Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
BMC Oral Health ; 24(1): 729, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918827

RESUMO

BACKGROUND: Despite the better prognosis associated with human papillomavirus (HPV)-positive oropharyngeal squamous cell carcinoma (OPSCC), some patients experience relapse and succumb to the disease; thus, there is a need for biomarkers identifying these patients for intensified treatment. Leucine-rich repeats and immunoglobulin-like domain (LRIG) protein 1 is a negative regulator of receptor tyrosine kinase signaling and a positive prognostic factor in OPSCC. Studies indicate that LRIG1 interacts with the LIM domain 7 protein (LMO7), a stabilizer of adherence junctions. Its role in OPSCC has not been studied before. METHODS: A total of 145 patients diagnosed with OPSCC were enrolled. Immunohistochemical LMO7 expression and staining intensity were evaluated in the tumors and correlated with known clinical and pathological prognostic factors, such as HPV status and LRIG1, CD44, Ki67, and p53 expression. RESULTS: Our results show that high LMO7 expression is associated with significantly longer overall survival (OS) (p = 0.044). LMO7 was a positive prognostic factor for OS in univariate analysis (HR 0.515, 95% CI: 0.267-0.994, p = 0.048) but not in multivariate analysis. The LMO7 expression correlated with LRIG1 expression (p = 0.048), consistent with previous findings. Interestingly, strong LRIG1 staining intensity was an independent negative prognostic factor in the HPV-driven group of tumors (HR 2.847, 95% Cl: 1.036-7.825, p = 0.043). CONCLUSIONS: We show for the first time that high LMO7 expression is a positive prognostic factor in OPSCC, and we propose that LMO7 should be further explored as a biomarker. In contrast to previous reports, LRIG1 expression was shown to be an independent negative prognostic factor in HPV-driven OPSCC.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Escamosas , Proteínas com Domínio LIM , Neoplasias Orofaríngeas , Humanos , Neoplasias Orofaríngeas/virologia , Neoplasias Orofaríngeas/metabolismo , Neoplasias Orofaríngeas/patologia , Neoplasias Orofaríngeas/mortalidade , Masculino , Feminino , Pessoa de Meia-Idade , Prognóstico , Proteínas com Domínio LIM/metabolismo , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/virologia , Idoso , Fatores de Transcrição/metabolismo , Glicoproteínas de Membrana/metabolismo , Adulto , Antígeno Ki-67/metabolismo , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/análise , Proteína Supressora de Tumor p53/metabolismo , Infecções por Papillomavirus/complicações , Imuno-Histoquímica , Idoso de 80 Anos ou mais , Taxa de Sobrevida
2.
Cancer Biol Ther ; 25(1): 2343450, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38742566

RESUMO

The potential function and mechanism of circRNAs in regulating malignant performances of Osteosarcoma (OS) cells have not been well investigated. The expression level of CircLMO7, miR-21-5p and ARHGAP24 were detected by RT-qPCR. The relationship between miR-21-5p and circ-LMO7, as well as between miR-21-5p and ARHGAP24, was predicted and examined through bioinformatics analysis and luciferase reporter gene experiments. Moreover, OS cell growth, invasion, migration, and apoptosis were detected using the cell counting kit-8 (CCK-8), transwell and flow cytometry assays, respectively. ARHGAP24 protein level was measured using western blotting. In present study, we choose to investigate the role and mechanism of circ-LOM7 on OS cell proliferation, migration and invasion. circ-LOM7 was found to be down-regulated in OS tissues and cell lines. Enforced expression of circ-LOM7 suppressed the growth, invasion, and migration of OS cells. In contrast, decreasing circ-LMO7 expression had opposite effects. Furthermore, miR-21-5p was predicted to be sponged by circ-LMO7, and had an opposite role of circ-LMO7 in OS. Moreover, ARHGAP24 served as miR-21-5p's downstream target. Mechanistically, circ-LMO7 was packed in exosomes and acted as a cancer-suppresser on OS by sponging miR-21-5p and upregulating the expression of ARHGAP24. The exosomal circ-LMO7 expression was significantly decreased in OS cell exosomes, and co-culture experiments showed that exosomal circ-LMO7 suppressed the proliferation ability of OS cells. Circ-LMO7 exerts as a tumor suppressor in OS, and the circ-LMO7/miR-21-5P/ARHGAP24 axis is involved in OS progression.


Assuntos
Progressão da Doença , Exossomos , Proteínas Ativadoras de GTPase , MicroRNAs , Osteossarcoma , RNA Circular , Osteossarcoma/genética , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Exossomos/metabolismo , Exossomos/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Proliferação de Células , Camundongos , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Apoptose/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Regulação Neoplásica da Expressão Gênica , Masculino , Feminino
3.
Acta Pharm Sin B ; 13(12): 4785-4800, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045056

RESUMO

Inflammatory bowel disease (IBD) is a formidable disease due to its complex pathogenesis. Macrophages, as a major immune cell population in IBD, are crucial for gut homeostasis. However, it is still unveiled how macrophages modulate IBD. Here, we found that LIM domain only 7 (LMO7) was downregulated in pro-inflammatory macrophages, and that LMO7 directly degraded 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) through K48-mediated ubiquitination in macrophages. As an enzyme that regulates glycolysis, PFKFB3 degradation led to the glycolytic process inhibition in macrophages, which in turn inhibited macrophage activation and ultimately attenuated murine colitis. Moreover, we demonstrated that PFKFB3 was required for histone demethylase Jumonji domain-containing protein 3 (JMJD3) expression, thereby inhibiting the protein level of trimethylation of histone H3 on lysine 27 (H3K27me3). Overall, our results indicated the LMO7/PFKFB3/JMJD3 axis is essential for modulating macrophage function and IBD pathogenesis. Targeting LMO7 or macrophage metabolism could potentially be an effective strategy for treating inflammatory diseases.

4.
Int J Mol Sci ; 24(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37762205

RESUMO

The role of long non-coding RNA (lncRNAs) in biological processes remains poorly understood, despite their significant impact. Our previous research discovered that the expression of AL137782.1, a long transcript of the novel lncRNA ENSG00000261553, is upregulated in lung epithelial cells upon exposure to microbes. Furthermore, the expression of AL137782.1 exhibits variability between para-cancerous and lung adenocarcinoma samples. These findings imply that this lncRNA may play a role in both normal lung epithelial cellular processes and pathophysiology. To elucidate the function of AL137782.1 in lung epithelial cells, we utilized bioinformatics retrieval and analysis to examine its expression. We then analyzed its subcellular localization using fluorescence in situ hybridization (FISH) and subcellular fractionation. Through rapid amplification of cDNA ends (RACE), we confirmed the presence of a 4401 nt lncRNA AL137782.1 in lung epithelial cells. Moreover, we discovered that this lncRNA positively regulates both mRNA and the protein expression of LMO7, a protein that may regulate the cell migration of normal lung epithelial cells. Although the overexpression of AL137782.1 has been shown to enhance the migration of both normal lung epithelial cells and lung adenocarcinoma cells in vitro, our study revealed that the expression of this lncRNA was significantly decreased in lung cancers compared to adjacent tissues. This suggests that the cell migration pattern regulated by the AL137782.1-LMO7 axis is more likely to occur in normal lung epithelial cells, rather than being a pathway that promotes lung cancer cell migration. Therefore, our study provides new insights into the mechanism underlying cell migration in human lung epithelial cells. This finding may offer a potential strategy to enhance normal lung epithelial cell migration after lung injury.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Hibridização in Situ Fluorescente , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , Células Epiteliais/metabolismo , Pulmão/patologia , Adenocarcinoma/genética , Proliferação de Células/genética , Movimento Celular/genética , MicroRNAs/genética , Fatores de Transcrição/metabolismo , Proteínas com Domínio LIM/genética
5.
Cells ; 11(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36497072

RESUMO

The kidney epithelial barrier has multifaceted functions in body fluids, electrolyte homeostasis, and urine production. The renal epithelial barrier (REB) frequently faces and challenges osmotic dynamics, which gives rise to osmotic pressure (a physical force). Osmotic pressure overloading can crack epithelial integrity and damage the REB. The endurance of REB to osmotic pressure forces remains obscure. LMO7 (LIM domain only 7) is a protein associated with the cell-cell junctional complex and cortical F-actin. Its upregulation was observed in cells cultured under hypertonic conditions. LMO7 is predominantly distributed in renal tubule epithelial cells. Hypertonic stimulation leads to LMO7 and F-actin assembly in the cortical stress fibers of renal epithelial cells. Hypertonic-isotonic alternation, as a pressure force pushing the plasma membrane inward/outward, was set as osmotic disturbance and was applied to test FAK signaling and LMO7 functioning in maintaining junctional integrity. LMO7 depletion in cells resulted in junctional integrity loss in the epithelial sheet-cultured hypertonic medium or hypertonic-isotonic alternation. Conversely, FAK inhibition by PF-573228 led to failure in robust cortical F-actin assembly and LMO7 association with cortical F-actin in epithelial cells responding to hypertonic stress. Epithelial integrity against osmotic stress and LMO7 and FAK signaling are involved in assembling robust cortical F-actin and maintaining junctional integrity. LMO7 elaborately manages FAK activation in renal epithelial cells, which was demonstrated excessive FAK activation present in LMO7 depleted NRK-52E cells and epithelial integrity loss when cells with LMO7 depletion were exposed to a hypertonic environment. Our data suggests that LMO7 regulates FAK activation and is responsible for maintaining REB under osmotic disturbance.


Assuntos
Actinas , Podócitos , Pressão Osmótica , Actinas/metabolismo , Podócitos/metabolismo , Citoesqueleto de Actina/metabolismo , Transdução de Sinais
6.
Front Oncol ; 12: 841493, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664754

RESUMO

Background: Rearrangements of the anaplastic lymphoma kinase (ALK) gene comprise a small subset of non-small cell lung cancer (NSCLC). Patients with NSCLC harboring ALK fusion proteins are sensitive to ALK tyrosine kinase inhibitors (TKIs). Various fusion partners of ALK are being discovered with the application of next-generation sequencing (NGS). Case presentation: Here, we report a female patient with metastatic lung adenocarcinoma harboring LMO7-ALK (L15, A20) rearrangement revealed by NGS. The patient received crizotinib as first-line treatment and has achieved partial response with a progression-free survival over 1 year. Conclusions: We firstly found that the satisfactory response to crizotinib verified the oncogenic activity of LMO7-ALK fusion. Great progression and wide application of NGS facilitate the findings of rare fusion types.

7.
Development ; 149(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35451459

RESUMO

Apical constriction, or a reduction in size of the apical domain, underlies many morphogenetic events during development. Actomyosin complexes play an essential role in apical constriction; however, the detailed analysis of molecular mechanisms is still pending. Here, we show that Lim domain only protein 7 (Lmo7), a multidomain adaptor at apical junctions, promotes apical constriction in the Xenopus superficial ectoderm, whereas apical domain size increases in Lmo7-depleted cells. Lmo7 is primarily localized at apical junctions and promotes the formation of the dense circumferential actomyosin belt. Strikingly, Lmo7 binds non-muscle myosin II (NMII) and recruits it to apical junctions and the apical cortex. This NMII recruitment is essential for Lmo7-mediated apical constriction. Lmo7 knockdown decreases NMIIA localization at apical junctions and delays neural tube closure in Xenopus embryos. Our findings suggest that Lmo7 serves as a scaffold that regulates actomyosin contractility and apical domain size.


Assuntos
Actomiosina , Ectoderma , Actomiosina/metabolismo , Animais , Ectoderma/metabolismo , Morfogênese/fisiologia , Cadeias Pesadas de Miosina , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Xenopus laevis/metabolismo
8.
Int J Mol Sci ; 22(23)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34884689

RESUMO

LMO7 is a multifunctional PDZ-LIM protein that can interact with different molecular partners and is found in several intracellular locations. The aim of this work was to shed light on LMO7 evolution, alternative transcripts, protein structure and gene regulation through multiple in silico analyses. We also explored the intracellular distribution of the LMO7 protein in chicken and zebrafish embryonic skeletal muscle cells by means of confocal fluorescence microscopy. Our results revealed a single LMO7 gene in mammals, sauropsids, Xenopus and in the holostean fish spotted gar while two lmo7 genes (lmo7a and lmo7b) were identified in teleost fishes. In addition, several different transcripts were predicted for LMO7 in human and in major vertebrate model organisms (mouse, chicken, Xenopus and zebrafish). Bioinformatics tools revealed several structural features of the LMO7 protein including intrinsically disordered regions. We found the LMO7 protein in multiple intracellular compartments in chicken and zebrafish skeletal muscle cells, such as membrane adhesion sites and the perinuclear region. Curiously, the LMO7 protein was detected within the nuclei of muscle cells in chicken but not in zebrafish. Our data showed that a conserved regulatory element may be related to muscle-specific LMO7 expression. Our findings uncover new and important information about LMO7 and open new challenges to understanding how the diverse regulation, structure and distribution of this protein are integrated into highly complex vertebrate cellular milieux, such as skeletal muscle cells.


Assuntos
Evolução Molecular , Proteínas com Domínio LIM/metabolismo , Modelos Moleculares , Fibras Musculares Esqueléticas/metabolismo , Fatores de Transcrição/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Animais , Galinhas , Simulação por Computador , Humanos , Proteínas com Domínio LIM/genética , Camundongos , Modelos Animais , Conformação Proteica , Fatores de Transcrição/genética , Peixe-Zebra
9.
Trends Parasitol ; 37(11): 937-939, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34598896

RESUMO

Host cytoskeletal rearrangements are an essential yet poorly understood component of Cryptosporidium invasion. Guérin et al. demonstrate that actin rearrangements occur immediately during adherence and capture a unique mechanism of invasion using live-cell imaging. The authors identify a parasite-secreted effector, ROP1, recruited by a host protein, LMO7, involved in pathogenesis.


Assuntos
Criptosporidiose , Cryptosporidium , Parasitos , Animais , Criptosporidiose/parasitologia , Interações Hospedeiro-Parasita , Parasitos/metabolismo , Proteínas de Protozoários/metabolismo
10.
Front Cell Dev Biol ; 9: 748844, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692701

RESUMO

Circular RNA (circRNA) is a class of endogenous non-coding RNAs without 5' and 3' ends; an increasing number of studies show that circRNA is involved in skeletal muscle development. From our previous sequencing data, the circRNAome in breast muscle of two chicken lines with a distinct rate of muscle development, which included a fast muscle growing broiler (FMGB) and a slow muscle growing layer (SMGL), we found a novel differentially expressed circRNA generated by intersectin 2 (ITSN2) gene (named circITSN2). We verified that circITSN2 is a skeletal muscle-enriched circRNA that promotes chicken primary myoblast (CPM) proliferation and differentiation. Further molecular mechanism analysis of circITSN2 in chicken myogenesis was performed, and we found circITSN2 directly targeting miR-218-5p. Besides, miR-218-5p inhibits CPM proliferation and differentiation, which is contrary to circITSN2. Commonly, circRNAs act as a miRNA sponge to alleviate the inhibition of miRNAs on mRNAs. Thus, we also identified that a downstream gene LIM domain 7 (LMO7) was inhibited by miR-218-5p, while circITSN2 could block the inhibitory effect of miR-218-5p by targeting it. Functional analysis revealed that LMO7 also accelerates CPM proliferation and differentiation, which was similar to circITSN2 but contrary to miR-218-5p. Taken together, these results suggested that circITSN2 promotes chicken embryonic skeletal muscle development via relieving the inhibition of miR-218-5p on LMO7. Our findings revealed a novel circITSN2/miR-218-5p/LMO7 axis in chicken embryonic skeletal muscle development, which expands our understanding of the complex muscle development regulatory network.

11.
J Cell Mol Med ; 25(19): 9476-9481, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34541785

RESUMO

Anaplastic lymphoma kinase (ALK) fusion is a well-defined biomarker for ALK tyrosine kinase inhibitors (TKIs) treatment in non-small cell lung cancer (NSCLC). Alectinib, a second-generation ALK-TKI, has been shown to have significantly longer progression-free survival (PFS) than first-generation ALK inhibitors in untreated ALK-rearranged NSCLC patients. However, its clinical efficacy on rare ALK fusions remains unclear. Herein, two advanced NSCLC patients received first-line alectinib treatment, given their positive ALK fusion status as determined by immunohistochemistry (IHC) testing results. Patients showed limited clinical response (PFS: 4 months) and primary resistance to alectinib respectively. Molecular profiling using next-generation sequencing (NGS) further revealed a striatin (STRN)-ALK fusion in the first patient accompanied by MET amplification, and a LIM domain only protein 7 (LMO7)-ALK fusion in another patient without any other known oncogenic alterations. Both patients demonstrated improved survival after they switched to second-line crizotinib (PFS: 11 months) and ensartinib (PFS: 18 months), respectively, up till the last follow-up assessment. In conclusion, the clinical efficacy of ALK-TKIs including alectinib for lung cancer with uncommon ALK gene fusions is still under evaluation. This study and literature review results showed mixed responses to alectinib in NSCLC patients who harboured rare ALK fusions. Comprehensive molecular profiling of tumour is thus strongly warranted for precise treatment strategies.


Assuntos
Quinase do Linfoma Anaplásico/genética , Carbazóis/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteínas de Fusão Oncogênica/genética , Piperidinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Adulto , Biomarcadores Tumorais , Carbazóis/administração & dosagem , Carbazóis/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Gerenciamento Clínico , Feminino , Testes Genéticos , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Estadiamento de Neoplasias , Piperidinas/administração & dosagem , Piperidinas/efeitos adversos , Prognóstico , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Tomografia Computadorizada por Raios X , Resultado do Tratamento
12.
Cell Host Microbe ; 29(9): 1407-1420.e5, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34348092

RESUMO

The parasite Cryptosporidium invades and replicates in intestinal epithelial cells and is a leading cause of diarrheal disease and early childhood mortality. The molecular mechanisms that underlie infection and pathogenesis are largely unknown. Here, we delineate the events of host cell invasion and uncover a mechanism unique to Cryptosporidium. We developed a screen to identify parasite effectors, finding the injection of multiple parasite proteins into the host from the rhoptry organelle. These factors are targeted to diverse locations within the host cell and its interface with the parasite. One identified effector, rhoptry protein 1 (ROP1), accumulates in the terminal web of enterocytes through direct interaction with the host protein LIM domain only 7 (LMO7) an organizer of epithelial cell polarity and cell-cell adhesion. Genetic ablation of LMO7 or ROP1 in mice or parasites, respectively, impacts parasite burden in vivo in opposite ways. Taken together, these data provide molecular insight into how Cryptosporidium manipulates its intestinal host niche.


Assuntos
Criptosporidiose/patologia , Cryptosporidium parvum/patogenicidade , Enterócitos/parasitologia , Proteínas com Domínio LIM/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Protozoários/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células CACO-2 , Adesão Celular/fisiologia , Linhagem Celular , Modelos Animais de Doenças , Enterócitos/citologia , Células Epiteliais/parasitologia , Células HEK293 , Interações Hospedeiro-Parasita/fisiologia , Humanos , Proteínas com Domínio LIM/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organelas/metabolismo , Fatores de Transcrição/genética
13.
Pathol Res Pract ; 223: 153475, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33991849

RESUMO

In our previous study, we reported that the long noncoding RNA, LMO7 downstream neighbor (LMO7DN), has a strong prognostic value in lung adenocarcinoma (LUAD). In this study, we further investigated the role of LMO7DN in LUAD progression. LMO7DN was found to be expressed at low levels in LUAD tissues, and its high expression predicted good prognosis. Bioinformatics analysis indicated that LMO7DN was closely associated with the cell cycle. Furthermore, we found that cell proliferation was significantly enhanced following knockdown of LMO7DN, and the number of cells in the G2/M phase was markedly decreased, whereas there was no change in apoptosis. Thus, LMO7DN inhibits cell proliferation by affecting the cell cycle and is of significant prognostic value in LUAD.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Biomarcadores Tumorais/metabolismo , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Neoplasias Pulmonares/metabolismo , RNA Longo não Codificante/metabolismo , Células A549 , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Idoso , Biomarcadores Tumorais/genética , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , RNA Longo não Codificante/genética
14.
Front Cell Dev Biol ; 9: 647387, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763427

RESUMO

Pancreatic cancer (PC) is one of the most lethal human malignancies without effective treatment. In an effort to discover key genes and molecular pathways underlying PC growth, we have identified LIM domain only 7 (LMO7) as an under-investigated molecule, which highly expresses in primary and metastatic human and mouse PC with the potential of impacting PC tumorigenesis and metastasis. Using genetic methods with siRNA, shRNA, and CRISPR-Cas9, we have successfully generated stable mouse PC cells with LMO7 knockdown or knockout. Using these cells with loss of LMO7 function, we have demonstrated that intrinsic LMO7 defect significantly suppresses PC cell proliferation, anchorage-free colony formation, and mobility in vitro and slows orthotopic PC tumor growth and metastasis in vivo. Mechanistic studies demonstrated that loss of LMO7 function causes PC cell-cycle arrest and apoptosis. These data indicate that LMO7 functions as an independent and unrecognized druggable factor significantly impacting PC growth and metastasis, which could be harnessed for developing a new targeted therapy for PC.

15.
Gene ; 684: 10-19, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30359736

RESUMO

Smallish (Smash), the Drosophila homologue of human LIM domain only 7 (LMO7), is a key regulator of Drosophila embryogenesis associated with planner cell polarity and actomyosin contractility at the zonula adherence. Although smash mRNA is expressed in several tissues during Drosophila development, only Smash function at the adherence junction in the embryonic epithelial cells has been reported. We herein demonstrated that the knockdown of smash in eye imaginal discs induced morphological aberrations in adult compound eyes that were associated with increased apoptosis. Furthermore, immunohistochemical analyses revealed that Smash localized to the nucleus in several tissues, including eye imaginal discs. The knockdown of smash in eye imaginal discs down-regulated the expression of the ote and bocks genes as well as the Drosophila homologue of the emerin gene, which is a target of LMO7. Collectively, these results indicate that Smash functions in proper Drosophila eye development mediated by the regulation of ote and bocks gene expression.


Assuntos
Olho/embriologia , Proteínas com Domínio LIM/metabolismo , Junções Aderentes/metabolismo , Animais , Apoptose , Núcleo Celular/metabolismo , Drosophila/embriologia , Drosophila/genética , Proteínas de Drosophila/genética , Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Discos Imaginais/metabolismo , Organogênese , Transdução de Sinais , Transcrição Gênica/genética
16.
Lung Cancer ; 125: 174-184, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30429017

RESUMO

OBJECTIVES: The human leucine-rich repeats and immunoglobulin-like domains (LRIG) protein family comprises the integral membrane proteins LRIG1, LRIG2 and LRIG3. LRIG1 is frequently down-regulated in human cancer, and high levels of LRIG1 in tumor tissue are associated with favorable clinical outcomes in several tumor types including non-small cell lung cancer (NSCLC). Mechanistically, LRIG1 negatively regulates receptor tyrosine kinases and functions as a tumor suppressor. However, the details of the molecular mechanisms involved are poorly understood, and even less is known about the functions of LRIG2 and LRIG3. The aim of this study was to further elucidate the functions and molecular interactions of the LRIG proteins. MATERIALS AND METHODS: A yeast two-hybrid screen was performed using a cytosolic LRIG3 peptide as bait. In transfected human cells, co-immunoprecipitation and co-localization experiments were performed. Proximity ligation assay was performed to investigate interactions between endogenously expressed proteins. Expression levels of LMO7 and LIMCH1 in normal and malignant lung tissue were investigated using qRT-PCR and through in silico analyses of public data sets. Finally, a clinical cohort comprising 355 surgically treated NSCLC cases was immunostained for LMO7. RESULTS: In the yeast two-hybrid screen, the two paralogous proteins LMO7 and LIMCH1 were identified as interaction partners to LRIG3. LMO7 and LIMCH1 co-localized and co-immunoprecipitated with both LRIG1 and LRIG3. Endogenously expressed LMO7 was in close proximity of both LRIG1 and LRIG3. LMO7 and LIMCH1 were highly expressed in normal lung tissue and down-regulated in malignant lung tissue. LMO7 immunoreactivity was shown to be a negative prognostic factor in LRIG1 positive tumors, predicting poor patient survival. CONCLUSION: These findings suggest that LMO7 and LIMCH1 physically interact with LRIG proteins and that expression of LMO7 is of clinical importance in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas com Domínio LIM/metabolismo , Neoplasias Pulmonares/metabolismo , Glicoproteínas de Membrana/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células COS , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular , Chlorocebus aethiops , Regulação para Baixo/fisiologia , Genes Supressores de Tumor/fisiologia , Células HEK293 , Humanos , Neoplasias Pulmonares/patologia , Prognóstico
17.
Thyroid ; 28(6): 748-754, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29768105

RESUMO

BACKGROUND: The BRAFV600E mutation is the most common driver in papillary thyroid carcinoma (PTC) tumors. In recent years, gene fusions have also been recognized as important drivers of cancer in PTC. Previous studies have suggested that thyroid tumors with fusion genes frequently display an aggressive course. These observations prompted further exploration of gene fusions in PTC tumors. The aim was to search for previously unrecognized gene fusions using thyroid tissue samples from PTC patients. METHODS: Gene fusions were analyzed in RNA sequencing data obtained from 12 PTC tumors and paired unaffected thyroid tissue samples. Candidate fusions were further filtered and validated using reverse transcriptase polymerase chain reaction, Sanger sequencing, and fluorescence in situ hybridization. An Ohio cohort of 148 PTC tumor samples was screened for a LMO7-BRAF fusion and the BRAFV600E mutation. Functional assays were performed to assess the LMO7-BRAF fusion. RESULTS: Two coding fusions (CCDC6-RET and LMO7-BRAF) were found in one tumor sample each. The novel LMO7-BRAF fusion was validated by reverse transcriptase polymerase chain reaction and fluorescence in situ hybridization. The LMO7-BRAF fusion was a recurrent somatic alteration with a frequency of 2.0% (3/148) in PTC tumors, while the BRAFV600E point mutation was found in 63.5% (94/148) of tumors. Enforced expression of LMO7-BRAF fusion protein stimulated endogenous ERK1/2 phosphorylation and promoted anchorage independent cell growth to an extent similar to BRAFV600E. CONCLUSIONS: A novel fusion gene, LMO7-BRAF, was identified in PTC tumors. The results indicate that the LMO7-BRAF fusion behaves as an oncogenic alteration. This observation expands the spectrum of fusion genes involving kinases in thyroid cancer.


Assuntos
Proteínas com Domínio LIM/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas B-raf/genética , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Fatores de Transcrição/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma Papilar/genética , Carcinoma Papilar/patologia , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação , Células NIH 3T3 , Recidiva Local de Neoplasia , Fosforilação , Mutação Puntual , RNA/análise , Análise de Sequência de RNA , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Adulto Jovem
18.
Int J Biochem Cell Biol ; 94: 22-30, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29158164

RESUMO

LMO7 (LIM domain only 7) is a transcription regulator for expression of many Emery-Dreifuss muscular dystrophy-relevant genes, and binds to α-actinin and AF6/afadin at adherens junctions for epithelial cell-cell adhesion. In this study, we found that human LMO7 interacted with the spindle assembly checkpoint (SAC) protein MAD1. LMO7 colocalized with actin filaments at the cell membrane but did not colocalize with MAD1 at kinetochores in prometaphase. Our observations reveal that overexpression but not depletion of LMO7 caused a SAC defect, and that the LIM domain of LMO7 was a determinant of its ability to interfere with kinetochore localization of the SAC proteins MAD2 and BUBR1 and cause a SAC defect though the LIM peptide itself did neither bind to MAD1, MAD2 and BUBR1 nor localize to the actin filaments. However, overexpression of LMO7 or the LIM peptide did not interfere with kinetochore localization of MAD1. Additionally, overexpression of the LIM peptide prolonged mitotic timing and interfered with chromosome congression whereas that of LMO7b did not. Taken together, we conclude that LMO7 via its LIM domain acts to control mitosis progression and exerts an effect on the SAC.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Proteínas com Domínio LIM/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Mitose , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Humanos , Interfase , Cinetocoros/metabolismo , Proteínas com Domínio LIM/antagonistas & inibidores , Proteínas com Domínio LIM/química , Proteínas com Domínio LIM/genética , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Metáfase , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Prometáfase , Domínios Proteicos , Multimerização Proteica , Transporte Proteico , Interferência de RNA , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Polos do Fuso/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Fatores de Transcrição/genética
19.
J Cell Mol Med ; 21(6): 1228-1236, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28026121

RESUMO

Detection and treatment of lung cancer still remain a clinical challenge. This study aims to validate exosomal microRNA-96 (miR-96) as a serum biomarker for lung cancer and understand the underlying mechanism in lung cancer progression. MiR-96 expressions in normal and lung cancer patients were characterized by qPCR analysis. Changes in cell viability, migration and cisplatin resistance were monitored after incubation with isolated miR-96-containing exosomes, anti-miR-96 and anti-miR negative control (anti-miR-NC) transfections. Dual-luciferase reporter assay was used to study interaction between miR-96 and LIM-domain only protein 7 (LMO7). Changes induced by miR-96 transfection and LMO7 overexpression were also evaluated. MiR-96 expression was positively correlated with high-grade and metastatic lung cancers. While anti-miR-96 transfection exhibited a tumour-suppressing function, exosomes isolated from H1299 enhanced cell viability, migration and cisplatin resistance. Potential miR-96 binding sites were found within the 3'-UTR of wild-type LMO7 gene, but not of mutant LMO7 gene. LMO7 expression was inversely correlated with lung cancer grades, and LMO7 overexpression reversed promoting effect of miR-96. We have identified exosomal miR-96 as a serum biomarker of malignant lung cancer. MiR-96 promotes lung cancer progression by targeting LMO7. The miR-96-LMO7 axis may be a therapeutic target for lung cancer patients, and new diagnostic or therapeutic strategies could be developed by targeting the miR-96-LMO7 axis.


Assuntos
Biomarcadores Tumorais/sangue , Proteínas com Domínio LIM/genética , Neoplasias Pulmonares/genética , MicroRNAs/sangue , Fatores de Transcrição/genética , Células A549 , Movimento Celular/genética , Proliferação de Células/genética , Cisplatino/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/genética , Exossomos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/patologia , Masculino
20.
Appl Biochem Biotechnol ; 182(3): 885-897, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27988857

RESUMO

The aim of our study was to investigate the potential association of mRNA expression and plasma levels of the LIM domain 7 (LMO7) gene with the pathogenesis of dilated cardiomyopathy (DCM). Two SNPs of the LMO7 gene were genotyped in 310 patients with DCM and 415 controls. Our results showed that SNP rs7986131 (p = 0.002, OR = 1.38, 95% CI = 1.12-1.71), but not SNP rs4884021, was associated with DCM in the Han Chinese population. Haplotype analysis showed that the haplotype GT was associated with increased DCM susceptibility while AC was a protective haplotype. The Cox multivariate survival analysis indicated that the rs7986131 TT genotype (HR 1.659, 95% CI = 1.122-2.454, p = 0.011) was an independent multivariate predictor for shorter overall survival in patients with DCM. LMO7 mRNA expression and plasma LMO7 levels were significantly decreased in DCM (p < 0.0001). Spearman correlation test revealed that the plasma LMO7 level was negatively associated with left ventricular end-diastolic diameter (r = -0.384, p = 0.01), left ventricular end-diastolic volume (r = -0.375, p = 0.012), and brain natriuretic peptide (r = -0.482, p = 0.001). Our study suggested that the LMO7 gene may play an important role in the pathogenesis of DCM in the Han Chinese population.


Assuntos
Cardiomiopatia Dilatada , Regulação da Expressão Gênica , Haplótipos , Proteínas com Domínio LIM , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição , Adulto , Povo Asiático/etnologia , Povo Asiático/genética , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/mortalidade , China/epidemiologia , China/etnologia , Intervalo Livre de Doença , Feminino , Humanos , Proteínas com Domínio LIM/biossíntese , Proteínas com Domínio LIM/genética , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Taxa de Sobrevida , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA