Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Development ; 150(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37800308

RESUMO

Actin-related proteins (Arps) are classified according to their similarity to actin and are involved in diverse cellular processes. ACTL7B is a testis-specific Arp, and is highly conserved in rodents and primates. ACTL7B is specifically expressed in round and elongating spermatids during spermiogenesis. Here, we have generated an Actl7b-null allele in mice to unravel the role of ACTL7B in sperm formation. Male mice homozygous for the Actl7b-null allele (Actl7b-/-) were infertile, whereas heterozygous males (Actl7b+/-) were fertile. Severe spermatid defects, such as detached acrosomes, disrupted membranes and flagella malformations start to appear after spermiogenesis step 9 in Actl7b-/- mice, finally resulting in spermatogenic arrest. Abnormal spermatids were degraded and levels of autophagy markers were increased. Co-immunoprecipitation with mass spectrometry experiments identified an interaction between ACTL7B and the LC8 dynein light chains DYNLL1 and DYNLL2, which are first detected in step 9 spermatids and mislocalized when ACTL7B is absent. Our data unequivocally establish that mutations in ACTL7B are directly related to male infertility, pressing for additional research in humans.


Assuntos
Actinas , Dineínas , Animais , Humanos , Masculino , Camundongos , Actinas/metabolismo , Dineínas do Citoplasma/metabolismo , Dineínas/genética , Dineínas/metabolismo , Sêmen/metabolismo , Espermátides/metabolismo , Espermatogênese/genética , Espermatozoides/metabolismo , Testículo/metabolismo
2.
FASEB J ; 37(1): e22680, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36468710

RESUMO

Spermatid production is a complex regulatory process in which coordination between hormonal control and apoptosis plays a pivotal role in maintaining a balanced number of sperm cells. Apoptosis in spermatogenesis is controlled by pro-apoptotic and anti-apoptotic molecules. Hormones involved in the apoptotic process during spermatogenesis include gonadotrophins, sex hormones, and glucocorticoid (GC). GC acts broadly as an apoptosis inducer by binding to its receptor (glucocorticoid receptor: GR) during organ development processes, such as spermatogenesis. However, the downstream pathway induced in GC-GR signaling and the apoptotic process during spermatogenesis remains poorly understood. We reported previously that GC induces full-length glucocorticoid-induced transcript 1 (GLCCI1-long), which functions as an anti-apoptotic mediator in thymic T cell development. Here, we demonstrate that mature murine testis expresses a novel isoform of GLCCI1 protein (GLCCI1-short) in addition to GLCCI1-long. We demonstrate that GLCCI1-long is expressed in spermatocytes along with GR. In contrast, GLCCI1-short is primarily expressed in spermatids where GR is absent; instead, the estrogen receptor is expressed. GLCCI1-short also binds to LC8, which is a known mediator of the anti-apoptotic effect of GLCCI1-long. A luciferase reporter assay revealed that ß-estradiol treatment synergistically increased Glcci1-short promotor-driven luciferase activity in Erα-overexpressing cells. Together with the evidence that the conversion of testosterone to estrogen is preceded by aromatase expression in spermatids, we hypothesize that estrogen induces GLCCI1-short, which, in turn, may function as a novel anti-apoptotic mediator in mature murine testis.


Assuntos
Glucocorticoides , Sêmen , Masculino , Camundongos , Animais , Espermatogênese , Espermátides , Estrogênios
3.
J Cell Physiol ; 237(9): 3554-3564, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35696549

RESUMO

Nonalcoholic steatohepatitis (NASH) is a liver disease characterized by fat accumulation and chronic inflammation in the liver. Dynein light chain of 8 kDa (LC8) was identified previously as an inhibitor of nuclear factor kappa B (NF-κB), a key regulator of inflammation, however, its role in NASH remains unknown. In this study, we investigated whether LC8 can alleviate NASH using a mouse model of methionine and choline-deficient (MCD) diet-induced NASH and examined the underlying mechanism. LC8 transgenic (Tg) mice showed lower hepatic steatosis and less progression of NASH, including hepatic inflammation and fibrosis, compared to wild-type (WT) mice after consuming an MCD diet. The hepatic expression of lipogenic genes was lower, while that of lipolytic genes was greater in LC8 Tg mice than WT mice, which might be associated with resistance of LC8 Tg mice to hepatic steatosis. Consumption of an MCD diet caused oxidative stress, IκBα phosphorylation, and subsequent p65 liberation from IκBα and nuclear translocation, resulting in induction of proinflammatory cytokines and chemokines. However, these effects of MCD diet were reduced by LC8 overexpression. Collectively, these results suggest that LC8 alleviates MCD diet-induced NASH by inhibiting NF-κB through binding to IκBα to interfere with IκBα phosphorylation and by reducing oxidative stress via scavenging reactive oxygen species. Thus, boosting intracellular LC8 could be a potential therapeutic strategy for patients with NASH.


Assuntos
Dineínas , NF-kappa B , Hepatopatia Gordurosa não Alcoólica , Estresse Oxidativo , Animais , Colina/metabolismo , Dineínas do Citoplasma , Dieta , Modelos Animais de Doenças , Dineínas/genética , Dineínas/metabolismo , Inflamação/metabolismo , Fígado/metabolismo , Fígado/patologia , Metionina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética
4.
J Mol Biol ; 434(9): 167520, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35245498

RESUMO

Multivalent intrinsically disordered protein (IDP) complexes are prevalent in biology and act in regulation of diverse processes, including transcription, signaling events, and the assembly and disassembly of complex macromolecular architectures. These systems pose significant challenges to structural investigation, due to continuum dynamics imparted by the IDP and compositional heterogeneity resulting from characteristic low-affinity interactions. Here, we developed a modular pipeline for automated single-particle electron microscopy (EM) distribution analysis of common but relatively understudied semi-ordered systems: 'beads-on-a-string' assemblies, composed of IDPs bound at multivalent sites to the ubiquitous ∼20 kDa cross-linking hub protein LC8. This approach quantifies conformational geometries and compositional heterogeneity on a single-particle basis, and statistically corrects spurious observations arising from random proximity of bound and unbound LC8. The statistical correction is generically applicable to oligomer characterization and not specific to our pipeline. Following validation, the approach was applied to the nuclear pore IDP Nup159 and the transcription factor ASCIZ. This analysis unveiled significant compositional and conformational diversity in both systems that could not be obtained from ensemble single particle EM class-averaging strategies, and new insights for exploring how these architectural properties might contribute to their physiological roles in supramolecular assembly and transcriptional regulation. We expect that this approach may be adopted to many other intrinsically disordered systems that have evaded traditional methods of structural characterization.


Assuntos
Proteínas Intrinsicamente Desordenadas , Dineínas do Citoplasma/química , Proteínas Intrinsicamente Desordenadas/química , Microscopia Eletrônica/métodos , Complexo de Proteínas Formadoras de Poros Nucleares/química , Conformação Proteica , Imagem Individual de Molécula , Fatores de Transcrição/química
5.
Biomolecules ; 11(11)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34827601

RESUMO

The human parainfluenza virus 3 (HPIV3) poses a risk for pneumonia development in young children and immunocompromised patients. To investigate mechanisms of HPIV3 pathogenesis, we characterized the association state and host protein interactions of HPIV3 phosphoprotein (HPIV3 P), an indispensable viral polymerase cofactor. Sequence analysis and homology modeling predict that HPIV3 P possesses a long, disordered N-terminal tail (PTAIL) a coiled-coil multimerization domain (PMD), similar to the well-characterized paramyxovirus phosphoproteins from measles and Sendai viruses. Using a recombinantly expressed and purified construct of PMD and PTAIL, we show that HPIV3 P in solution is primarily an alpha-helical tetramer that is stable up to 60 °C. Pulldown and isothermal titration calorimetry experiments revealed that HPIV3 P binds the host hub protein LC8, and turbidity experiments demonstrated a new role for LC8 in increasing the solubility of HPIV3 P in the presence of crowding agents such as RNA. For comparison, we show that the multimerization domain of the Zaire Ebola virus phosphoprotein VP35 is also a tetramer and binds LC8 but with significantly higher affinity. Comparative analysis of the domain architecture of various virus phosphoproteins in the order Mononegavirales show multiple predicted and verified LC8 binding motifs, suggesting its prevalence and importance in regulating viral phosphoprotein structures. Our work provides evidence for LC8 binding to phosphoproteins with multiple association states, either tetrameric, as in the HPIV3 and Ebola phosphoproteins shown here, or dimeric as in rabies virus phosphoprotein. Taken together the data suggest that the association states of a virus-specific phosphoprotein and the complex formed by binding of the phosphoprotein to host LC8 are important regulators of viral function.


Assuntos
Vírus da Parainfluenza 3 Humana , Pré-Escolar , Doença pelo Vírus Ebola , Humanos , Fosfoproteínas , Proteínas Virais , Replicação Viral
6.
Genes Dev ; 35(5-6): 392-409, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33574069

RESUMO

Nuclear Argonaute proteins, guided by their bound small RNAs to nascent target transcripts, mediate cotranscriptional silencing of transposons and repetitive genomic loci through heterochromatin formation. The molecular mechanisms involved in this process are incompletely understood. Here, we show that the SFiNX complex, a silencing mediator downstream from nuclear Piwi-piRNA complexes in Drosophila, facilitates cotranscriptional silencing as a homodimer. The dynein light chain protein Cut up/LC8 mediates SFiNX dimerization, and its function can be bypassed by a heterologous dimerization domain, arguing for a constitutive SFiNX dimer. Dimeric, but not monomeric SFiNX, is capable of forming molecular condensates in a nucleic acid-stimulated manner. Mutations that prevent SFiNX dimerization result in loss of condensate formation in vitro and the inability of Piwi to initiate heterochromatin formation and silence transposons in vivo. We propose that multivalent SFiNX-nucleic acid interactions are critical for heterochromatin establishment at piRNA target loci in a cotranscriptional manner.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Inativação Gênica/fisiologia , Complexos Multiproteicos/metabolismo , Animais , Dimerização , Proteínas de Drosophila/química , Drosophila melanogaster/metabolismo , Dineínas/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
7.
J Microbiol ; 59(4): 410-416, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33630249

RESUMO

Zaire ebolavirus, commonly called Ebola virus (EBOV), is an RNA virus that causes severe hemorrhagic fever with high mortality. Viral protein 35 (VP35) is a virulence factor encoded in the EBOV genome. VP35 inhibits host innate immune responses and functions as a critical cofactor for viral RNA replication. EBOV VP35 contains a short conserved motif that interacts with dynein light chain 8 (LC8), which serves as a regulatory hub protein by associating with various LC8-binding proteins. Herein, we present the crystal structure of human LC8 bound to the peptide comprising residues 67-76 of EBOV VP35. Two VP35 peptides were found to interact with homodimeric LC8 by extending the central ß-sheets, constituting a 2:2 complex. Structural analysis demonstrated that the intermolecular binding between LC8 and VP35 is mainly sustained by a network of hydrogen bonds and supported by hydrophobic interactions in which Thr73 and Thr75 of VP35 are involved. These findings were verified by binding measurements using isothermal titration calorimetry. Biochemical analyses also verified that residues 67-76 of EBOV VP35 constitute a core region for interaction with LC8. In addition, corresponding motifs from other members of the genus Ebolavirus commonly bound to LC8 but with different binding affinities. Particularly, VP35 peptides originating from pathogenic species interacted with LC8 with higher affinity than those from noninfectious species, suggesting that the binding of VP35 to LC8 is associated with the pathogenicity of the Ebolavirus species.


Assuntos
Dineínas do Citoplasma/química , Ebolavirus/química , Proteínas do Nucleocapsídeo/química , Sequência de Aminoácidos , Calorimetria , Simulação por Computador , Cristalização , Cristalografia por Raios X , Doença pelo Vírus Ebola/virologia , Interações entre Hospedeiro e Microrganismos , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Multimerização Proteica , Proteínas Virais/química , Fatores de Virulência/química
8.
Elife ; 102021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33538693

RESUMO

In animal gonads, the PIWI-interacting RNA (piRNA) pathway guards genome integrity in part through the co-transcriptional gene silencing of transposon insertions. In Drosophila ovaries, piRNA-loaded Piwi detects nascent transposon transcripts and instructs heterochromatin formation through the Panoramix-induced co-transcriptional silencing (PICTS) complex, containing Panoramix, Nxf2 and Nxt1. Here, we report that the highly conserved dynein light chain LC8/Cut-up (Ctp) is an essential component of the PICTS complex. Loss of Ctp results in transposon de-repression and a reduction in repressive chromatin marks specifically at transposon loci. In turn, Ctp can enforce transcriptional silencing when artificially recruited to RNA and DNA reporters. We show that Ctp drives dimerisation of the PICTS complex through its interaction with conserved motifs within Panoramix. Artificial dimerisation of Panoramix bypasses the necessity for its interaction with Ctp, demonstrating that conscription of a protein from a ubiquitous cellular machinery has fulfilled a fundamental requirement for a transposon silencing complex.


Assuntos
Elementos de DNA Transponíveis , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Dineínas/genética , Inativação Gênica , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Dineínas/metabolismo
9.
Trends Biochem Sci ; 45(5): 375-384, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32311332

RESUMO

Hub proteins are important elements of interactomes within an organism; they bind diverse partners, display significant pleiotropy, and connect many cellular systems. Static hubs interact with their partners simultaneously, while dynamic hubs bind different partners at different locations and times. Although this distinguishes some features of hub protein/partner interactions, the increasing literature requires an expanded categorization of molecular and functional properties. Here, we focus on dynein light chain LC8 as a canonical example of dynamic hub proteins to develop a conceptual residue-level framework for hub-partner interactions and functions. We propose a new class of structural linear motif-binding hub proteins (LMB-hubs) with key common features. LMB-hubs have structural plasticity yet conserved interfaces, can function as integral members of large multimolecular assemblies, and are self-regulating.


Assuntos
Dineínas/metabolismo , Bases de Dados de Proteínas , Ligação Proteica , Domínios Proteicos
10.
J Biol Chem ; 295(15): 4912-4922, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32139510

RESUMO

Dynein light chain 8 (LC8) interacts with intrinsically disordered proteins (IDPs) and influences a wide range of biological processes. It is becoming apparent that among the numerous IDPs that interact with LC8, many contain multiple LC8-binding sites. Although it is established that LC8 forms parallel IDP duplexes with some partners, such as nucleoporin Nup159 and dynein intermediate chain, the molecular details of these interactions and LC8's interactions with other diverse partners remain largely uncharacterized. LC8 dimers could bind in either a paired "in-register" or a heterogeneous off-register manner to any of the available sites on a multivalent partner. Here, using NMR chemical shift perturbation, analytical ultracentrifugation, and native electrospray ionization MS, we show that LC8 forms a predominantly in-register complex when bound to an IDP domain of the multivalent regulatory protein ASCIZ. Using saturation transfer difference NMR, we demonstrate that at substoichiometric LC8 concentrations, the IDP domain preferentially binds to one of the three LC8 recognition motifs. Further, the differential dynamic behavior for the three sites and the size of the fully bound complex confirmed an in-register complex. Dynamics measurements also revealed that coupling between sites depends on the linker length separating these sites. These results identify linker length and motif specificity as drivers of in-register binding in the multivalent LC8-IDP complex assembly and the degree of compositional and conformational heterogeneity as a promising emerging mechanism for tuning of binding and regulation.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Dineínas/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Dineínas/química , Dineínas/genética , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Modelos Moleculares , Conformação Proteica , Homologia de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/genética
11.
Biochim Biophys Acta Mol Cell Res ; 1866(12): 118556, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31505170

RESUMO

Degradation of unwanted proteins is important in protein quality control cooperating with the dynein/dynactin-mediated trafficking along the acetylated microtubule (MT) network. Proteins associated directly/indirectly with tubulin/MTs play crucial roles in both physiological and pathological processes. Our studies focus on the interrelationship of the tubulin deacetylase HDAC6, the MT-associated TPPP/p25 with its deacetylase inhibitory potency and the hub dynein light chain DYNLL/LC8, constituent of dynein and numerous other protein complexes. In this paper, evidence is provided for the direct interaction of DYNLL/LC8 with TPPP/p25 and HDAC6 and their assembly into binary/ternary complexes with functional potency. The in vitro binding data was obtained with recombinant proteins and used for mathematical modelling. These data and visualization of their localizations by bimolecular fluorescence complementation technology and immunofluorescence microscopy in HeLa cells revealed the promoting effect of TPPP/p25 on the interaction of DYNLL/LC8 with both tubulin and HDAC6. Localization of the LC8-2-TPPP/p25 complex was observed on the MT network in contrast to the LC8-2-HDAC6 complex, which was partly translocated to the nucleus. LC8-2 did not influence directly the acetylation of the MT network. However, the binding of TPPP/p25 to a new binding site of DYNLL/LC8, outside the canonical binding groove, counteracted the TPPP/p25-derived hyperacetylation of the MT network. Our data suggest that multiple associations of the regulatory proteins of the MT network could ensure fine tuning in the regulation of the intracellular trafficking process either by the complexation of DYNLL/LC8 with new partners or indirectly by the modulation of the acetylation level of the MT network.


Assuntos
Dineínas do Citoplasma/metabolismo , Desacetilase 6 de Histona/metabolismo , Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Dineínas do Citoplasma/análise , Células HeLa , Desacetilase 6 de Histona/análise , Humanos , Proteínas do Tecido Nervoso/análise , Proteínas Recombinantes/análise , Proteínas Recombinantes/metabolismo
12.
FASEB J ; 33(6): 7387-7402, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30860871

RESUMO

Glucocorticoids (GCs) potently induce T-cell apoptosis in a GC receptor (GR)-dependent manner and are used to control lymphocyte function in clinical practice. However, its downstream pathways remain controversial. Here, we showed that GC-induced transcript 1 (GLCCI1) is a novel downstream molecule of the GC-GR cascade that acts as an antiapoptotic mediator in thymic T cells. GLCCI1 was highly phosphorylated and colocalized with microtubules in GLCCI1-transfected human embryonic kidney QBI293A cells. GR-dependent up-regulation of GLCCI1 was associated with GC-induced proapoptotic events in a cultured thymocyte cell line. However, GLCCI1 knockdown in a thymocyte cell line led to apoptosis. Consistently, transgenic mice overexpressing human GLCCI1 displayed enlarged thymi that consisted of larger numbers of thymocytes. Further molecular characterization showed that GLCCI1 bound to both dynein light chain LC8-type 1 (LC8) and its functional kinase, p21-protein activated kinase 1 (PAK1), thereby inhibiting the kinase activity of PAK1 toward LC8 phosphorylation, a crucial event in apoptotic signaling. GLCCI1 induction facilitated LC8 dimer formation and reduced Bim expression. Thus, GLCCI1 is a candidate factor involved in apoptosis regulation of thymic T cells.-Kiuchi, Z., Nishibori, Y., Kutsuna, S., Kotani, M., Hada, I., Kimura, T., Fukutomi, T., Fukuhara, D., Ito-Nitta, N., Kudo, A., Takata, T., Ishigaki, Y., Tomosugi, N., Tanaka, H., Matsushima, S., Ogasawara, S., Hirayama, Y., Takematsu, H., Yan, K. GLCCI1 is a novel protector against glucocorticoid-induced apoptosis in T cells.


Assuntos
Apoptose/fisiologia , Glucocorticoides/fisiologia , Receptores de Glucocorticoides/fisiologia , Linfócitos T/citologia , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Proteína 11 Semelhante a Bcl-2/biossíntese , Proteína 11 Semelhante a Bcl-2/genética , Linhagem Celular , Dineínas do Citoplasma/metabolismo , Dimerização , Regulação para Baixo , Técnicas de Silenciamento de Genes , Glucocorticoides/farmacologia , Humanos , Hipertrofia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microtúbulos/metabolismo , Fosforilação , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Receptores de Glucocorticoides/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais/fisiologia , Timo/patologia , Quinases Ativadas por p21/metabolismo
13.
Parasitology ; 146(5): 588-595, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30561290

RESUMO

Neospora caninum is the causative agent of bovine neosporosis. A N. caninum cytoplasmic dynein LC8 light chain (NcDYNLL) protein was characterized in this study. Cytoplasmic dyneins, including DYNLLs, belong to the microtubule minus-end-directed motor proteins and are involved in many cellular processes. Previous microarray studies revealed that NcDYNLL was downregulated in the non-pathogenic clone, Ncts-8, when compared with the wild-type NC1 isolate. The present study showed that DYNLLs from different species are highly conserved (>85% identity), and the NcDYNLL belongs to the DYNLL2 family. NcDYNLL2 and Toxoplasma gondii DYNLL2 have identical amino acid sequences, although they are slightly divergent at the genetic level (89% identity). NcDYNLL2 was cloned and expressed in Escherichia coli and purified. NcDYNLL2 was identified in soluble and insoluble fractions of tachyzoite lysate. As expected, soluble NcDYNLL2 was lower in the Ncts-8 lysate when compared with that of NC1 isolate. NcDYNLL2 release by the tachyzoites was low; however, it was increased when tachyzoites were treated with either calcium ionophore or ethanol. The data indicate that NcDYNLL2 may be actively secreted at low levels, but the secretion was upregulated by agents that also augment microneme protein secretions. Immunostaining of NcDYNLL2 in isolated and intracellular Neospora tachyzoites showed a diffuse distribution pattern. Furthermore, rNcDYNLL2 was internalized by the host immune cells and stimulated tumour necrosis factor-α) and interleukin-12 (IL-12) production by murine dendritic cells. Taken together, these results suggest that NcDYNLL2 is a secretory protein that cross-regulates host immunity.

14.
FEBS Lett ; 592(22): 3683-3695, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30264890

RESUMO

Ribonucleoprotein complexes, which contain mRNAs and their regulator proteins, carry out post-transcriptional control of gene expression. The function of many RNA-binding proteins depends on their association with cofactors. Here, we use a genomic approach to identify transcripts associated with DLC-1, a protein previously identified as a cofactor of two unrelated RNA-binding proteins that act in the Caenorhabditis elegans germline. Among the 2732 potential DLC-1 targets, most are germline mRNAs associated with oogenesis. Removal of DLC-1 affects expression of its targets expressed in the oocytes, meg-1 and meg-3. We propose that DLC-1 acts as a cofactor for multiple ribonucleoprotein complexes, including the ones regulating gene expression during oogenesis.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Dineínas/genética , Perfilação da Expressão Gênica , RNA Mensageiro/genética , Ribonucleoproteínas/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Dineínas/metabolismo , Feminino , Oócitos/metabolismo , Oogênese/genética , Ligação Proteica , Interferência de RNA , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo
15.
J Cell Sci ; 130(19): 3388-3398, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28808087

RESUMO

Because of their functional polarity and elongated morphologies, microtubule-based transport of proteins and organelles is critical for normal neuronal function. The proteasome is required throughout the neuron for the highly regulated degradation of a broad set of protein targets whose functions underlie key physiological responses, including synaptic plasticity and axonal degeneration. Molecularly, the relationship between proteasome transport and the transport of the targets of proteasomes is unclear. The dynein motor complex is required for the microtubule-based motility of numerous proteins and organelles in neurons. Here, we demonstrate that microtubule-based transport of proteasomes within the neuron in Drosophila utilizes a different dynein light chain to that used by synaptic proteins. Live imaging of proteasomes and synaptic vesicle proteins in axons and synapses finds that these cargoes traffic independently, and that proteasomes exhibit significantly reduced retrograde transport velocities compared to those of synaptic vesicle proteins. Genetic and biochemical analyses reveals that the Drosophila homolog of the LC8 dynein light chains (mammalian DYNLL1 and DYNLL2), called Cut up, binds proteasomes and functions specifically during their transport. These data support the model that Cut up functions to specify the dynein-mediated transport of neuronal proteasomes.


Assuntos
Axônios/metabolismo , Proteínas de Drosophila/metabolismo , Dineínas/metabolismo , Modelos Biológicos , Complexo de Endopeptidases do Proteassoma/metabolismo , Sinapses/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Dineínas/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Transporte Proteico/fisiologia , Sinapses/genética
16.
Development ; 143(24): 4643-4653, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27864381

RESUMO

PUF family translational repressors are conserved developmental regulators, but the molecular function provided by the regions flanking the PUF RNA-binding domain is unknown. In C. elegans, the PUF proteins FBF-1 and FBF-2 support germline progenitor maintenance by repressing production of meiotic proteins and use distinct mechanisms to repress their target mRNAs. We identify dynein light chain DLC-1 as an important regulator of FBF-2 function. DLC-1 directly binds to FBF-2 outside of the RNA-binding domain and promotes FBF-2 localization and function. By contrast, DLC-1 does not interact with FBF-1 and does not contribute to FBF-1 activity. Surprisingly, we find that the contribution of DLC-1 to FBF-2 activity is independent of the dynein motor. Our findings suggest that PUF protein localization and activity are mediated by sequences flanking the RNA-binding domain that bind specific molecular partners. Furthermore, these results identify a new role for DLC-1 in post-transcriptional regulation of gene expression.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Dineínas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Sítios de Ligação/genética , Proteínas de Caenorhabditis elegans/genética , Dineínas/genética , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Células-Tronco/citologia
17.
Semin Cell Dev Biol ; 37: 20-5, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25263009

RESUMO

Intrinsically disordered proteins (IDPs) are prevalent in macromolecular assemblies and are thought to mediate protein recognition in complex regulatory processes and signaling pathways. The formation of a polybivalent scaffold is a key process by which IDPs drive early steps in macromolecular assemblies. Three intrinsically disordered proteins, IC, Swallow and Nup159, are core components, respectively, of cytoplasmic dynein, bicoid mRNA localization apparatus, and nuclear pore complexes. In all three systems, the hub protein LC8 recognizes on the IDP, short linear motifs that are fully disordered in the apo form, but adopt a ß-strand when bound to LC8. The IDP/LC8 complex forms a bivalent scaffold primed to bind additional bivalent ligands. Scaffold formation also promotes self-association and/or higher order organization of the IDP components at a site distant from LC8 binding. Rigorous thermodynamic analyses imply that association of additional bivalent ligands is driven by entropic effects where the first binding event is weak but subsequent binding of additional ligands occurs with higher affinity. Here, we review specific examples of macromolecular assemblies in which polybivalency of aligned IDP duplexes not only enhances binding affinity and results in formation of a stable complex but also compensates unfavorable steric and enthalpic interactions. We propose that polybivalent scaffold assembly involving IDPs and LC8-like proteins is a general process in the cell biology of a class of multi-protein structures that are stable yet fine-tuned for diverse cellular requirements.


Assuntos
Dineínas do Citoplasma/química , Dineínas do Citoplasma/metabolismo , Animais , Fenômenos Fisiológicos Celulares , Proteínas Intrinsicamente Desordenadas/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Termodinâmica
18.
Artigo em Inglês | MEDLINE | ID: mdl-25705621

RESUMO

Postsynaptic density (PSD) proteins in excitatory synapses are relatively immobile components, while there is a structured organization of mobile scaffolding proteins lying beneath the PSDs. For example, shank proteins are located further away from the membrane in the cytosolic faces of the PSDs, facing the actin cytoskeleton. The rationale of this organization may be related to important roles of these proteins as "exchange hubs" for the signaling proteins for their migration from the subcortical cytosol to the membrane. Notably, PSD95 have also been demonstrated in prejunctional nerve terminals of nitrergic neuronal varicosities traversing the gastrointestinal smooth muscles. It has been recently reported that motor proteins like myosin Va play important role in transcytosis of nNOS. In this review, the hypothesis is forwarded that nNOS delivered to subcortical cytoskeleton requires interactions with scaffolding proteins prior to docking at the membrane. This may involve significant role of "shank," named for SRC-homology (SH3) and multiple ankyrin repeat domains, in nitric oxide synthesis. Dynein light chain LC8-nNOS from acto-myosin Va is possibly exchanged with shank, which thereafter facilitates transposition of nNOS for binding with palmitoyl-PSD95 at the nerve terminal membrane. Shank knockout mice, which present with features of autism spectrum disorders, may help delineate the role of shank in enteric nitrergic neuromuscular transmission. Deletion of shank3 in humans is a monogenic cause of autism called Phelan-McDermid syndrome. One fourth of these patients present with cyclical vomiting, which may be explained by junctionopathy resulting from shank deficit in enteric nitrergic nerve terminals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA