Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Nanobiotechnology ; 22(1): 329, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858736

RESUMO

BACKGROUND: Cancer stem cells (CSCs) play a vital role in the occurrence, maintenance, and recurrence of solid tumors. Although, miR-145-5p can inhibit CSCs survival, poor understanding of the underlying mechanisms hamperes further therapeutic optimization for patients. Lentivirus with remarkable transduction efficiency is the most commonly used RNA carrier in research, but has shown limited tumor-targeting capability. METHODS: We have applied liposome to decorate lentivirus surface thereby yielding liposome-lentivirus hybrid-based carriers, termed miR-145-5p-lentivirus nanoliposome (MRL145), and systematically analyzed their potential therapeutic effects on liver CSCs (LCSCs). RESULTS: MRL145 exhibited high delivery efficiency and potent anti-tumor efficacy under in vitro and in vivo. Mechanistically, the overexpressed miR-145-5p can significantly suppress the self-renewal, migration, and invasion abilities of LCSCs by targeting Collagen Type IV Alpha 3 Chain (COL4A3). Importantly, COL4A3 can promote phosphorylating GSK-3ß at ser 9 (p-GSK-3ß S9) to inactivate GSK3ß, and facilitate translocation of ß-catenin into the nucleus to activate the Wnt/ß-catenin pathway, thereby promoting self-renewal, migration, and invasion of LCSCs. Interestingly, COL4A3 could attenuate the cellular autophagy through modulating GSK3ß/Gli3/VMP1 axis to promote self-renewal, migration, and invasion of LCSCs. CONCLUSIONS: These findings provide new insights in mode of action of miR-145-5p in LCSCs therapy and indicates that liposome-virus hybrid carriers hold great promise in miRNA delivery.


Assuntos
Lentivirus , Lipossomos , MicroRNAs , Células-Tronco Neoplásicas , MicroRNAs/genética , MicroRNAs/metabolismo , Lipossomos/química , Humanos , Animais , Camundongos , Lentivirus/genética , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Camundongos Nus , Neoplasias Hepáticas/terapia , Camundongos Endogâmicos BALB C , Movimento Celular , Glicogênio Sintase Quinase 3 beta/metabolismo , beta Catenina/metabolismo , Via de Sinalização Wnt
2.
Free Radic Biol Med ; 212: 360-374, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38171407

RESUMO

Evidence recently showed that pleiotropic cytokine interferon-gamma (IFN-γ) in the tumor microenvironment (TME) plays a positive role in hepatocellular carcinoma (HCC) progression through the regulation of liver cancer stem cells (LCSCs) in HCC. The present study explored the role and potential mechanism of mitochondrial programmed cell death-ligand 1 (PD-L1) and its regulation of ferroptosis in modulating the cancer stemness of LCSCs. It was shown that mimicking TME IFN-γ exposure increased the LCSCs ratio and cancer stemness phenotypes in HCC cells. IFN-γ exposure inhibited sorafenib (Sora)-induced ferroptosis by enhancing glutathione peroxidase 4 (GPX4) expression as well reactive oxygen species (ROS) and lipid peroxidation (LPO) generation in LCSCs. Furthermore, IFN-γ exposure upregulated PD-L1 expression and its mitochondrial translocation, inducing dynamin-related protein 1 (Drp1)-dependent mitochondrial fission and correlating with glycolytic metabolism reprogramming in LCSCs. The genetic intervention of PD-L1 promoted ferroptosis-dependent anti-tumor effects of Sora, reduced glycolytic metabolism reprogramming, and inhibited cancer stemness of HCC in vitro and in vivo. Our results revealed a novel mechanism that IFN-γ exposure-induced mitochondrial translocation of PD-L1 enhanced glycolytic reprogramming to mediate the GPX4-dependent ferroptosis resistance and cancer stemness in LCSCs. This study provided new insights into the role of mitochondrial PD-L1-Drp1-GPX4 signal axis in regulating IFN-γ exposure-associated cancer stemness in LCSCs and verified that PD-L1-targeted intervention in combination with Sora might achieve promising synergistic anti-HCC effects.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenibe/farmacologia , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Ferroptose/genética , Linhagem Celular Tumoral , Microambiente Tumoral
3.
J Exp Clin Cancer Res ; 42(1): 311, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993901

RESUMO

BACKGROUND: Liver cancer stem cells (LCSCs) play an important role in hepatocellular carcinoma (HCC), but the mechanisms that link LCSCs to HCC metastasis remain largely unknown. This study aims to reveal the contributions of NRCAM to LCSC function and HCC metastasis, and further explore its mechanism in detail. METHODS: 117 HCC and 29 non-HCC patients with focal liver lesions were collected and analyzed to assess the association between NRCAM and HCC metastasis. Single-cell RNA sequencing (scRNA-seq) was used to explore the biological characteristics of cells with high NRCAM expression in metastatic HCC. The role and mechanism of NRCAM in LCSC dissemination and metastasis was explored in vitro and in vivo using MYC-driven LCSC organoids from murine liver cells. RESULTS: Serum NRCAM is associated with HCC metastasis and poor prognosis. A scRNA-seq analysis identified that NRCAM was highly expressed in LCSCs with MYC activation in metastatic HCC. Moreover, NRCAM facilitated LCSC migration and invasion, which was confirmed in MYC-driven LCSC organoids. The in vivo tumor allografts demonstrated that NRCAM mediated intra-hepatic/lung HCC metastasis by enhancing the ability of LCSCs to escape from tumors into the bloodstream. Nrcam expression inhibition in LCSCs blocked HCC metastasis. Mechanistically, NRCAM activated epithelial-mesenchymal transition (EMT) and metastasis-related matrix metalloproteinases (MMPs) through the MACF1 mediated ß-catenin signaling pathway in LCSCs. CONCLUSIONS: LCSCs typified by high NRCAM expression have a strong ability to invade and migrate, which is an important factor leading to HCC metastasis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Movimento Celular , Moléculas de Adesão Celular/metabolismo
4.
Comput Struct Biotechnol J ; 21: 1921-1929, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936815

RESUMO

Lung adenocarcinoma (LUAD) is the most prevalent lung cancer and one of the leading causes of death. Previous research found a link between LUAD and Aldehyde Dehydrogenase 2 (ALDH2), a member of aldehyde dehydrogenase gene (ALDH) superfamily. In this study, we identified additional useful prognostic markers for early LUAD identification and targeting LUAD therapy by analyzing the expression level, epigenetic mechanism, and signaling activities of ALDH2 in LUAD patients. The obtained results demonstrated that ALDH2 gene and protein expression significantly downregulated in LUAD patient samples. Furthermore, The American Joint Committee on Cancer (AJCC) reported that diminished ALDH2 expression was closely linked to worse overall survival (OS) in different stages of LUAD. Considerably, ALDH2 showed aberrant DNA methylation status in LUAD cancer. ALDH2 was found to be downregulated in the proteomic expression profile of several cell biology signaling pathways, particularly stem cell-related pathways. Finally, the relationship of ALDH2 activity with stem cell-related factors and immune system were reported. In conclusion, the downregulation of ALDH2, abnormal DNA methylation, and the consequent deficit of stemness signaling pathways are relevant prognostic and therapeutic markers in LUAD.

5.
Transl Cancer Res ; 11(7): 2013-2025, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35966289

RESUMO

Background: Lysyl oxidase-like 2 (LOXL2) plays a role in tumor microenvironment formation and metastasis of hepatocellular carcinoma (HCC), which has a high mortality burden. Liver cancer stem cells (LCSCs) are related with the major malignant phenotypes of HCC. The function of LOXL2 in regulation of LCSCs remains unknown. Methods: CD133+HepG2 and CD133+Hep3B cells were sorted by fluorescence-activated cell sorting (FACS) from two human hepatoblastoma cell lines. Spheroid formation, apoptosis, cell cycle, as well as transwell assays were performed upon LOXL2 knockdown in CD133+HepG2 and CD133+Hep3B cells. Protein and mRNA levels were quantified by Western blotting, immunofluorescence and reverse transcription-PCR (RT-PCR). Results: Knockdown of LOXL2 decreased spheroid formation, migration and invasion (P<0.05), also induced apoptosis (P<0.05) and cell cycle arrest (P<0.05) in CD133+HepG2 and CD133+Hep3B cells. Knockdown of LOXL2 effectively inhibited expression of the anti-apoptosis proteins baculoviral inhibitor of apoptosis protein (IAP) repeat-containing 3 (BIRC3) and murine double minute 2 (MDM2) (P<0.01), as well as autophagy marker microtubule-associated protein 1 light chain 3 B (LC3B) and autophagy gene ATG5 in CD133+HepG2 and CD133+Hep3B cells (P<0.01). Conclusions: The results revealed that LOXL2 inhibition could reduce the proliferation and expansion of LCSCs, making LOXL2 inhibitors an attractive and novel therapeutic strategy of HCC.

6.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35805963

RESUMO

The presence of liver cancer stem cells (LCSCs) is one of the reasons for the treatment failure of hepatocellular carcinoma (HCC). For LCSCs, one of their prominent features is metabolism plasticity, which depends on transporters and ion channels to exchange metabolites and ions. The K+ channel protein KCNN4 (Potassium Calcium-Activated Channel Subfamily N Member 4) has been reported to promote cell metabolism and malignant progression of HCCs, but its influence on LCSC stemness has remained unclear. Here, we demonstrated that KCNN4 was highly expressed in L-CSCs by RT-PCR and Western blot. Then, we illustrated that KCNN4 promoted the stemness of HC-C cells by CD133+CD44+ LCSC subpopulation ratio analysis, in vitro stemness transcription factor detection, and sphere formation assay, as well as in vivo orthotopic liver tumor formation and limiting dilution tumorigenesis assays. We also showed that KCNN4 enhanced the glucose metabolism in LCSCs by metabolic enzyme detections and seahorse analysis, and the KCNN4-promoted increase in LCSC ratios was abolished by glycolysis inhibitor 2-DG or OXPHOS inhibitor oligomycin. Collectively, our results suggested that KCNN4 promoted LCSC stemness via enhancing glucose metabolism, and that KCNN4 would be a potential molecular target for eliminating LCSCs in HCC.


Assuntos
Carcinoma Hepatocelular , Canais de Potássio Ativados por Cálcio de Condutância Intermediária , Neoplasias Hepáticas , Células-Tronco Neoplásicas , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Glucose/metabolismo , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
7.
Cell Adh Migr ; 16(1): 94-106, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35880618

RESUMO

Fluid shear stress (FSS) regulates the metastasis of hepatocellular carcinoma (HCC), but the role of the RhoA-YAP1-autophagy pathway in HCC remains unclear. Due to the core role of liver cancer stem cells (LCSCs) in HCC metastasis and recurrence, we explored the RhoA-YAP1-autophagy pathway in LCSCs under FSS. Our results indicate that LCSCs have stronger proliferation and cell spheroidization abilities. FSS (1 dyn/cm2) upregulated the migration of LCSCs and autophagy protein markers, inducing LC3B aggregation and autophagosome formation in LCSCs. Mechanistically, FSS promoted YAP1 dephosphorylation and transport to the nucleus, which is mediated by RhoA, inducing autophagy. Finally, inhibition of autophagy suppressed cell migration in LCSCs under FSS. In conclusion, FSS promoted the migration of LCSCs via the RhoA-YAP1-autophagy pathway.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Autofagia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Humanos , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas de Sinalização YAP , Proteína rhoA de Ligação ao GTP/metabolismo
8.
Front Bioeng Biotechnol ; 9: 691091, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422777

RESUMO

Cancer stem cells (CSCs) are thought to be responsible for the recurrence of liver cancer, highlighting the urgent need for the development of effective treatment regimens. In this study, 17-allylamino-17-demethoxygeldanamycin (17-AAG) and thermosensitive magnetoliposomes (TMs) conjugated to anti-CD90 (CD90@17-AAG/TMs) were developed for temperature-responsive CD90-targeted synergetic chemo-/magnetic hyperthermia therapy and simultaneous imaging in vivo. The targeting ability of CD90@DiR/TMs was studied with near-infrared (NIR) resonance imaging and magnetic resonance imaging (MRI), and the antitumor effect of CD90@17-AAG/TM-mediated magnetic thermotherapy was evaluated in vivo. After treatment, the tumors were analyzed with Western blotting, hematoxylin and eosin staining, and immunohistochemical (IHC) staining. The relative intensity of fluorescence was approximately twofold higher in the targeted group than in the non-targeted group, while the T 2 relaxation time was significantly lower in the targeted group than in the non-targeted group. The combined treatment of chemotherapy, thermotherapy, and targeting therapy exhibited the most significant antitumor effect as compared to any of the treatments alone. The anti-CD90 monoclonal antibody (mAb)-targeted delivery system, CD90@17-AAG/TMs, exhibited powerful targeting and antitumor efficacies against CD90+ liver cancer stem cells in vivo.

9.
Acta Pharm Sin B ; 11(6): 1400-1411, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34221859

RESUMO

A major mitochondrial enzyme for protecting cells from acetaldehyde toxicity is aldehyde dehydrogenase 2 (ALDH2). The correlation between ALDH2 dysfunction and tumorigenesis/growth/metastasis has been widely reported. Either low or high ALDH2 expression contributes to tumor progression and varies among different tumor types. Furthermore, the ALDH2∗2 polymorphism (rs671) is the most common single nucleotide polymorphism (SNP) in Asia. Epidemiological studies associate ALDH2∗2 with tumorigenesis and progression. This study summarizes the essential functions and potential ALDH2 mechanisms in the occurrence, progression, and treatment of tumors in various types of cancer. Our study indicates that ALDH2 is a potential therapeutic target for cancer therapy.

10.
Theranostics ; 11(10): 5045-5060, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33754043

RESUMO

Background & Aims: Liver cancer stem cells (LCSCs) mediate therapeutic resistance and correlate with poor outcomes in patients with hepatocellular carcinoma (HCC). Fibroblast growth factor (FGF)-19 is a crucial oncogenic driver gene in HCC and correlates with poor prognosis. However, whether FGF19 signaling regulates the self-renewal of LCSCs is unknown. Methods: LCSCs were enriched by serum-free suspension. Self-renewal of LCSCs were characterized by sphere formation assay, clonogenicity assay, sorafenib resistance assay and tumorigenic potential assays. Ca2+ image was employed to determine the intracellular concentration of Ca2+. Gain- and loss-of function studies were applied to explore the role of FGF19 signaling in the self-renewal of LCSCs. Results: FGF19 was up-regulated in LCSCs, and positively correlated with certain self-renewal related genes in HCC. Silencing FGF19 suppressed self-renewal of LCSCs, whereas overexpressing FGF19 facilitated CSCs-like properties via activation of FGF receptor (FGFR)-4 in none-LCSCs. Mechanistically, FGF19/FGFR4 signaling stimulated store-operated Ca2+ entry (SOCE) through both the PLCγ and ERK1/2 pathways. Subsequently, SOCE-calcineurin signaling promoted the activation and translocation of nuclear factors of activated T cells (NFAT)-c2, which transcriptionally activated the expression of stemness-related genes (e.g., NANOG, OCT4 and SOX2), as well as FGF19. Furthermore, blockade of FGF19/FGFR4-NFATc2 signaling observably suppressed the self-renewal of LCSCs. Conclusions: FGF19/FGFR4 axis promotes the self-renewal of LCSCs via activating SOCE/NFATc2 pathway; in turn, NFATc2 transcriptionally activates FGF19 expression. Targeting this signaling circuit represents a potential strategy for improving the therapeutic efficacy of HCC.


Assuntos
Sinalização do Cálcio/genética , Carcinoma Hepatocelular/genética , Autorrenovação Celular/genética , Fatores de Crescimento de Fibroblastos/genética , Neoplasias Hepáticas/genética , Fatores de Transcrição NFATC/genética , Células-Tronco Neoplásicas/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Sistema de Sinalização das MAP Quinases , Fatores de Transcrição NFATC/metabolismo , Fosfolipase C gama , Transdução de Sinais
11.
Onco Targets Ther ; 14: 917-927, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33603396

RESUMO

Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies around the world. The self-renewal, proliferation, differentiation, and tumorigenic potential of liver cancer stem cells (LCSCs) may account for the high recurrence rate and the refractory feature of HCC. Despite extensive researches, the underlying regulatory mechanism of LCSCs has not been fully disclosed. Long nonprotein coding RNAs (lncRNAs) may exert an essential role in regulating various biological functions of LCSCs, such as maintaining the stemness of cancer stem cells (CSCs) and promoting tumor development. Therefore, it is highly critical to determine which lncRNAs can control LCSCs functions and understand how LCSCs are regulated by lncRNAs. Herein, we summarized lncRNAs and the main signaling pathways involved in the regulation of LCSCs found in recent years. Moreover, we shed light on the existence of the network system of lncRNAs and LCSCs, which may provide valuable clues on targeting LCSCs.

12.
Cancers (Basel) ; 12(5)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397206

RESUMO

Hepatocellular carcinoma (HCC) is a highly malignant human cancer that has increasing mortality rates worldwide. Because CD133+ cells control tumor maintenance and progression, compounds that target CD133+ cancer cells could be effective in combating HCC. We found that the administration of chromenopyrimidinone (CPO) significantly decreased spheroid formation and the number of CD133+ cells in mixed HCC cell populations. CPO not only significantly inhibited cell proliferation in HCC cells exhibiting different CD133 expression levels, but also effectively induced apoptosis and increased the expression of LC3-II in HCC cells. CPO also exhibits in vivo therapeutic efficiency in HCC. Specifically, CPO suppressed the expression of CD133 by altering the subcellular localization of CD133 from the membrane to lysosomes in CD133+ HCC cells. Moreover, CPO treatment induced point mutations in the ADRB1, APOB, EGR2, and UBE2C genes and inhibited the expression of these proteins in HCC and the expression of UBE2C is particularly controlled by CD133 expression among those four proteins in HCC. Our results suggested that CPO may suppress stemness and malignancies in vivo and in vitro by decreasing CD133 and UBE2C expression in CD133+ HCC. Our study provides evidence that CPO could act as a novel therapeutic agent for the effective treatment of CD133+ HCC.

13.
Therap Adv Gastroenterol ; 12: 1756284818821560, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30719075

RESUMO

Liver cancer is one of the most common malignant tumors and prognosis remains poor. It has been increasingly recognized that liver cancer stem cells (LCSCs) are responsible for the carcinogenesis, recurrence, metastasis and chemoresistance of hepatocellular carcinoma (HCC). Targeting LCSCs is promising to be a new direction for the treatment of HCC. Herein, we summarize the potentially therapeutic targets in LCSCs at the level of genes, molecules and cells, such as knockout of oncogenes or oncoproteins, restoring the silent tumor suppressor genes, inhibition of the transcription factors and regulation of noncoding RNAs (including microRNAs and long noncoding RNAs) in LCSCs at the genetic level; inhibition of markers and blockade of the key signaling pathways of LCSCs at the molecular level; and inhibiting autophagy and application of oncolytic adenoviruses in LCSCs at the cellular level. Moreover, we analyze the potential targets in LCSCs to eliminate chemoresistance of HCC. Thereinto, the suppression of autophagy and Nanog by chloroquine and shRNA respectively may be the most promising targeting approaches. These targets may provide novel therapeutic strategies for the treatment of HCC by targeting LCSCs.

14.
J Exp Clin Cancer Res ; 37(1): 252, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30326936

RESUMO

BACKGROUND: There is increasing evidence that liver cancer stem cells (LCSCs) contribute to hepatocellular carcinoma (HCC) initiation and progression. MicroRNA (miRNA) plays a significant functional role by directly regulating respective targets in LCSCs-triggered HCC, however, little is known about the function of the miRNA-302 family in LCSCs. METHODS: MiRNAs microarray was used to detect the miRNAs involved in LCSCs maintenance and differentiation. Biological roles and the molecular mechanism of miRNA-302a/d and its target gene E2F7 were detected in HCC in vitro. The expression and correlation of miRNA-302a/d and E2F7 in HCC patients was evaluated by quantitative PCR and Kaplan-Meier survival analysis. RESULTS: We found that the miRNA-302 family was downregulated during the spheroid formation of HCC cells and patients with lower miRNA-302a/d expression had shorter overall survival (OS) and progression-free survival (PFS). Moreover, E2F7 was confirmed to be directly targeted and inhibited by miRNA-302a/d. Furthermore, concomitant low expression of miRNA-302a/d and high expression of E2F7 correlated with a shorter median OS and PFS in HCC patients. Cellular functional analysis demonstrated that miRNA-302a/d negatively regulates self-renewal capability and cell cycle entry of liver cancer stem cells via suppression of its target gene E2F7 and its downstream AKT/ß-catenin/CCND1 signaling pathway. CONCLUSIONS: Our data provide the first evidence that E2F7 is a direct target of miRNA-302a/d and miRNA-302a/d inhibits the stemness of LCSCs and proliferation of HCC cells by targeting the E2F7/AKT/ß-catenin/CCND1 signaling pathway.


Assuntos
Carcinoma Hepatocelular/patologia , Fator de Transcrição E2F7/metabolismo , Neoplasias Hepáticas/patologia , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Fator de Transcrição E2F7/biossíntese , Fator de Transcrição E2F7/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Esferoides Celulares
15.
Mol Cancer ; 16(1): 165, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29061150

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common malignant tumours with a poor prognosis worldwide. While early stage tumours can be treated with curative approaches such as liver transplantation or surgical resection, these are only suitable for a minority of patients. Those with advanced stage disease are only suitable for supportive approaches and most are resistant to the conventional chemotherapy or radiotherapy. Liver cancer stem cells (LCSCs) are a small subset of cancer cells with unlimited differentiation ability and tumour forming potential. In order to develop novel therapeutic approaches for HCC, we need to understand how the cancer develops and why treatment resistance occurs. Using high-throughput sequencing techniques, a large number of dysregulated long noncoding RNAs (lncRNAs) have been identified, and some of which are closely linked to key aspects of liver cancer pathology, progression, outcomes and for the maintenance of cancer stem cell-like properties. In addition, some lncRNAs are potential biomarkers for HCC diagnosis and may serve as the therapeutic targets. This review summarizes data recently reported lncRNAs that might be critical for the maintenance of the biological properties of LCSCs.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , RNA Longo não Codificante/fisiologia , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Células-Tronco Neoplásicas/metabolismo , RNA Longo não Codificante/genética
16.
Int J Clin Exp Pathol ; 10(12): 11968-11978, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31966561

RESUMO

This study aimed to investigate the effect of ß-catenin inhibitors on cells proliferation and apoptosis in lung cancer stem cells (LCSCs). Drug-resistance PC9 cells were induced by escalation of cisplatin repeated treatment, and then PC9 LCSCs were constructed by Sphere Formation methods. Membrane expression of OCT4, SOX2, CD44, CD133 and ß-Catenin were detected by Immunofluorescent staining, and mRNA of CSCs marker genes and Wnt/ß-Catenin target genes were determined by qPCR assay. PC9 LCSCs were nurtured for 5 days (Day 5) and then ß-catenin inhibitor pyrvinium pamoate (PP) with IC50 concentration (0.221 µM) and ICG-100 with IC50 concentration (2.620 µM) were added and cultured for another 2 days (Day 7), respectively. CCK8 and AV/PI assays were performed to detect cells proliferation and apoptosis. We successfully constructed PC9 LCSCs and observed that OCT4, SOX2, CD44, CD133 and ß-Catenin expressed on all cells, and stem-cell marker genes as well as Wnt/ß-Catenin signaling pathway genes mRNA were all elevated in PC9 LCSCs compared to PC9 parent cells. Cells proliferation by CCK8 assay was decreased while apoptosis rate by AV/PI assay was increased in PP treatment group compared with control, C-Caspase 3 and Bcl-2 protein expression also supported the apoptosis results. Most of the stem-cell marker genes and Wnt/ß-Catenin signaling pathway genes mRNAs were decreased accordingly. ICG-001 also inhibited cells proliferation while induced cells apoptosis in PC9 LCSCs. In conclusion, ß-Catenin inhibitors suppressed the proliferation and promoted the apoptosis of LCSCs, which shed light on a new potential target for lung cancer treatment.

17.
Springerplus ; 5(1): 1762, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27795904

RESUMO

Increasing evidence suggests that cancer stem cells (CSCs) are a key occurrence in the process of many human cancers. Lung cancer is the most common aggressive malignancy and cause of cancer death worldwide. The research on lung cancer stem cells has been highlighted for many years. Lung CSCs seem to play a major role in lung cancer metastasis, drug resistance and tumour-self-renewal. MicroRNAs (miRNAs), a class of newly emerging small noncoding RNAs that act as post-transcriptional regulators of gene expression, have been demonstrated to serve as a vital player in fine-tuning a number of biological activities ranging from embryogenesis to programmed cell death as well as tumourigenesis. In recent years, several miRNAs have been highlighted to be specifically expressed in CSCs. The miRNA profile of CSCs is remarkably different from non-stem cancer cells. As such, many miRNAs have been shown to regulate self-renewal and differentiation properties of CSCs. In this review, we present the latest findings on miRNAs that regulate the tumour microenvironment of lung CSCs with the goal to prompt the development of novel therapeutic strategies for patients with lung cancer.

18.
Oncotarget ; 7(24): 35894-35916, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27145285

RESUMO

AIM: To investigate the use of thermosensitive magnetoliposomes (TMs) loaded with magnetic iron oxide (Fe3O4) and the anti-cancer stem cell marker CD90 (CD90@TMs) to target and kill CD90+ liver cancer stem cells (LCSCs). METHODS: The hepatocellular carcinoma cell line Huh7 was used to separate CD90+ LCSCs by magnetic-activated cell sorting. CD90@TMs was characterized and their ability to target CD90+ LCSCs was determined. Experiments were used to investigate whether CD90@TMs combined with magnetic hyperthermia could effectively eliminate CD90+ LCSCs. RESULTS: The present study demonstrated that CD90+ LCSCs with stem cells properties were successfully isolated. We also successfully prepared CD90@TMs that was almost spherical and uniform with an average diameter of 130±4.6 nm and determined that magnetic iron oxide could be incorporated and retained a superparamagnetic response. CD90@TMs showed good targeting and increased inhibition of CD90+ LCSCs in vitro and in vivo compared to TMs. CONCLUSIONS: CD90@TMs can be used for controlled and targeted delivery of anticancer drugs, which may offer a promising alternative for HCC therapy.


Assuntos
Anticorpos/imunologia , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/imunologia , Células-Tronco Neoplásicas/imunologia , Antígenos Thy-1/imunologia , Animais , Anticorpos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Separação Imunomagnética/métodos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Temperatura , Antígenos Thy-1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
19.
Int J Nanomedicine ; 10: 7345-58, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26677324

RESUMO

PURPOSE: To explore the thermoresistance and expression of heat-shock protein 90 (HSP90) in magnetic hyperthermia-treated human liver cancer stem-like cells (LCSCs) and the effects of a heat-shock protein HSP90 inhibitor 17-allylamino-17-demethoxgeldanamycin (17-AAG) on hepatocellular carcinoma-burdened nude mice. METHODS: CD90(+) LCSCs were isolated by magnetic-activated cell sorting from BEL-7404. Spheroid formation, proliferation, differentiation, drug resistance, and tumor formation assays were performed to identify stem cell characteristics. CD90-targeted thermosensitive magnetoliposomes (TMs)-encapsulated 17-AAG (CD90@17-AAG/TMs) was prepared by reverse-phase evaporation and its characteristics were studied. Heat tolerance in CD90(+) LCSCs and the effect of CD90@17-AAG/TMs-mediated heat sensitivity were examined in vitro and in vivo. RESULTS: CD90(+) LCSCs showed significant stem cell-like properties. The 17-AAG/TMs were successfully prepared and were spherical in shape with an average size of 128.9±7.7 nm. When exposed to magnetic hyperthermia, HSP90 was up-regulated in CD90(+) LCSCs. CD90@17-AAG/TMs inhibited the activity of HSP90 and increased the sensitivity of CD90(+) LCSCs to magnetic hyperthermia. CONCLUSION: The inhibition of HSP90 could sensitize CD90(+) LCSCs to magnetic hyperthermia and enhance its anti-tumor effects in vitro and in vivo.


Assuntos
Benzoquinonas/farmacologia , Carcinoma Hepatocelular/patologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Hipertermia Induzida , Lactamas Macrocíclicas/farmacologia , Neoplasias Hepáticas/patologia , Fenômenos Magnéticos , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Hepáticas/terapia , Camundongos , Camundongos Nus
20.
Cancer Lett ; 339(1): 70-81, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23879969

RESUMO

Liver cancer stem cells (LCSCs) can drive and maintain hepatocellular carcinoma (HCC) growth, metastasis, and recurrence. Therefore, they are potentially responsible for the poor prognosis of HCC. Oxygen and nutrient deficiencies are common characteristics of the tumor microenvironment. However, how LCSCs adapt to oxygen- and nutrient-deprived conditions is unclear. Here, we used immunofluorescent staining and flow cytometry analysis to show that CD133+ cells were significantly enriched after hypoxia and nutrient starvation (H/S) in the human HCC cell line Huh7. Sorted CD133+ cells showed higher survival, less apoptosis, and possess higher clonogenic ability under H/S compared to the CD133- population. Under H/S, electron microscopy revealed more advanced autophagic vesicles in CD133+ cells. Additionally, CD133+ cells had higher autophagy levels as measured by both RT-qPCR and Western blotting. CD133+ cells had more accumulated GFP-LC3 puncta, which can be detected by fluorescence microscopy. The autophagic inhibitor chloroquine (CQ) significantly increased apoptosis and decreased the clonogenic capacity of CD133+ cells under H/S. Pre-culturing in H/S enhanced the sphere-forming capacity of CD133+ cells. However, CQ significantly impaired this process. Therefore, autophagy is essential for LCSCs maintenance. CD133+ cells were also found to have a higher tumor-forming ability in vivo, which could be inhibited by CQ administration. Collectively, our results indicate that the involvement of autophagy in maintenance of CD133+ LCSCs under the oxygen- and nutrient-deprived conditions that are typical of the tumor microenvironment in HCC. Therefore, autophagy inhibitors may make LCSCs more sensitive to the tumor microenvironment and be useful in improving anti-cancer treatments.


Assuntos
Antígenos CD/metabolismo , Glicoproteínas/metabolismo , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Peptídeos/metabolismo , Microambiente Tumoral , Antígeno AC133 , Animais , Autofagia/efeitos dos fármacos , Hipóxia Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cloroquina/farmacologia , Humanos , Masculino , Camundongos , Inanição , Transplante Heterólogo , Ensaio Tumoral de Célula-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA