Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
mBio ; 15(7): e0074324, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38809022

RESUMO

Pathogenic bacteria rely on secreted virulence factors to cause disease in susceptible hosts. However, in Gram-positive bacteria, the mechanisms underlying secreted protein activation and regulation post-membrane translocation remain largely unknown. Using proteomics, we identified several proteins that are dependent on the secreted chaperone PrsA2. We followed with phenotypic, biochemical, and biophysical assays and computational analyses to examine the regulation of a detected key secreted virulence factor, listeriolysin O (LLO), and its interaction with PrsA2 from the bacterial pathogen Listeria monocytogenes (Lm). Critical to Lm virulence is internalization by host cells and the subsequent action of the cholesterol-dependent pore-forming toxin, LLO, which enables bacterial escape from the host cell phagosome. Since Lm is a Gram-positive organism, the space between the cell membrane and wall is solvent exposed. Therefore, we hypothesized that the drop from neutral to acidic pH as the pathogen is internalized into a phagosome is critical to regulating the interaction of PrsA2 with LLO. Here, we demonstrate that PrsA2 directly interacts with LLO in a pH-dependent manner. We show that PrsA2 protects and sequesters LLO under neutral pH conditions where LLO can be observed to aggregate. In addition, we identify molecular features of PrsA2 that are required for interaction and ultimately the folding and activity of LLO. Moreover, protein-complex modeling suggests that PrsA2 interacts with LLO via its cholesterol-binding domain. These findings highlight a mechanism by which a Gram-positive secretion chaperone regulates the secretion, stability, and folding of a pore-forming toxin under conditions relevant to host cell infection. IMPORTANCE: Lm is a ubiquitous food-borne pathogen that can cause severe disease to vulnerable populations. During infection, Lm relies on a wide repertoire of secreted virulence factors including the LLO that enables the bacterium to invade the host and spread from cell to cell. After membrane translocation, secreted factors must become active in the challenging bacterial cell membrane-wall interface. However, the mechanisms required for secreted protein folding and function are largely unknown. Lm encodes a chaperone, PrsA2, that is critical for the activity of secreted factors. Here, we show that PrsA2 directly associates and protects the major Lm virulence factor, LLO, under conditions corresponding to the host cytosol, where LLO undergoes irreversible denaturation. Additionally, we identify molecular features of PrsA2 that enable its interaction with LLO. Together, our results suggest that Lm and perhaps other Gram-positive bacteria utilize secreted chaperones to regulate the activity of pore-forming toxins during infection.


Assuntos
Toxinas Bacterianas , Proteínas de Choque Térmico , Proteínas Hemolisinas , Listeria monocytogenes , Listeriose , Dobramento de Proteína , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/química , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/química , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Listeria monocytogenes/patogenicidade , Listeria monocytogenes/química , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/química , Listeriose/microbiologia , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/química , Peptidilprolil Isomerase/metabolismo , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/química , Concentração de Íons de Hidrogênio , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Estabilidade Proteica , Humanos
2.
Biomed Pharmacother ; 171: 116129, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194738

RESUMO

Listeria monocytogenes (Lm), a foodborne bacterium, can infect people and has a high fatality rate in immunocompromised individuals. Listeriolysin O (LLO), the primary virulence factor of Lm, is critical in regulating the pathogenicity of Lm. This review concludes that LLO may either directly or indirectly activate a number of host cell viral pathophysiology processes, such as apoptosis, pyroptosis, autophagy, necrosis and necroptosis. We describe the invasion of host cells by Lm and the subsequent removal of Lm by CD8 T cells and CD4 T cells upon receipt of the LLO epitopes from major histocompatibility complex class I (MHC-I) and major histocompatibility complex class II (MHC-II). The development of several LLO-based vaccines that make use of the pore-forming capabilities of LLO and the immune response of the host cells is then described. Finally, we conclude by outlining the several natural substances that have been shown to alter the three-dimensional conformation of LLO by binding to particular amino acid residues of LLO, which reduces LLO pathogenicity and may be a possible pharmacological treatment for Lm.


Assuntos
Toxinas Bacterianas , Proteínas de Choque Térmico , Proteínas Hemolisinas , Listeria monocytogenes , Listeriose , Humanos , Listeriose/prevenção & controle , Linfócitos T CD8-Positivos , Imunidade
3.
Microb Pathog ; 185: 106447, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37972742

RESUMO

Listeria monocytogenes, a foodborne pathogen that causes listeriosis with high fatality rate, exhibits multidrug resistance (MDR) known to be progressively increasing. Alternative antibacterial strategies are in high demand for treating this well-known pathogen. Anti-biofilm and anti-virulence strategies are being explored as novel approaches to treat bacterial infections. In this study, one rare antibacterial named setomimycin was isolated from Streptomyces cyaneochromogenes, which showed potent antibacterial activity against L. monocytogenes. Next, the inhibition of biofilm formation and listeriolysin O (LLO) production against L. monocytogenes were investigated at sub-minimal inhibitory concentrations (sub-MICs) of setomimycin alone or combined with kanamycin and amikacin. Crystal violet staining confirmed that setomimycin combining with kanamycin or amikacin could dramatically reduce biofilm formation against L. monocytogenes at sub-MICs, which was further evaluated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). In the meantime, sub-MICs of setomimycin could significantly suppress the secretion of LLO. Furthermore, the transcription of genes associated with biofilms and main virulence factors, such as LLO, flagellum, and metalloprotease, were suppressed by setomimycin at sub-MICs. Hence, the study provided a deep insight into setomimycin as an alternative antibacterial agent against L. monocytogenes.


Assuntos
Listeria monocytogenes , Listeriose , Humanos , Amicacina/farmacologia , Canamicina/farmacologia , Listeriose/microbiologia , Biofilmes , Antibacterianos/farmacologia , Proteínas Hemolisinas/genética
4.
Small Methods ; 7(7): e2201719, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36960927

RESUMO

Wearable electronic devices with next-generation biocompatible, mechanical, ultraflexible, and portable sensors are a fast-growing technology. Hardware systems enabling artificial neural networks while consuming low power and processing massive in situ personal data are essential for adaptive wearable neuromorphic edging computing. Herein, the development of an ultraflexible artificial-synaptic array device with concrete-mechanical cyclic endurance consisting of a novel heterostructure with an all-solid-state 2D MoS2 channel and LiSiOx (lithium silicate) is demonstrated. Enabled by the sequential fabrication process of all layers, by excluding the transfer process, artificial van der Waals devices combined with the 2D-MoS2 channel and LiSiOx solid electrolyte exhibit excellent neuromorphic synaptic characteristics with a nonlinearity of 0.55 and asymmetry ratio of 0.22. Based on the excellent flexibility of colorless polyimide substrates and thin-layered structures, the fabricated flexible neuromorphic synaptic devices exhibit superior long-term potentiation and long-term depression cyclic endurance performance, even when bent over 700 times or on curved surfaces with a diameter of 10 mm. Thus, a high classification accuracy of 95% is achieved without any noticeable performance degradation in the Modified National Institute of Standards and Technology. These results are promising for the development of personalized wearable artificial neural systems in the future.

5.
Front Cell Dev Biol ; 10: 1008078, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36200043

RESUMO

The second step of eukaryotic lipid-linked oligosaccharide (LLO) biosynthesis is catalyzed by the conserved ALG13/ALG14 heterodimeric UDP-N-acetylglucosamine transferase (GnTase). In humans, mutations in ALG13 or ALG14 lead to severe neurological disorders with a multisystem phenotype, known as ALG13/14-CDG (congenital disorders of glycosylation). How these mutations relate to disease is unknown because to date, a reliable GnTase assay for studying the ALG13/14 complex is lacking. Here we describe the development of a liquid chromatography/mass spectrometry-based quantitative GnTase assay using chemically synthesized GlcNAc-pyrophosphate-dolichol as the acceptor and purified human ALG13/14 dimeric enzyme. This assay enabled us to demonstrate that in contrast to the literature, only the shorter human ALG13 isoform 2, but not the longer isoform 1 forms a functional complex with ALG14 that participates in LLO synthesis. The longer ALG13 isoform 1 does not form a complex with ALG14 and therefore lacks GnTase activity. Importantly, we further established a quantitative assay for GnTase activities of ALG13- and ALG14-CDG variant alleles, demonstrating that GnTase deficiency is the cause of ALG13/14-CDG phenotypes.

6.
Microbiol Spectr ; 10(4): e0181022, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35856678

RESUMO

Listeria monocytogenes remains a nonnegligible cause of foodborne infection, posing a critical threat to public health. Under the global antibiotic crisis, novel alternative approaches are urgently needed. The indispensable role of listeriolysin O (LLO) in the intracellular life cycle, barrier penetration, colonization, and systemic dissemination of L. monocytogenes renders it a potent drug target, which means curbing L. monocytogenes via interfering with LLO-associated pathogenic mechanisms. Here, we identified kaempferol, a natural small molecule compound, as an effective LLO inhibitor that engaged the residues Glu437, Ile468, and Tyr469 of LLO, thereby suppressing LLO-mediated membrane perforation and barrier disruption. Moreover, we found that kaempferol also suppressed host-derived inflammation in a distinct way independent of LLO inhibition. The in vivo study revealed that kaempferol treatment significantly reduced bacterial burden and cytokine burst in target organs, thereby effectively protecting mice from systemic L. monocytogenes infection. Our findings present kaempferol as a potential therapeutic application for L. monocytogenes infection, which is less likely to induce drug resistance than antibiotics because of its superiority of interfering with the pathogenesis process rather than exerting pressure on bacterial viability. IMPORTANCE Currently, we are facing a global crisis of antibiotic resistance, and novel alternative approaches are urgently needed to curb L. monocytogenes infection. Our study demonstrated that kaempferol alleviated L. monocytogenes infection via suppressing LLO pore formation and inflammation response, which might represent a novel antimicrobial-independent strategy to curb listeriosis.


Assuntos
Listeria monocytogenes , Listeriose , Animais , Toxinas Bacterianas , Proteínas de Choque Térmico , Proteínas Hemolisinas/fisiologia , Inflamação/tratamento farmacológico , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Listeria monocytogenes/fisiologia , Listeriose/tratamento farmacológico , Listeriose/microbiologia , Camundongos
7.
Vaccines (Basel) ; 10(3)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35335018

RESUMO

Brucella abortus vaccines help control bovine brucellosis. The RB51 strain is a live attenuated vaccine with low side effects compared with other live attenuated brucellosis vaccines, but it provides insufficient protective efficacy. Cell-mediated immune responses are critical in resistance against intracellular bacterial infections. Therefore, we hypothesized that the listeriolysin O (LLO) expression of Listeria monocytogenes, BAX, and SMAC apoptotic proteins in strain RB51 could enhance vaccine efficacy and safety. B. abortus RB51 was transformed separately with two broad-host-range plasmids (pbbr1ori-LLO and pBlu-mLLO-BAX-SMAC) constructed from our recent work. pbbr1ori-LLO contains LLO, and pBlu-mLLO-BAX-SMAC contains the mutant LLO and BAX-SMAC fusion gene. The murine macrophage-like cell line J774A.1 was infected with the RB51 recombinant strain containing pBlu-mLLO-BAX-SMAC, RB51 recombinant strain containing LLO, and RB51 strain. The bacterial cytotoxicity and survival and apoptosis of host cells contaminated with our two strain types-RB51 recombinants or the parental RB51-were assessed. Strain RB51 expressing mLLO and BAX-SMAC was tested in BALB/c mice and a cell line for enhanced modulation of IFN-γ production. LDH analysis showed that the RB51-mLLO-BAX-SMAC and RB51-LLO strains expressed higher cytotoxicity in J774A.1 cells than RB51. In addition, RB51 recombinants had lower macrophage survival rates and caused higher levels of apoptosis and necrosis. Mice vaccinated with the RB51 recombinant containing mLLO-BAX-SMAC showed an enhanced Th1 immune response. This enhanced immune response is primarily due to bacterial endosome escape and bacterial antigens, leading to improved apoptosis and cross-priming. This potentially enhanced TCD8+- and T cell-mediated immunity leads to the increased safety and potency of the RB51 recombinant (RB51 mLLO-BAX-SMAC) as a vaccine candidate against B. abortus.

8.
Br J Pharmacol ; 179(14): 3839-3858, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35229287

RESUMO

BACKGROUND AND PURPOSE: L. monocytogenes remain a leading cause of foodborne infection. Listeriolysin O (LLO), an indispensable virulence determinant involved in diverse pathogenic mechanisms of L. monocytogenes infection, represents a promising therapeutic target. In this study, we sought to identify an effective inhibitor of LLO pore formation and its mechanism of action in the treatment of L. monocytogenes infection. EXPERIMENTAL APPROACH: Haemolysis assays were carried out to screen an effective LLO inhibitor. The interaction between candidate and LLO was investigated using surface plasmon resonance and molecular docking. The effect of candidate on LLO-mediated cytotoxicity, barrier disruption and immune response were investigated. Finally, the in vivo effect of candidate on mice challenged with L. monocytogenes was examined. KEY RESULTS: Amentoflavone, a natural flavone present in traditional Chinese herbs, effectively inhibited LLO pore formation by engaging the residues Lys93, Asp416, Tyr469 and Lys505 in LLO. Amentoflavone dose-dependently reduced L. monocytogenes-induced cell injury in an LLO-dependent manner. In the Caco-2 monolayer model, amentoflavone maintained the integrity of the epithelial barrier exposed to LLO. Amentoflavone inhibited the inflammatory response evoked by L. monocytogenes in an LLO-dependent manner, and inhibition was attributed to ability to block perforation-associated K+ efflux and Ca2+ influx. In the mouse infection model, amentoflavone treatment significantly reduced bacterial burden and pathological lesions in target organs, with a significant increase in survival rate. CONCLUSIONS AND IMPLICATIONS: Amentoflavone reduced the pathogenicity of L. monocytogenes by specifically inhibiting LLO pore formation, and this may represent a potential treatment for L. monocytogenes infection.


Assuntos
Listeria monocytogenes , Listeriose , Animais , Toxinas Bacterianas , Biflavonoides , Células CACO-2 , Modelos Animais de Doenças , Proteínas de Choque Térmico , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/uso terapêutico , Humanos , Listeriose/tratamento farmacológico , Listeriose/microbiologia , Camundongos , Simulação de Acoplamento Molecular , Virulência
9.
Rev. méd. Hosp. José Carrasco Arteaga ; 13(2): 83-89, 20-12-2021. Tablas
Artigo em Espanhol | LILACS | ID: biblio-1349511

RESUMO

INTRODUCCIÓN: La enfermedad arterial periférica (EAP) es más frecuente en pacientes conDiabetes Mellitus tipo 2 (DM2) que en la población general, convirtiéndolos en un grupo de alto riesgo de morbimortalidad. El objetivo del presente estudio fue determinar la frecuencia de EAP, mediante la medición del ITB y la frecuencia de sus factores de riesgo en los pacientes con Diabetes Mellitus tipo 2 del Hospital José Carrasco Arteaga. MATERIALES Y MÉTODOS: Estudio descriptivo, de corte transversal, con una muestra aleatoria simple de pacientes con diagnóstico de DM2 que acudieron a consulta externa del Hospital José Carrasco Arteaga, Cuenca-Ecuador, en el año 2017 (315 pacientes).Se aplicó una entrevista a los pacientes con datos sobre las características sociodemográficas y ciertos antecedentes médicos de importancia para el estudio; se determinó el ITB; se valoraron los exámenes complementarios de laboratorio realizados en los seis meses previos al estudio. Finalmente, se describieron frecuencias y porcentajes de cada una de las variables, se utilizó el programa IBM SPSS versión 22. RESULTADOS: Del total de pacientes se observó un promedio de edad de 62.9 años, con predominio del sexo femenino. Se determinó que la frecuencia de EAP en los pacientes con DM2 fue del 35.30%. LA EAP fue más frecuente en: el grupo de edad mayor a 50 años (38.8%), el sexo masculino (43.9%), en el grupo de pacientes con tiempo de evolución de la DM2 ≥ a 5 años (35.5%), en los pacientes con tabaquismo (38.4%), en los pacientes con niveles elevados de hemoglobina glicosilada (HbA1c ≥7%) (40.6%), los pacientes con hipertrigliceridemia, en los pacientes con LDL elevado y en hombres con HDL por debajo de valores normales. CONCLUSIÓN: Podemos concluir que la frecuencia de enfermedad arterial periférica en los pacientes con Diabetes Mellitus tipo 2, en el Hospital José Carrasco Arteaga, utilizando el índice tobillo brazo como método diagnóstico fue del 35.30%.(au)


BACKGROUND: Peripheral arterial disease (PAD) is more common in patients with type 2 Diabetes Mellitus (DM2) than in the general population, making them a high-risk group for morbidity and mortality. The aim of this study was to determine the frequency of peripheral arterial disease, by measuring ankle-brachial index, and the frequency of its risks factors in patients with type 2 Diabetes Mellitus at Hospital José Carrasco Arteaga. METHODOS: descriptive, cross-sectional study, with a simply randomized sample of patients diagnosed with Type 2 Diabetes Mellitus, who attended the outpatient clinic of Hospital José Carrasco Arteaga, Cuenca - Ecuador, in 2017 ( 315 patients). An interview was applied to the patients, to collect data on sociodemographic characteristics and certain important medical history; ankle-brachial index was determined; complementary laboratory tests made six months prior to the study were evaluated. Finally, frequencies and percentages of each variable were described; we used IMB SPSS version 22 software. RESULTS: Of the total number of patients, the average age was 62.9 years, with a predominance of the female sex. The frequency of PAD in patients with DM2 was 35.30%. PAD was more frequent in: age group over 50 years (38.8%), male sex (43.9%), disease evolution time ≥ 5 years (35.5%), in smoking patients(38.4%), in patients with elevated glycosylated hemoglobin levels (HbA1c ≥7%)(40.6%),in patients with hypertriglyceridemia, in patients with elevated LDL and in men with low HDL values. CONCLUSION: we can conclude that the peripheral arterial disease frequency in patients with type 2 Diabetes Mellitus, at Hospital José Carrasco Arteaga, using the ankle-brachial index as a diagnostic method was 35.50%.(au)


Assuntos
Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Diabetes Mellitus , Diabetes Mellitus Tipo 2 , Índice Tornozelo-Braço , Doença Arterial Periférica , Organização Mundial da Saúde , Hipertrigliceridemia , Grupos Etários
10.
Front Immunol ; 12: 650779, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194428

RESUMO

Listeria monocytogenes (L.m) is efficiently controlled by several cells of the innate immunity, including the Mast Cell (MC). MC is activated by L.m inducing its degranulation, cytokine production and microbicidal mechanisms. TLR2 is required for the optimal control of L.m infection by different cells of the immune system. However, little is known about the MC receptors involved in recognizing this bacterium and whether these interactions mediate MC activation. In this study, we analyzed whether TLR2 is involved in mediating different MC activation responses during L.m infection. We found that despite MC were infected with L.m, they were able to clear the bacterial load. In addition, MC degranulated and produced ROS, TNF-α, IL-1ß, IL-6, IL-13 and MCP-1 in response to bacterial infection. Interestingly, L.m induced the activation of signaling proteins: ERK, p38 and NF-κB. When TLR2 was blocked, L.m endocytosis, bactericidal activity, ROS production and mast cell degranulation were not affected. Interestingly, only IL-6 and IL-13 production were affected when TLR2 was inhibited in response to L.m infection. Furthermore, p38 activation depended on TLR2, but not ERK or NF-κB activation. These results indicate that TLR2 mediates only some MC activation pathways during L.m infection, mainly those related to IL-6 and IL-13 production.


Assuntos
Interleucina-13/imunologia , Interleucina-6/imunologia , Listeria monocytogenes/imunologia , Mastócitos/imunologia , Receptor 2 Toll-Like/imunologia , Animais , Degranulação Celular/imunologia , Degranulação Celular/fisiologia , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Ativação Enzimática/imunologia , Interações Hospedeiro-Patógeno/imunologia , Interleucina-13/metabolismo , Interleucina-6/metabolismo , Listeria monocytogenes/fisiologia , Mastócitos/microbiologia , Mastócitos/fisiologia , Camundongos Endogâmicos C57BL , NF-kappa B/imunologia , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Receptor 2 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Methods Enzymol ; 649: 189-217, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33712187

RESUMO

Pore-forming proteins (PFPs) include virulence factors that are produced by many pathogenic bacteria. However, PFPs also comprise non-virulence factors, such as apoptotic Bcl2-like proteins, and also occur in non-pathogenic bacteria and indeed in all kingdoms of life. Pore-forming proteins are an ancient class of proteins, which are tremendously powerful in damaging cell membranes. In general, upon binding to lipid membranes, they convert from the soluble monomeric form into an oligomeric state, and then undergo a dramatic conformational change to form transmembrane pores. Thus, PFPs render the plasma membrane of their target cells permeable to solutes, potentially leading to cell death, or to more subtle manipulations of cellular functions. Recent cryo-EM and X-ray crystallography studies revealed high-resolution structures of several PFPs in their pre-pore and pore states, however many aspects regarding the cues that induce pore formation, the pre-pore to pore conformational transition, the mechanism of membrane permeation and associated dynamics are still less well understood, and direct visualization of the dynamics of these transitions are missing. Using high-speed atomic force microscopy (HS-AFM), the kinetics of oligomerization and the pre-pore to pore transition dynamics of various PFPs, such as Listeriolysin O (LLO), lysenin, and Perforin-2 (PFN2), could be studied. These studies revealed that LLO does not form pores of regular shape or size, but rather forms membrane inserted arcs that propagate and damage lipid membranes as lineactants. In contrast, lysenin forms stable pre-pore and pore nonameric rings and HS-AFM allowed to study their diffusion on and the pH-dependent insertion into the membrane. Similarly, PFN2 underwent pre-pore to pore transition upon acidification. The openness of the HS-AFM system allowed the transition to be imaged in real time and revealed that all observed molecules transitioned into the pore state within 3s. In this chapter, we detail protocols to prepare lipids, form supported lipid bilayers, and provide guidelines for real-time, real-space HS-AFM observations of PFPs in action.


Assuntos
Bicamadas Lipídicas , Porinas , Membrana Celular , Cinética , Microscopia de Força Atômica
12.
Front Immunol ; 11: 1146, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582211

RESUMO

Listeriolysin O (LLO) is a cholesterol-dependent cytolysin that mediates escape of L. monocytogenes from phagosomes and enables the bacteria to grow within the host. LLO is a versatile tool allowing Listeria to trigger several cellular responses. In this study, rapid phosphorylation of ERK1/2 on Caco-2 cells caused by Listeria infection was demonstrated to be highly dependent on LLO activity. The effect could be strongly induced by adding purified recombinant LLO alone and could be inhibited by exogenous cholesterol. Lack of the PEST sequence, known to tightly control cytotoxicity of LLO, did not affect ERK1/2 activation. However, the recombinant non-cytolytic LLOT515AL516A, with mutations in the cholesterol-binding motif, was unable to trigger this response. Recombinant LLON478AV479A, which lacks most of the cytolytic activity, also failed to activate ERK1/2 phosphorylation, and this effect could be rescued when the protein concentration reached a cytolytic level. Infection with an LLO-deficient mutant (Δhly) or the mutant complementing LLOT515AL516A abrogated the capacity of the bacteria to activate ERK1/2. However, infection with the Δhly mutant complementing LLON478AV479A, which retained partial pore-forming ability and could grow intracellularly, was capable of triggering ERK1/2 phosphorylation. Collectively, these data suggest that ERK1/2 activation by L. monocytogenes depends on the permeabilization activity of LLO and more importantly correlates with the cholesterol-binding motif of LLO.


Assuntos
Toxinas Bacterianas/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Hemolisinas/metabolismo , Listeriose/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Células CACO-2 , Humanos , Listeria monocytogenes , Fosforilação
13.
ACS Appl Mater Interfaces ; 12(29): 32566-32577, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32573190

RESUMO

A Li-rich layered oxide (LLO) cathode with morphology-dependent electrochemical performance with the composition Li1.23Mn0.538Ni0.117Co0.114O2 in three different microstructural forms, namely, randomly shaped particles, platelets, and nanofibers, is synthesized through the solid-state reaction (SSR-LLO), hydrothermal method (HT-LLO), and electrospinning process (ES-LLO), respectively. Even though the cathodes possess different morphologies, structurally they are identical. The elemental dispersion studies using energy-dispersive X-ray spectroscopy mapping in scanning transmission electron microscopy show uniform distribution of elements. However, SSR-LLO and ES-LLO nanofibers show slight Co-rich regions. The electrochemical studies of LLO cathodes are evaluated in terms of charging/discharging, C-rate capability, and cyclic stability performances. A high reversible capacity of 275 mA h g-1 is achieved in the fibrous LLO cathode which also demonstrates good high-rate capability (80 mA h g-1 at 10 C-rate). These capacities and rate capabilities are superior to those of SSR-LLO [210.5 mA h g-1 (0.1 C-rate) and 4 mA h g-1 (3 C-rate)] and HT-LLO [242 mA h g-1 (0.1 C-rate) and 22 mA h g-1 (10 C-rate)] cathodes. The ES-LLO cathode exhibits 88% capacity retention after 100 cycles at 1 C-rate. A decrease in voltage on cycling is found to be common in all three cathodes; however, minimal voltage decay and capacity loss are observed in ES-LLO upon cycling. Well-connected small LLO particles constituting fibrous microstructural forms in ES-LLO provide an enhanced electrolyte/cathode interfacial area and reduced diffusion path length for Li+. This, in turn, facilitates superior electrochemical performance of the electrospun Co-low LLO cathode suitable for quick charge battery applications.

14.
Toxins (Basel) ; 12(4)2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235519

RESUMO

Listeria monocytogenes is a foodborne pathogen capable of secreting listeriolysin O (LLO), a pore-forming toxin encoded by the hly gene. While the functions of LLO have been studied extensively, how the production of LLO is modulated by the intestinal environment, devoid of oxygen and enriched in short chain fatty acids (SCFAs), is not completely understood. Using L. monocytogenes strain 10403s, we found that hly transcription was moderately decreased by aerobic SCFA exposures but significantly increased by anaerobic SCFA exposures. Moreover, aerobic, but not anaerobic, exposure to low levels of SCFAs resulted in a significantly higher LLO activity. These results demonstrated that transcriptional and post-transcriptional regulations of LLO production were separately modulated by SCFAs and were responsive to oxygen levels. Examining isogenic mutants revealed that PrfA and SigB play a role in regulating LLO production in response to SCFAs. Effects of SCFAs were also present in the cardiotropic strain 07PF0776 but distinctly different from those in strain 10403s. For both strains, prior exposures to SCFAs altered intracellular infections in Caco-2 and RAW264.7 cells and the plaque sizes in L fibroblasts, a result confirming the ability of L. monocytogenes to adapt to SCFAs in ways that impact its subsequent infection outcomes.


Assuntos
Toxinas Bacterianas/metabolismo , Ácidos Graxos Voláteis/farmacologia , Proteínas de Choque Térmico/metabolismo , Proteínas Hemolisinas/metabolismo , Listeria monocytogenes/efeitos dos fármacos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Células CACO-2 , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas Hemolisinas/genética , Humanos , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Listeria monocytogenes/patogenicidade , Camundongos , Mutação , Oxigênio/metabolismo , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Células RAW 264.7 , Fator sigma/genética , Fator sigma/metabolismo , Transcrição Gênica , Virulência
15.
J Bacteriol ; 202(11)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32179627

RESUMO

Listeria monocytogenes is a Gram-positive pathogen able to cause severe human infections. Its major virulence regulator is the transcriptional activator PrfA, a member of the Crp/Fnr family of transcriptional regulators. To establish a successful L. monocytogenes infection, the PrfA protein needs to be in an active conformation, either by binding the cognate inducer glutathione (GSH) or by possessing amino acid substitutions rendering the protein constitutively active (PrfA*). By a yet unknown mechanism, phosphotransferase system (PTS) sugars repress the activity of PrfA. We therefore took a transposon-based approach to identify the mechanism by which PTS sugars repress PrfA activity. For this, we screened a transposon mutant bank to identify clones able to grow in the presence of glucose-6-phosphate as the sole carbon source. Surprisingly, most of the isolated transposon mutants also carried amino acid substitutions in PrfA. In transposon-free strains, the PrfA amino acid substitution mutants displayed growth, virulence factor expression, infectivity, and DNA binding, agreeing with previously identified PrfA* mutants. Hence, the initial growth phenotype observed in the isolated clone was due to the amino acid substitution in PrfA and unrelated to the loci inactivated by the transposon mutant. Finally, we provide structural evidence for the existence of an intermediately activated PrfA state, which gives new insights into PrfA protein activation.IMPORTANCE The Gram-positive bacterium Listeria monocytogenes is a human pathogen affecting mainly the elderly, immunocompromised people, and pregnant women. It can lead to meningoencephalitis, septicemia, and abortion. The major virulence regulator in L. monocytogenes is the PrfA protein, a transcriptional activator. Using a growth-based selection strategy, we identified mutations in the PrfA protein leading to constitutively active virulence factor expression. We provide structural evidence for the existence of an intermediately activated PrfA state, which gives new insights into PrfA protein activation.


Assuntos
Proteínas de Bactérias/metabolismo , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Fatores de Terminação de Peptídeos/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Mutação , Fatores de Terminação de Peptídeos/genética , Virulência
16.
Fitoterapia ; 139: 104409, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31698059

RESUMO

Listeria monocytogenes (Lm) is a widespread foodborne intracellular pathogen that invades a variety of cells, causing abortions and severe human diseases. After internalization into host cells, pore-forming cytolysin listeriolysin O (LLO) disrupts the phagosome, which allows the bacterium to survive and colonize the cytoplasm, providing the bacterium the chance to infect neighboring cells. Betulin is an extracted natural compound from birch bark with diverse pharmacological activities. Here, we showed that LLO-induced rabbit red blood cell lysis in vitro was inhibited by preincubation with betulin, which suppressed the oligomerization process. Infectious assays performed with human monocyte macrophages indicated that betulin significantly protected cells against Lm-induced cell injury. In addition, Balb/c mice were used to perform a general infection, and betulin administration obviously inhibited organ damage and bacterial burden in livers and spleens of infected mice. In conclusion, betulin obviously inhibited Lm-induced cell injury in vitro and protected against infection in vivo through an antivirulence effect. Our results showed betulin as a new candidate against listeriosis by targeting LLO and highlight the potential of natural product-based medicine to be applied in the treatment of pathogenic infections.


Assuntos
Toxinas Bacterianas/antagonistas & inibidores , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas Hemolisinas/antagonistas & inibidores , Listeriose/tratamento farmacológico , Triterpenos/farmacologia , Animais , Eritrócitos/efeitos dos fármacos , Feminino , Hemólise/efeitos dos fármacos , Humanos , Listeria monocytogenes , Fígado/microbiologia , Fígado/patologia , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Coelhos , Baço/microbiologia , Baço/patologia , Células THP-1
17.
Vaccine X ; 1: 100012, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-31384734

RESUMO

A hybrid biological-biomaterial antigen delivery vector comprised of a polymeric shell encapsulating an Escherichia coli core was previously developed for in situ antigen production and subsequent delivery. Due to the engineering capacity of the bacterial core, the hybrid vector provides unique opportunities for immunogenicity optimization through varying cellular localization (cytoplasm, periplasm, cellular surface) and type (protein or DNA) of antigen. In this work, three protein-based hybrid vector formats were compared in which the pneumococcal surface protein A (PspA) was localized to the cytoplasm, surface, and periplasmic space of the bacterial core for vaccination against pneumococcal disease. Furthermore, we tested the hybrid vector's capacity as a DNA vaccine against Streptococcus pneumoniae by introducing a plasmid into the bacterial core to facilitate PspA expression in antigen presenting cells (APCs). Through testing these various formulations, we determined that cytoplasmic accumulation of PspA elicited the strongest immune response (antibody production and protection against bacterial challenge) and enabled complete protection at substantially lower doses when compared to vaccination with PspA + adjuvant. We also improved the storage stability of the hybrid vector to retain complete activity after 1 month at 4 °C using an approach in which hybrid vectors suspended in a microbial freeze drying buffer were desiccated. These results demonstrate the flexibility and robustness of the hybrid vector formulation, which has the potential to be a potent vaccine against S. pneumoniae.

18.
Am J Med Genet A ; 179(3): 498-502, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30676690

RESUMO

ALG11-Congenital Disorder of Glycosylation (ALG11-CDG, also known as congenital disorder of glycosylation type Ip) is an inherited inborn error of metabolism due to abnormal protein and lipid glycosylation. We describe two unrelated patients with ALG11-CDG due to novel mutations, review the literature of previously described affected individuals, and further expand the clinical phenotype. Both affected individuals reported here had severe psychomotor disabilities and epilepsy. Their fibroblasts synthesized truncated precursor glycan structures, consistent with ALG11-CDG, while also showing hypoglycosylation of a novel biomarker, GP130. Surprisingly, one patient presented with normal transferrin glycosylation profile, a feature that has not been reported previously in patients with ALG11-CDG. Together, our data expand the clinical and mutational spectrum of ALG11-CDG.


Assuntos
Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Manosiltransferases/genética , Mutação , Fenótipo , Adolescente , Alelos , Biomarcadores , Pré-Escolar , Eletroencefalografia , Feminino , Glicosilação , Humanos , Imageamento por Ressonância Magnética , Masculino , Linhagem , Tomografia Computadorizada por Raios X
19.
Rep Pract Oncol Radiother ; 23(6): 580-588, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534022

RESUMO

Immunotherapy has been proven effective in several tumours, hence diverse immune checkpoint inhibitors are currently licensed for the treatment of melanoma, kidney cancer, lung cancer and most recently, tumours with microsatellite instability. There is much enthusiasm for investigating this approach in gynaecological cancers and the possibility that immunotherapy might become part of the therapeutic landscape for gynaecological malignancies. Cervical cancer is the fourth most frequent cancer in women worldwide and represents 7.9% of all female cancers with a higher burden of the disease and mortality in low- and middle-income countries. Cervical cancer is largely a preventable disease, since the introduction of screening tests, the recognition of the human papillomavirus (HPV) as an etiological agent, and the subsequent development of primary prophylaxis against high risk HPV subtypes. Treatment for relapsed/advanced disease has improved over the last 5 years, since the introduction of antiangiogenic therapy. However, despite advances, the median overall survival for advanced cervical cancer is 16.8 months and the 5-year overall survival for all stages is 68%. There is a need to improve outcomes and immunotherapy could offer this possibility. Clinical trials aim to understand the best timing for immunotherapy, either in the adjuvant setting or recurrent disease and whether immunotherapy, alone or in combination with other agents, improves outcomes.

20.
Biol Open ; 7(10)2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30254077

RESUMO

Endocytic mechanisms have been suggested to be important for plasma membrane repair in response to pore-forming toxins such as listeriolysin O (LLO), which form membrane pores that disrupt cellular homeostasis. Yet, little is known about the specific role of distinct endocytic machineries in this process. Here, we have addressed the importance of key endocytic pathways and developed reporter systems for real-time imaging of the endocytic response to LLO pore formation. We found that loss of clathrin-independent endocytic pathways negatively influenced the efficiency of membrane repair. However, we did not detect any increased activity of these pathways, or co-localisation with the toxin or markers of membrane repair, suggesting that they were not directly involved in removal of LLO pores from the plasma membrane. In fact, markers of clathrin-independent carriers (CLICs) were rapidly disassembled in the acute phase of membrane damage due to Ca2+ influx, followed by a reassembly about 2 min after pore formation. We propose that these endocytic mechanisms might influence membrane repair by regulating the plasma membrane composition and tension, but not via direct internalisation of LLO pores.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA