well as the TPC and the antioxidant activity. The aroma composition of the two samples was characterized by monoterpene hydrocarbons as the main chemical class, mainly represented by limonene. The sensorial analysis, finally, evidenced a good quality of both the products. These results showed that the most representative components of Citrus fruits persist even after the transformation process, and the aroma and sensorial properties endow an added value to Citrus preparations.

3.
Metabolomics ; 15(3): 45, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30874951

RESUMO

INTRODUCTION: Metabolite identification remains a major bottleneck in the understanding of metabolism. Many metabolomics studies end up with unknown compounds, leaving a landscape of metabolites and metabolic pathways to be unraveled. Therefore, identifying novel compounds within a metabolome is an entry point into the 'dark side' of metabolism. OBJECTIVES: This work aimed at elucidating the structure of a novel metabolite that was first detected in the soil bacterium Acinetobacter baylyi ADP1 (ADP1). METHODS: We used high resolution multi-stage tandem mass spectrometry for characterizing the metabolite within the metabolome. We purified the molecule for 1D- and 2D-NMR (1H, 13C, 1H-1H-COSY, 1H-13C-HSQC, 1H-13C-HMBC and 1H-15N-HMBC) analyses. Synthetic standards were chemically prepared from MS and NMR data interpretation. RESULTS: We determined the de novo structure of a previously unreported metabolite: 3-((3-aminopropyl)amino)-4-hydroxybenzoic acid. The proposed structure was validated by comparison to a synthetic standard. With a concentration in the millimolar range, this compound appears as a major metabolite in ADP1, which we anticipate to participate to an unsuspected metabolic pathway. This novel metabolite was also detected in another γ-proteobacterium. CONCLUSION: Structure elucidation of this abundant and novel metabolite in ADP1 urges to decipher its biosynthetic pathway and cellular function.


Assuntos
Acinetobacter/metabolismo , Parabenos/química , Acinetobacter/química , Espectroscopia de Ressonância Magnética/métodos , Metaboloma , Metabolômica/métodos , Parabenos/metabolismo , Espectrometria de Massas em Tandem/métodos
4.
Proc Natl Acad Sci U S A ; 115(19): E4358-E4367, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29686076

RESUMO

Trigonelline (TG; N-methylnicotinate) is a ubiquitous osmolyte. Although it is known that it can be degraded, the enzymes and metabolites have not been described so far. In this work, we challenged the laboratory model soil-borne, gram-negative bacterium Acinetobacter baylyi ADP1 (ADP1) for its ability to grow on TG and we identified a cluster of catabolic, transporter, and regulatory genes. We dissected the pathway to the level of enzymes and metabolites, and proceeded to in vitro reconstruction of the complete pathway by six purified proteins. The four enzymatic steps that lead from TG to methylamine and succinate are described, and the structures of previously undescribed metabolites are provided. Unlike many aromatic compounds that undergo hydroxylation prior to ring cleavage, the first step of TG catabolism proceeds through direct cleavage of the C5-C6 bound, catalyzed by a flavin-dependent, two-component oxygenase, which yields (Z)-2-((N-methylformamido)methylene)-5-hydroxy-butyrolactone (MFMB). MFMB is then oxidized into (E)-2-((N-methylformamido) methylene) succinate (MFMS), which is split up by a hydrolase into carbon dioxide, methylamine, formic acid, and succinate semialdehyde (SSA). SSA eventually fuels up the TCA by means of an SSA dehydrogenase, assisted by a Conserved Hypothetical Protein. The cluster is conserved across marine, soil, and plant-associated bacteria. This emphasizes the role of TG as a ubiquitous nutrient for which an efficient microbial catabolic toolbox is available.


Assuntos
Acinetobacter , Alcaloides/metabolismo , Genoma Bacteriano , Anotação de Sequência Molecular , Família Multigênica , Acinetobacter/enzimologia , Acinetobacter/genética , Cromatografia Líquida , Espectrometria de Massas
5.
Chemosphere ; 184: 366-374, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28605707

RESUMO

The objective of this work was to develop a new approach to assess the specificity and the efficiency of biodegradation of oxidized oligomers extracted from aged HDPE polyethylene films and to bring insight on the mechanisms occurring during biodegradation. 1H NMR spectroscopy and LC Orbitrap™ mass spectrometry were combined together with data processing using Kendrick mass defect calculation and Van Krevelen Diagram. We showed that the molecular weight of extracted oligomers was lower than 850 Da with maximum chain length of 55 carbon atoms. The oligomers were divided into 11 classes of molecules with different oxidation state ranging from 0 to 10. All classes included series of chemically related compounds including up to 19 molecules. 95% of the soluble oligomers were assimilated by a strain of Rhodococcus rhodocchrous after 240 days of incubation. Large highly oxidized molecules completely disappeared while the other classes of molecules were still represented. Molecules containing 0-1 oxygen atom were less degraded. A strong shift to smaller molecules (<450 Da, 25 carbon atoms) was observed suggesting that longer molecules disappeared more rapidly than the smaller ones. It opens new perspectives on biodegradation processes as not only intracellular ß-oxidation must be considered but also extracellular mechanisms leading to chain cleavages.


Assuntos
Biodegradação Ambiental , Polietileno/metabolismo , Rhodococcus/metabolismo , Carbono/metabolismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA