Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.676
Filtrar
1.
JACC Case Rep ; 29(19): 102614, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39484310

RESUMO

Typical side effects of proprotein convertase subtilisin/kexin type 9 monoclonal antibodies including influenza-like illness and injection site reactions, are minor and well tolerated. This case, however, highlights a less common but severe reaction, indicating the need for clinicians to understand and manage potential rare side effects noted with biologics.

2.
Arthritis Res Ther ; 26(1): 188, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39482717

RESUMO

OBJECTIVES: Patients with rheumatoid arthritis (RA) commonly experience a high prevalence of multiple metabolic diseases (MD), leading to higher morbidity and premature mortality. Here, we aimed to investigate the pathogenesis of MD in RA patients (RA_MD) through an integrated multi-omics approach. METHODS: Fecal and blood samples were collected from a total of 181 subjects in this study for multi-omics analyses, including 16S rRNA and internally transcribed spacer (ITS) gene sequencing, metabolomics, transcriptomics, proteomics and phosphoproteomics. Spearman's correlation and protein-protein interaction networks were used to assess the multi-omics data correlations. The Least Absolute Shrinkage and Selection Operator (LASSO) machine learning algorithm were used to identify disease-specific biomarkers for RA_MD diagnosis. RESULTS: Our results found that RA_MD was associated with differential abundance of gut microbiota such as Turicibacter and Neocosmospora, metabolites including decreased unsaturated fatty acid, genes related to linoleic acid metabolism and arachidonic acid metabolism, as well as downregulation of proteins and phosphoproteins involved in cholesterol metabolism. Furthermore, a multi-omics classifier differentiated RA_MD from RA with high accuracy (AUC: 0.958). Compared to gouty arthritis and systemic lupus erythematosus, dysregulation of lipid metabolism showed disease-specificity in RA_MD. CONCLUSIONS: The integration of multi-omics data demonstrates that lipid metabolic pathways play a crucial role in RA_MD, providing the basis and direction for the prevention and early diagnosis of MD, as well as new insights to complement clinical treatment options.


Assuntos
Artrite Reumatoide , Metabolismo dos Lipídeos , Doenças Metabólicas , Proteômica , Humanos , Artrite Reumatoide/metabolismo , Metabolismo dos Lipídeos/fisiologia , Masculino , Feminino , Pessoa de Meia-Idade , Doenças Metabólicas/metabolismo , Doenças Metabólicas/diagnóstico , Doenças Metabólicas/genética , Proteômica/métodos , Metabolômica/métodos , Microbioma Gastrointestinal/fisiologia , Adulto , Biomarcadores/metabolismo , Biomarcadores/sangue , Idoso , Multiômica
3.
Anim Biosci ; 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39483027

RESUMO

Objective: This study aimed to investigate whether intermittent cold stimulation can induce adaptation in broilers to acute cold stress (ACS) by regulating the lipid metabolism of hearts. Methods: CS0 were kept at normal rearing temperature, while CS3 and CS5 were exposed to 3°C for 3 and 5 hours, respectively, on alternate days lower than CS0 from 15d to 35d. On 50d, broilers in three groups were exposed to ACS at 10°C for 12 hours (Y12). The levels of corticosterone (CORT) and liothyronine (T3), mRNA and protein levels of heart AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) pathway genes were assessed at 36d, 50d and Y12. Results: At 36d, mRNA levels of AMPKα, acyl-CoA oxidase (ACO), mTOR, sterol-regulatory element binding protein (SREBP), stearoyl-coA desaturase (SCD), acetyl-coA carboxylase (ACC), fatty acid synthase (FAS) and protein level of peroxisome proliferators-activated receptor α (PPARα) in CS3 and CS5 were significantly lower than those in CS0 (p<0.05). At 50d, compared to CS0, mRNA levels of PPARα, carnitine palmitoyltransferase1 (CPT1), ACO, tuberous sclerosis complex (TSC), SREBP and SCD, as well as protein levels of p-AMPKα/AMPKα, PPARα and SREBP were significantly increased in CS5 (p<0.05). At Y12, the levels of T3 in CS3 and CS5 were significantly higher than those in CS0 (p<0.05), mRNA levels of CPT1, ACO, SREBP, SCD and protein levels of p-AMPKα/AMPKα, SREBP, and FAS were significantly higher in CS5 than in CS0 and CS3 (p<0.05). However, compared to 50d, at Y12, mRNA levels of AMPKα, CPT1 and ACO in CS3 and CS5 significantly decreased (p<0.05), while protein levels of p-AMPKα/AMPKα significantly increased (p<0.05). Conclusion: This study suggested that intermittent cold stimulation at 3°C lower than normal rearing temperature for 5h could help broilers adapt to the ACS by promoting heart lipid metabolism.

4.
Heliyon ; 10(18): e38018, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39381218

RESUMO

Immune metabolism is a result of many specific metabolic reactions, such as glycolysis, the tricarboxylic acid (TCA) pathway, the pentose phosphate pathway (PPP), mitochondrial oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), fatty acid biosynthesis (FAs) and amino acid pathways, which promote cell proliferation and maintenance with structural and pathological energy to regulate cellular signaling. The metabolism of macrophages produces many metabolic intermediates that play important regulatory roles in tissue repair and regeneration. The metabolic activity of proinflammatory macrophages (M1) mainly depends on glycolysis and the TCA cycle system, but anti-inflammatory macrophages (M2) have intact functions of the TCA cycle, which enhances FAO and is dependent on OXPHOS. However, the metabolic mechanisms of macrophages in tissue repair and regeneration have not been well investigated. Thus, we review how three main metabolic mechanisms of macrophages, glucose metabolism, lipid metabolism, and amino acid metabolism, regulate tissue repair and regeneration.

5.
Biomed Pharmacother ; 180: 117531, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39383732

RESUMO

BACKGROUND: Liver plays a central role in systemic glucose and lipid metabolism. High-fat diet (HFD) and obesity are related to hepatic lipid accumulation and insulin resistance (InsR). Diacylglycerols (DAG) play a key role in the induction of InsR, however their involvement in hepatic InsR remains debated. This study aimed to clarify and confirm the role of glycero-3-phosphate acyltransferase 1 (GPAT1), a rate-limiting enzyme in DAG synthesis, in the progression of hepatic InsR in the context of HFD-induced lipid accumulation and insulin resistance in the liver. METHODS: Liver-targeted GPAT1 silencing was performed using shRNA-mediated hydrodynamic gene delivery. Lipid species including LCA-CoA, sphingolipids, DAG and acyl-carnitines were quantified using UHPLC/MS/MS while insulin signalling was assessed at protein level by Western Blot. Hepatic glucose metabolism, including glucose-6-pasphate content and gluconeogenesis rate was evaluated using GC/MS. RESULTS: HFD-fed animals developed InsR, evidenced by increased HOMA-IR, enhanced gluconeogenesis and reduced glycogen content compared to controls. Hepatic GPAT1 silencing in HFD-fed animals resulted in a significant reduction of DAG and TAG levels, increased acyl-carnitines content and upregulated mitochondrial ß-oxidation protein expression. These changes were accompanied by improved insulin signalling, enhanced glycogen storage, and reduced gluconeogenesis. CONCLUSIONS: Silencing GPAT1, and thereby reducing glycerolipid synthesis, promotes ß-oxidation and ameliorates HFD-induced hepatic insulin resistance, confirming the enzyme's pivotal role in liver metabolic dysfunction associated with increased lipid supply.

7.
J Agric Food Chem ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39356723

RESUMO

Lactulosyllysine (LL) is abundant in thermally processed dairy products, with its concentration increasing in response to more intense heat treatment. However, there are limited studies on the potential harmful effects of LL on human health. This study investigated the negative impact of casein-bound LL on liver health by feeding healthy C57BL/6 mice diets containing varying levels of casein-bound LL. After 16 weeks of LL diet administration, mice exhibited a nonobese nonalcoholic fatty liver disease (NONAFLD) phenotype, characterized by reduced body weight gain, hypolipidemia, and intrahepatic lipid accumulation. Nontarget metabolomic analysis showed that casein-bound LL induced alterations in plasma levels of compounds associated with lipid degradation. Mechanistically, casein-bound LL may impair the function of 5'-adenosine monophosphate-activated protein kinase and apolipoprotein B100 by inducing dicarbonyl stress, thereby promoting carbonyl glycation in the liver. Consequently, the long-term consumption of LL-rich dairy products may be a contributing factor to the risk of developing NONAFLD.

9.
Artigo em Inglês | MEDLINE | ID: mdl-39358108

RESUMO

BACKGROUND AND AIM: Ageing often leads to the deterioration of physiological functions, including a decline in antioxidant defences, which can result in various health complications. Exogenous antioxidants have been recognised for their potential to alleviate these age-related health complications. Virgin coconut oil (VCO), known for its antioxidant, anti-inflammatory and anti-lipidemic efficacies, has gained recognition as a functional food with promising benefits. However, the safety of VCO consumption among individuals of the aged and diseased population remains to be fully established. METHODS AND RESULTS: Five experimental groups were established, consisting of one control group and four groups administered either "2 mL" or "4 mL" per kg body weight of "HP-VCO" or "F-VCO" daily for six weeks. Body weight, water, and feed intake were monitored. After six weeks, animals were euthanized, blood and organs were collected for analysis. Oxidative stress and dyslipidemia markers were analysed, and liver tissues underwent histological examination. HP-VCO-administered animals exhibited increased serum total cholesterol and triglycerides, whereas F-VCO-fed animals showed reduced triglyceride levels. LDL-cholesterol levels decreased in all VCO-fed groups, accompanied by increased HDL-cholesterol levels. Additionally, all treated groups showed a slight increase in the HMG Co. A/mevalonate ratio. Both VCO-fed animals displayed elevated reduced glutathione levels and reduced glutathione - S transferase activity. Consistent with these findings, decreased conjugated dienes and thiobarbituric acid reactive substances confirmed the improved redox status. CONCLUSION: The study indicated that F-VCO is advantageous over VCO prepared by hot pressing as it offers protection against oxidative stress and related degenerative diseases.

10.
Biochim Biophys Acta Bioenerg ; 1866(1): 149517, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39366438

RESUMO

Neurodegeneration with brain iron accumulation (NBIA) is a broad, heterogeneous group of rare inherited diseases (1-3 patients/1,000,000 people) characterized by progressive symptoms associated with excessive abnormal iron deposition in the brain. Approximately 15,000-20,000 individuals worldwide are estimated to be affected by NBIA. NBIA is usually associated with slowly progressive pyramidal and extrapyramidal symptoms, axonal motor neuropathy, optic nerve atrophy, cognitive impairment and neuropsychiatric disorders. To date, eleven subtypes of NBIA have been described and the most common ones include pantothenate kinase-associated neurodegeneration (PKAN), PLA2G6-associated neurodegeneration (PLAN), mitochondrial membrane protein-associated neurodegeneration (MPAN) and beta-propeller protein-associated neurodegeneration (BPAN). We present a comprehensive overview of the evidence for disturbed cellular homeostasis and metabolic alterations in NBIA variants, with a careful focus on mitochondrial bioenergetics and lipid metabolism which drives a new perspective in understanding the course of this infrequent malady.

11.
Mol Nutr Food Res ; : e2400604, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39363653

RESUMO

SCOPE: Metabolic syndrome (MetS) significantly contributes to premature mortality, with obesity being a major risk factor. Dragon fruit, cultivated globally, exhibits bioactivity in preventing obesity-related diseases. Traditional studies using organic solvents for extraction do not align with actual consumption patterns. METHOD AND RESULTS: This study evaluates whole red dragon fruit's effectiveness in ameliorating metabolic disorders using a high-fat diet-induced obesity model in mice for 20 weeks. The experimental groups include the supernatant (RS), precipitate (RP), and pomace (PO) of red dragon fruit juice, compared to the supernatant of white dragon fruit juice (WS). The study finds that dragon fruit extracts reduced adipose tissue weight, body fat percentage, pro-inflammatory cytokines, and improved blood lipid profiles. RP is the most effective, reducing body weight by 4.33 g, improving lipid metabolism and glucose homeostasis, and altering gut microbiota to enhance beneficial bacteria and short-chain fatty acids. RP's efficacy in preventing MetS and obesity is attributed to its bioactive components. CONCLUSION: These findings advocate for using whole fruits in developing functional products, amplifying the agricultural economic value of red dragon fruit.

12.
Cell Commun Signal ; 22(1): 475, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367496

RESUMO

Peroxisomes are dynamic organelles involved in various cellular processes, including lipid metabolism, redox homeostasis, and intracellular metabolite transfer. Accumulating evidence suggests that peroxisomal homeostasis plays a crucial role in human health and disease, particularly in metabolic disorders and ferroptosis. The abundance and function of peroxisomes are regulated by a complex interplay between biogenesis and degradation pathways, involving peroxins, membrane proteins, and pexophagy. Peroxisome-dependent lipid metabolism, especially the synthesis of ether-linked phospholipids, has been implicated in modulating cellular susceptibility to ferroptosis, a newly discovered form of iron-dependent cell death. This review discusses the current understanding of peroxisome homeostasis, its roles in redox regulation and lipid metabolism, and its implications in human diseases. We also summarize the main mechanisms of ferroptosis and highlight recent discoveries on how peroxisome-dependent metabolism and signaling influence ferroptosis sensitivity. A better understanding of the interplay between peroxisomal homeostasis and ferroptosis may provide new insights into disease pathogenesis and reveal novel therapeutic strategies for peroxisome-related metabolic disorders and ferroptosis-associated diseases.


Assuntos
Ferroptose , Homeostase , Doenças Metabólicas , Peroxissomos , Peroxissomos/metabolismo , Humanos , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Animais , Metabolismo dos Lipídeos
13.
Artigo em Inglês | MEDLINE | ID: mdl-39395751

RESUMO

MiR-30c and fatty acid synthase (fas) both play important roles in physiological processes such as lipid synthesis and fat metabolism. Predictive analysis revealed that fas is a target gene of miR-30c with multiple seed sites. Seed sites are useful to predict miRNA targeting relationships; however, detailed analyses of seed sites in fish genomes remain poorly studied. In this study, the regulatory relationship between miR-30c and fas, number and effect of seed regions, and mechanism by which miR-30c regulates lipid metabolism were evaluated in blunt snout bream (Megalobrama amblycephala). Four miR-30c target sites for fas were identified using various prediction tools. miR-30c mimics were transfected into 293 T cells, and dual-luciferase reporter assays were used to evaluate the roles of different fas target sites. When a single target site was mutated, relative luciferase activity was higher than that in the control group, with different activity levels depending on the mutation site. When multiple target sites were mutated, relative luciferase activity increased significantly as the number of mutation sites increased and was the highest when the four sites were mutated simultaneously. The miR-30c agomir was injected into the abdominal cavity of M. amblycephala at various concentrations for analyses of physiological and biochemical parameters in the liver and blood and the expression of genes related to lipid metabolism in the liver. Total cholesterol, free fatty acid, triglyceride, and low density lipoprotein levels were significantly lower after miR-30c agomir injection comparing to the control (P < 0.05). Additionally, the expression levels of genes related to lipid metabolism were significantly lower after miR-30c agomir injection than in the control (P < 0.05). In summary, this study identified four specific miR-30c target sites in the 3' UTR of fas mRNA; the effects of these sites are cumulative, and the redundancy ensures the accurate regulation of fas during evolution. In addition, miR-30c has a negative regulatory effect on fas and regulates lipid metabolism via various genes related to this process. Therefore, the regulation of miR-30c can effectively ameliorate the side effects of a high-fat diet on liver function in M. amblycephala.

14.
Cell Rep ; 43(11): 114878, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39412989

RESUMO

The transcription repressor Bach2 plays a crucial role in shaping humoral immunity, but its cell-autonomous function remains elusive. Here, we reveal the mechanism by which Bach2 regulates effector cell maturation in peripheral B cells. In response to Toll-like receptor (TLR) agonists, Bach2 deficiency promotes the differentiation of follicular, but not marginal zone, B cells into effector cells, producing interleukin (IL)-6 and antibodies. This phenomenon is associated with changes in lipid metabolism, such as increases in CD36 expression, lipid influx, and fatty acid oxidation. Consistent with this, Bach2-deficient B cells exhibit elevated levels of mitochondrial oxidative stress, lipid peroxidation, and p38 activation. Mechanistically, Bach2 acts as a repressor of Cd36, and inhibition of CD36 or fatty acid oxidation reduces the differentiation of naive B cells into IL-6- and antibody-secreting cells. These results indicate Bach2 as a key metabolic checkpoint regulator crucial for maintaining a functionally quiescent state of follicular B cells.

15.
Animal ; 18(11): 101334, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39413651

RESUMO

Generally, energy expenditure and compensation according to food deprivation and refeeding often occur along the life cycle of farmed-raised fish. Fasting and refeeding are also hypothesised to modulate carbohydrate metabolism particularly for herbivorous and/or omnivorous. This study aims to investigate the effects of short-term fasting and subsequent refeeding with high or low-carbohydrate diets on the intermediary carbohydrate metabolism of juvenile and adult Nile tilapia (Oreochromis niloticus) which is known to be a good user of carbohydrate as an energy source. Fish were fasted for 4 days and subsequently refed with either a low carbohydrate and high protein (LC/HP) or high carbohydrate and low protein (HC/LP) diet for 4 days. Our results showed that 4 days of refeeding with either one of the diets could compensate for weight loss due to fasting. Thus, we investigated the effects of a 4-day-refeeding strategy and different carbohydrate-refeeding diets on plasma metabolites, nutrient composition, and glucose and its related metabolism in the liver and muscle of adult fish. Refeeding had similar effects in adults and juveniles and induced modulations to the intermediary metabolism: (1) refeeding with the HC/LP diet elevated plasma glucose levels; (2) refeeding with both diets increased triglyceride levels in the plasma, liver, and muscle, but the effect of the HC/LP diet was superior; (3) refeeding elevated plasma cholesterol levels in adults, irrespective of diet; (4) refeeding with both diets increased hepatic lipid levels in juveniles, with stronger effects observed in those fed the HC/LP diet, and refeeding with the HC/LP diet elevated hepatic lipid levels in adults; (5) refeeding with both diets increased the plasma protein content, but the effect of the LC/HP diet was superior; (6) refeeding with the LC/HP diet increased hepatic protein content in adults; and (7) refeeding with both diets increased hepatic glycogen levels, but the effect of the HC/LP diet was superior. Additionally, in juveniles and adults, refeeding with the HC/LP diet upregulated the expression of glycolytic genes in the liver and muscle, lipogenic genes in the liver, and glucose transport genes. Moreover, refeeding with the HC/LP diet downregulated the expression of gluconeogenic and amino acid catabolism genes in the liver and amino acid catabolism genes in the muscle. Collectively, the effect of short-term refeeding with a high carbohydrate diet on intermediary metabolism resembled that of long-term feeding, supporting the hypothesis that Nile tilapia, an omnivorous fish, is highly responsive to dietary carbohydrates.

16.
J Microbiol ; 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39417925

RESUMO

Obesity and metabolic dysfunction-associated fatty liver disease (MAFLD) are prevalent metabolic disorders with substantial global health implications that are often inadequately addressed by current treatments and may have side effects. Probiotics have emerged as promising therapeutic agents owing to their beneficial effects on gut health and metabolism. This study investigated the synergistic effects of a probiotic combination of BNR17 and ABF21069 on obesity and MAFLD in C57BL/6 mice fed a high-sucrose diet. The probiotic combination significantly reduced body weight and fat accumulation compared with the high-sucrose diet. It also alleviated elevated serum leptin levels induced by a high-sucrose diet. Histological analysis revealed a significant reduction in white adipose tissue and fatty liver in the mice treated with the probiotic combination. Furthermore, increased expression of genes related to ß-oxidation, thermogenesis, and lipolysis suggested enhanced metabolic activity. The probiotic groups, particularly the BNR17 group, showed an increase in fecal exopolysaccharides, along with a tendency toward a lower expression of intestinal sugar transport genes, indicating reduced sugar absorption. Additionally, inflammatory markers in the liver tissue exhibited lower expression in the ABF21069 group than in the HSD group. Despite each strain in the combination group having distinct characteristics and functions, their combined effect demonstrated synergy in mitigating obesity and MAFLD, likely through the modulation of fecal exopolysaccharides content and improvement in lipid metabolism. These findings underscore the potential of probiotic supplementation as a promising assistant therapy for managing obesity and MAFLD and provide valuable insights into its therapeutic mechanisms in metabolic disorders.

17.
Cureus ; 16(9): e68956, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39385885

RESUMO

Background Hypothyroidism occurs when the thyroid gland is underactive and fails to produce sufficient thyroid hormones. It can affect multiple organs including the heart, brain, liver, kidneys, and reproductive system, leading to symptoms such as fatigue, cognitive impairment, elevated cholesterol, fluid retention, fatty liver, and menstrual irregularities. Given the higher prevalence of fatty liver disease in patients with hypothyroidism, it is important to evaluate the need for routine screening for fatty liver in these patients. Materials and methods This observational, cross-sectional study was conducted at Dr. D. Y. Patil Medical Hospital, Pune, Maharashtra, India, from October 2022 to June 2024. The study included 60 patients aged over 12 years who were known or recently diagnosed with hypothyroidism. Patients with type 2 diabetes mellitus, pregnant women, or those with chronic liver disease were excluded. Data collected included physical examination findings and laboratory test results. Fatty liver was diagnosed using magnetic resonance elastography. Statistical analysis was performed using IBM SPSS statistics for Windows, version 20 (IBM Corp., Armonk, New York). The statistical significance of parametric data was evaluated using the Chi-square test. A p-value less than 0.05 and a confidence interval of 95% were considered statistically significant. Result The study population had an average age of about 45 years, with most participants aged between 40 and 49 years. The majority of the participants were female, making up over 83% of the group, while males constituted about 17%. The most commonly reported symptom was weight gain, followed by constipation and fatigue. For individuals with fatty liver, the average thyroid-stimulating hormone (TSH) level was notably higher compared to those without fatty liver. Additionally, low-density lipoprotein (LDL) levels were higher in individuals with non-alcoholic fatty liver disease (NAFLD) compared to those without. Both TSH and LDL levels showed a statistically significant association with the occurrence of NAFLD. Conclusion Hypothyroidism was more prevalent in females and in the age group 40-49 years. There was a statistical significance between TSH and the occurrence of NAFLD. In this study, statistical significance was also found between LDL and the occurrence of NAFLD.

18.
Phytomedicine ; 135: 156026, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39388921

RESUMO

BACKGROUD: Non-alcoholic fatty liver disease (NAFLD) is a growing chronic liver disease worldwide, and no effective agent is approved yet for this condition. Traditional Chinese Medicine (TCM), which has been practiced for thousands of years in China and other Asian countries, is considered an important source for identifying novel medicines for various diseases. Miao medicine Yindanxinnaotong formula (YDX) is a classical TCM for the treatment of hyperlipidemia disease by reducing blood lipid content, while the role of YDX have not been clarified in NAFLD. PURPOSE: To investigate the protective effect of YDX on NAFLD in mice induced by high fat diet (HFD) and clarify the potential mechanism. METHODS: NAFLD mice model was constructed by receiving HFD for 10-week period with or without YDX administration. Lipid profiles, biochemical indicators, and histopathological staining were performed to evaluate the extent of hepatic lipid accumulation and hepatic steatosis. 16S rRNA sequencing was used to determine the gut microbial composition. Serum metabolomics was further used to investigate the changes in plasma biomarkers for NAFLD-associated by UPLC-Q-TOF/MS analysis. Subsequently, liver transcriptomics was employed to identify differentially expressed genes and explore regulatory pathways. Then, lipid metabolism-related proteins and inflammation factors were examined by Western blot and ELISA. RESULTS: YDX reduced body weight gain, liver index and inflammatory cytokines levels, along with improved hepatic steatosis, serum lipid profile, sensitivity to insulin and also tolerance to glucose, and enhanced oxidative defense system in HFD-induced mice. Also, YDX remarkedly affected gut microbiota diversity and community richness and decreased the ratio of Firmicutes/Bacteroidetes. Meanwhile, YDX also reduced the production of harmful lipid metabolites in the sera of NAFLD mice, such as LPC(18:0), LPC(18:1) and carnitine. Notably, consistent with liver transcriptomics results, YDX downregulated the expression of proteins implicated in de novo lipid synthesis (Srebp-1c, Acaca, Fasn, Scd-1, and Cd36) and pro-inflammatory cytokines (IL-6 and TNF-α), and increased the expression of proteins-related fatty acid ß-oxidation (Ampkα, Ppar-α, and Cpt-1) in the liver by activating Ampk pathway. CONCLUSION: YDX is promisingly an effective therapy for preventing NAFLD by modulating the Ampk pathway, inhibiting gut microbiota disorder, and reducing the production of harmful lipid metabolites.

19.
Phytomedicine ; 135: 156125, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39388920

RESUMO

BACKGROUND: Alcoholic liver disease (ALD) is a severe public health concern worldwide and there is still a lack of effective treatments. Qiwei Jinggan Ling (QJL) has protective effects against various liver injuries, but its pharmacological action on ALD has received little attention. PURPOSE: To investigate the effect and mechanism of QJL on ALD in vivo and in vitro. METHODS: In vivo, an ALD mouse model was established by alcohol combined with a high-fat diet (HFD) and treated with QJL. Biochemical indicators, HE staining, and Oil Red O staining were employed to assess hepatic oxidative stress, steatosis, and alcohol metabolism. RNA sequencing analysis was performed, and the results were verified by qRT-PCR and Western blot to elucidate the hepatoprotective mechanism of QJL. In vitro, HepG2 cells were co-stimulated with NaOA (sodium oleate) and EtOH (ethanol), followed by intervention with Compound C (CC, AMPK inhibitor) and QJL-containing serum. Oil Red O, BODIPY (boron-dipyrromethene), and ROS (reactive oxygen species) staining were applied to validate the efficacy and mechanism of QJL-containing serum. The expression of AMP-activated protein kinase (AMPK) pathway-related factors was analyzed through qRT-PCR and Western blot for additional corroboration. Moreover, the key pharmacodynamic components of QJL were identified by UPLC-MS/MS and molecular docking. RESULTS: In vivo, QJL ameliorated liver structural disorders, steatosis, oxidative stress, and impaired alcohol metabolism, as indicated by biochemical indicators and histopathological assays. RNA sequencing analysis revealed that QJL reversed the expression of genes related to alcohol metabolism, fatty acid metabolism, and cholesterol metabolism. The results of qRT-PCR and Western blot were in line with those of RNA sequencing. Furthermore, it was discovered that QJL significantly upregulated the expression of p-AMPK and downregulated the expression of sterol regulatory element binding transcription factor 1 (SREBP-1c). In vitro, biochemical indicators and staining assays demonstrated that QJL-containing serum inhibited lipid accumulation and oxidative stress. The qRT-PCR and Western blot analysis revealed that QJL-containing serum markedly enhanced the expression of p-AMPK and carnitine palmitoyltransferase 1a (Cpt1a), while suppressing the expression of SREBP-1c, fatty acid synthase (Fasn), and acetyl-coenzyme A carboxylase 1 (ACC-1). However, CC inhibited the above pharmacological activities of QJL-containing serum. Additionally, (2S)-Liquiritigenin, Glycyrrhetinate, Isovitexin, Taxifolin, and Yohimbine were proved to be the key active components of QJL. CONCLUSION: QJL had the potential to be a therapeutic drug for ALD by activating the AMPK pathway, thereby regulating lipid metabolism and inhibiting oxidative stress.

20.
Environ Sci Technol ; 58(41): 18155-18166, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39361549

RESUMO

With considerable concerns about the associations between metabolic disorders and agricultural biocides, there are scattered data suggesting that the triazole fungicide prothioconazole (PTC) at lower doses than the no observed adverse effect level of 5000 µg/kg/d possibly has the potential to disrupt glycolipid metabolism in mammals. Here, we investigated the effects of 50, 500, and 5000 µg/kg/d of PTC on glycolipid metabolism in mice following 8 weeks of administration via drinking water, with specific attention on brown adipose tissue (BAT) and white adipose tissue (WAT) in addition to the liver. We found that along with the increased serum triglyceride level in the 5000 µg/kg/d group, small fatty vacuoles occurred in livers in all treatment groups, indicating lipid accumulation. No change in WAT was observed, but PTC caused BAT whitening, characterized by adipocyte hypertrophy, more unilocular adipocytes with enlarged lipid droplets, reduced UCP1 levels, and down-regulated Doi2 expression, and even the dose of 50 µg/kg/d was effective. Transcriptomic analysis revealed immune inhibition and circadian rhythm disturbance in BAT from the 5000 µg/kg/d group, which are in agreement with BAT whitening and inactivation. On employing the C3H10T1/2 cells in vitro, we found that PTC treatment concentration-dependently promoted lipid accumulation in brown adipocytes, along with altered expression of thermogenesis-related and circadian genes. Taken together, our study shows that low doses of PTC caused BAT whitening, calling for much attention to the new target by pollutants.


Assuntos
Tecido Adiposo Marrom , Fungicidas Industriais , Metabolismo dos Lipídeos , Animais , Camundongos , Metabolismo dos Lipídeos/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Fungicidas Industriais/toxicidade , Triazóis/farmacologia , Triazóis/toxicidade , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA