Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Luminescence ; 39(7): e4821, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39043610

RESUMO

MoO3 thin film was fabricated on an indium tin oxide substrate using the physical vapor deposition technique. X-ray diffraction and scanning electron microscopy study to investigate surface morphology, grain size, and surface structure, which are critical for absorbing solar spectra in water splitting for hydrogen energy generation. Ultraviolet-visible spectroscopy was used to confirm the absorption of solar spectra and the percentage of transmittance. Fourier-transform infrared analysis provided the functional groups present in the deposited thin film. The Tauc plot was used to determine the thin-film band gap, which allowed for the analysis of charge carrier transitions from the conduction band to the valence band. Electrochemical impedance spectroscopy investigations confirmed the charge transfer processes to the counter electrode and electrolyte interfaces. The observed low curve for MoO3 indicated low resistance and allowed efficient charge transfer. Linear sweep voltammetry analysis was used to measure photocurrent and solar light to hydrogen emission when the thin film was exposed to solar spectra. The thin film's observed hydrogen emission rate was 3731.74 mol g-1 h-1, and the STH% of MoO3 was found to be 0.345% at 0.8 V. These findings highlight the promising potential of MoO3 as a material for hydrogen energy generation using solar light.


Assuntos
Eletrodos , Hidrogênio , Molibdênio , Óxidos , Água , Hidrogênio/química , Água/química , Óxidos/química , Molibdênio/química , Propriedades de Superfície , Processos Fotoquímicos , Técnicas Eletroquímicas , Compostos de Estanho/química , Tamanho da Partícula
2.
Life (Basel) ; 13(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36836795

RESUMO

Widespread parasites, along with emerging threats, globalization, and climate change, have greatly affected honey bees' health, leading to colony losses worldwide. In this study, we investigated the detection of biotic stressors (i.e., viruses, microsporidian, bacteria, and fungi) in Apis cerana by surveying the colonies across different regions of Thailand (Chiang Mai in the north, Nong Khai and Khon Kaen in the northeast, and Chumphon and Surat Thani in the south, in addition to the Samui and Pha-ngan islands). In this study, we detected ABPV, BQCV, LSV, and Nosema ceranae in A. cerana samples through RT-PCR. ABPV was only detected from the samples of Chiang Mai, whereas we found BQCV only in those from Chumphon. LSV was detected only in the samples from the Samui and Pha-ngan islands, where historically no managed bees are known. Nosema ceranae was found in all of the regions except for Nong Khai and Khon Kaen in northeastern Thailand. Paenibacillus larvae and Ascosphaera apis were not detected in any of the A. cerana samples in this survey. The phylogenetic tree analysis of the pathogens provided insights into the pathogens' movements and their distribution ranges across different landscapes, indicating the flow of pathogens among the honey bees. Here, we describe the presence of emerging pathogens in the Asian honey bee as a valuable step in our understanding of these pathogens in terms of the decline in eastern honey bee populations.

3.
Virol J ; 19(1): 219, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36527114

RESUMO

BACKGROUND: Viral pathogens causing significant economic losses in lilies (Lilium spp. and hybrids) include Lily symptomless virus (LSV), Lily mottle virus (LMoV), Cucumber mosaic virus (CMV), and Plantago asiatica mosaic virus (PlAMV). Rapid and efficient virus detection methods are pivotal to prevent the spread of these viruses. RESULTS: In this study, four specific primer pairs designed from conserved regions of genomic sequences of each virus were used to amplify a 116 bp product for LSV, a 247 bp product for LMoV, a 359 bp product for CMV, and a 525 bp product for PlAMV in a multiplex reverse transcription-polymerase chain reaction (multiplex RT-PCR). The amplified products were clearly separated by 2% agarose gel electrophoresis. The optimal reaction annealing temperature and cycle number were 53.8 °C and 35, respectively. The developed multiplex RT-PCR method was then used to test virus infections from lily samples collected from different regions of China. CONCLUSIONS: An effective multiplex RT-PCR assay was established for the simultaneous detection and differentiation of LSV, LMoV, CMV, and PlAMV in lilies, which offers a useful tool for routine molecular diagnosis and epidemiological studies of these viruses.


Assuntos
Cucumovirus , Infecções por Citomegalovirus , Lilium , Potyvirus , Lilium/genética , Cucumovirus/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Potyvirus/genética , Doenças das Plantas
4.
Polymers (Basel) ; 14(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36433172

RESUMO

A solution casting method has been utilisedto fabricate plasticisednatural gelatin (NG)-based polymer electrolyte films. The NG electrolyte with 50 wt.% glycerol and 13 wt.% sodium nitrate (NaNO3) attained the highest ionic conductivity of 1.67 × 10-4 S cm-1. Numerous techniques were used to characterisethe NG films to assess their electrochemical performance. The data obtained from impedance spectroscopy for the plasticisedsystem, such as bulk resistance (Rb), arerelatively low. Thiscomprehensive study has been focused on dielectric characteristics and electric modulus parameters. The plasticisedsystem has shown eligibility for practice in energy storage devices with electrochemical strength up to 2.85 V. The TNM data based on ion transference number (tion) and electron transference number (te) determine the identity of the main charge carrier, ion. The redox peaks in the cyclic voltammograms have not been observed as evidence of charge accumulation other than the Faradaic process at the electrode-electrolyte interface. The GCD plot reveals a triangle shape and records arelatively low drop voltage. The high average efficiency of 90% with low ESR has been achieved over 500 cycles, indicating compatibility between electrolyte and electrode. The average power density and energy density of the plasticisedare 700 W/kg and 8 Wh/kg, respectively.

5.
Polymers (Basel) ; 14(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36145980

RESUMO

In this work, solid flexible polymer blend electrolytes (PBE) composed of polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) with different amounts of sodium thiocyanate (NaSCN) salt mixed in double-distilled water (solvent) are prepared via solution casting method. The obtained films are characterized using several techniques. The study of the surface morphology of the polymer blend salt complex films via the POM technique reveals the presence of amorphous regions due to the NaSCN effect. FTIR spectra studies confirm the complex formation between PVA, PVP, and NaSCN. The addition of 20 wt% NaSCN salt in the composition PVA: PVP (50:50 wt%) polymer blend matrix leads to an increase in the number of charge carriers and thus improves the ionic conductivity. The ionic conductivity of each polymer blend electrolyte was studied using the electrochemical impedance spectroscopy (EIS) method. The highest room temperature ionic conductivity of 8.1 × 10-5 S/cm S cm-1 is obtained for the composition of PVA: PVP (50:50 wt%) with 20 wt% NaSCN. LSV test shows the optimized ion-conducting polymer blend electrolyte is electrochemically stable up to 1.5 V. TNM analysis reveals that 99% of ions contribute for the conductivity against 1% of electrons only in the highly conductive polymer electrolyte PVA: PVP (50:50 wt%) + 20 wt% NaSCN. A supercapacitor device was fabricated using the optimized ion-conducting polymer blend film and graphene oxide (GO) coated electrodes. The GCD curve clearly reveals the behavior of an ideal capacitor with less Faradic process and low ESR value. The columbic efficiency of the GO-based system is found to be 100%, the GO-based electrode exhibits a specific capacitance of 12.15 F/g and the system delivers the charge for a long duration. The specific capacitance of the solid-state supercapacitor cell was found to be 13.28 F/g via the CV approach close to 14.25 F/g obtained with EIS data at low frequency.

6.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36012415

RESUMO

A facile methodology system for synthesizing solid polymer electrolytes (SPEs) based on methylcellulose, dextran, lithium perchlorate (as ionic sources), and glycerol (such as a plasticizer) (MC:Dex:LiClO4:Glycerol) has been implemented. Fourier transform infrared spectroscopy (FTIR) and two imperative electrochemical techniques, including linear sweep voltammetry (LSV) and electrical impedance spectroscopy (EIS), were performed on the films to analyze their structural and electrical properties. The FTIR spectra verify the interactions between the electrolyte components. Following this, a further calculation was performed to determine free ions (FI) and contact ion pairs (CIP) from the deconvolution of the peak associated with the anion. It is verified that the electrolyte containing the highest amount of glycerol plasticizer (MDLG3) has shown a maximum conductivity of 1.45 × 10-3 S cm-1. Moreover, for other transport parameters, the mobility (µ), number density (n), and diffusion coefficient (D) of ions were enhanced effectively. The transference number measurement (TNM) of electrons (tel) was 0.024 and 0.976 corresponding to ions (tion). One of the prepared samples (MDLG3) had 3.0 V as the voltage stability of the electrolyte.


Assuntos
Glicerol , Plastificantes , Biopolímeros/química , Eletrólitos/química , Transporte de Íons , Íons , Lítio
7.
Comput Struct Biotechnol J ; 20: 2759-2777, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685361

RESUMO

Tick-borne encephalitis virus (TBEV), the most medically relevant tick-transmitted flavivirus in Eurasia, targets the host central nervous system and frequently causes severe encephalitis. The severity of TBEV-induced neuropathogenesis is highly cell-type specific and the exact mechanism responsible for such differences has not been fully described yet. Thus, we performed a comprehensive analysis of alterations in host poly-(A)/miRNA/lncRNA expression upon TBEV infection in vitro in human primary neurons (high cytopathic effect) and astrocytes (low cytopathic effect). Infection with severe but not mild TBEV strain resulted in a high neuronal death rate. In comparison, infection with either of TBEV strains in human astrocytes did not. Differential expression and splicing analyses with an in silico prediction of miRNA/mRNA/lncRNA/vd-sRNA networks found significant changes in inflammatory and immune response pathways, nervous system development and regulation of mitosis in TBEV Hypr-infected neurons. Candidate mechanisms responsible for the aforementioned phenomena include specific regulation of host mRNA levels via differentially expressed miRNAs/lncRNAs or vd-sRNAs mimicking endogenous miRNAs and virus-driven modulation of host pre-mRNA splicing. We suggest that these factors are responsible for the observed differences in the virulence manifestation of both TBEV strains in different cell lines. This work brings the first complex overview of alterations in the transcriptome of human astrocytes and neurons during the infection by two TBEV strains of different virulence. The resulting data could serve as a starting point for further studies dealing with the mechanism of TBEV-host interactions and the related processes of TBEV pathogenesis.

8.
Membranes (Basel) ; 12(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35323759

RESUMO

This work presents the fabrication of polymer electrolyte membranes (PEMs) that are made of polyvinyl alcohol-methylcellulose (PVA-MC) doped with various amounts of ammonium iodide (NH4I). The structural and electrical properties of the polymer blend electrolyte were performed via the acquisition of Fourier Transform Infrared (FTIR) and electrical impedance spectroscopy (EIS), respectively. The interaction among the components of the electrolyte was confirmed via the FTIR approach. Electrical impedance spectroscopy (EIS) showed that the whole conductivity of complexes of PVA-MC was increased beyond the addition of NH4I. The application of EEC modeling on experimental data of EIS was helpful to calculate the ion transport parameters and detect the circuit elements of the films. The sample containing 40 wt.% of NH4I salt exhibited maximum ionic conductivity (7.01 × 10-8) S cm-1 at room temperature. The conductivity behaviors were further emphasized from the dielectric study. The dielectric constant, ε' and loss, ε'' values were recorded at high values within the low-frequency region. The peak appearance of the dielectric relaxation analysis verified the non-Debye type of relaxation mechanism was clarified via the peak appearance of the dielectric relaxation. For further confirmation, the transference number measurement (TNM) of the PVA-MC-NH4I electrolyte was analyzed in which ions were primarily entities for the charge transfer process. The linear sweep voltammetry (LSV) shows a relatively electrochemically stable electrolyte where the voltage was swept linearly up to 1.6 V. Finally, the sample with maximum conductivity, ion dominance of tion and relatively wide breakdown voltage were found to be 0.88 and 1.6 V, respectively. As the ions are the majority charge carrier, this polymer electrolyte could be considered as a promising candidate to be used in electrochemical energy storage devices for example electrochemical double-layer capacitor (EDLC) device.

9.
MethodsX ; 9: 101626, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251944

RESUMO

Molten salts such as 2LiF-BeF2 (FLiBe) have been proposed as coolants for advanced nuclear fission and fusion reactors. Critical to the design, licensing and operation of these reactors is characterization and understanding of the chemical behavior and mass transport of activation and fission products, corrosion products, and other solutes in the coolant. Electrochemical techniques are a powerful suite of tools for probing these phenomena. The design of an experimental cell for molten salt electrochemistry is described herein. As a demonstration of this design, details of the experimental methods used to conduct electrochemical experiments with molten FLiBe with addition of LiH are provided. Decommissioning of the cell is considered from the point of view of decontamination and waste generated. Main features of the cell include:•Suitable for operation up to 800 °C; suitable for operation inside and outside of a glovebox.•Enables sweep gas, gas sampling and analysis; enables addition of solid and liquid materials during operation.•Supports a variety of electrode materials and arrangements.

10.
Molecules ; 27(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35164273

RESUMO

In this report, the preparation of solid polymer electrolytes (SPEs) is performed from polyvinyl alcohol, methyl cellulose (PVA-MC), and ammonium chloride (NH4Cl) using solution casting methodology for its use in electrical double layer capacitors (EDLCs). The characterizations of the prepared electrolyte are conducted using a variety of techniques, including Fourier transform infrared spectroscopy (FTIR), electrical impedance spectroscopy (EIS), cyclic voltammetry (CV), and linear sweep voltammetry (LSV). The interaction between the polymers and NH4Cl salt are assured via FTIR. EIS confirms the possibility of obtaining a reasonably high conductance of the electrolyte of 1.99 × 10-3 S/cm at room temperature. The dielectric response technique is applied to determine the extent of the ion dissociation of the NH4Cl in the PVA-MC-NH4Cl systems. The appearance of a peak in the imaginary part of the modulus study recognizes the contribution of chain dynamics and ion mobility. Transference number measurement (TNM) is specified and is found to be (tion) = 0.933 for the uppermost conducting sample. This verifies that ions are the predominant charge carriers. From the LSV study, 1.4 V are recorded for the relatively high-conducting sample. The CV curve response is far from the rectangular shape. The maximum specific capacitance of 20.6 F/g is recorded at 10 mV/s.

11.
Materials (Basel) ; 14(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34500952

RESUMO

In this research, a biopolymer-based electrolyte system involving methylcellulose (MC) as a host polymeric material and potassium iodide (KI) salt as the ionic source was prepared by solution cast technique. The electrolyte with the highest conductivity was used for device application of electrochemical double-layer capacitor (EDLC) with high specific capacitance. The electrical, structural, and electrochemical characteristics of the electrolyte systems were investigated using various techniques. According to electrochemical impedance spectroscopy (EIS), the bulk resistance (Rb) decreased from 3.3 × 105 to 8 × 102 Ω with the increase of salt concentration from 10 wt % to 40 wt % and the ionic conductivity was found to be 1.93 ×10-5 S/cm. The dielectric analysis further verified the conductivity trends. Low-frequency regions showed high dielectric constant, ε' and loss, ε″ values. The polymer-salt complexation between (MC) and (KI) was shown through a Fourier transformed infrared spectroscopy (FTIR) studies. The analysis of transference number measurement (TNM) supported ions were predominantly responsible for the transport process in the MC-KI electrolyte. The highest conducting sample was observed to be electrochemically constant as the potential was swept linearly up to 1.8 V using linear sweep voltammetry (LSV). The cyclic voltammetry (CV) profile reveals the absence of a redox peak, indicating the presence of a charge double-layer between the surface of activated carbon electrodes and electrolytes. The maximum specific capacitance, Cs value was obtained as 118.4 F/g at the sweep rate of 10 mV/s.

12.
Membranes (Basel) ; 11(4)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33920053

RESUMO

The current work shows the preparation of plasticized chitosan-magnesium acetate Mg(CH3COO)2-based polymer electrolyte dispersed with nickel (Ni) metal complexes via solution casting. Investigations of electrical and electrochemical properties of the prepared polymer composite electrolyte were carried out. The structural and optical properties of the samples were studied using X-ray diffraction (XRD) and UV-Vis spectroscopy techniques. The structural and optical outcomes revealed a clear enhancement in both absorbance and amorphous nature of the samples upon the addition of Ni metal complexes. Through the simulation of impedance data, various ion transport parameters were calculated. The electrochemical performance of the sample was examined by means of transference number measurement (TNM), linear sweep voltammetry (LSV) and cyclic voltammetry (CV) measurements. The TNM analysis confirmed the dominance of ions as the main charge carrier in the electrolyte with tion of (0.96) compared to only (0.04) for tel. The present electrolyte was stable in the range of 0 V to 2.4 V, which was obtained from linear sweep voltammetry (LSV). A result from CV proved that the electrical double-layer capacitor (EDLC) has a capacitive behavior as no redox peaks could be observed. The presence of Ni improved the charge-discharge cycle of the EDLC due to its amorphous behavior. The average performances of the EDLC were recorded as 41.7 F/g, 95%, 5.86 Wh/kg and 628 W/kg for specific capacitance, coulombic efficiency, energy and power densities, respectively. The fabricated EDLC device was found to be stable up to 1000 cycles.

13.
Polymers (Basel) ; 13(8)2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33920346

RESUMO

Chitosan (CS)-dextran (DN) biopolymer electrolytes doped with ammonium iodide (NH4I) and plasticized with glycerol (GL), then dispersed with Zn(II)-metal complex were fabricated for energy device application. The CS:DN:NH4I:Zn(II)-complex was plasticized with various amounts of GL and the impact of used metal complex and GL on the properties of the formed electrolyte were investigated.The electrochemical impedance spectroscopy (EIS) measurements have shown that the highest conductivity for the plasticized system was 3.44 × 10-4 S/cm. From the x-ray diffraction (XRD) measurements, the plasticized electrolyte with minimum degree of crystallinity has shown the maximum conductivity. The effect of (GL) plasticizer on the film morphology was studied using FESEM. It has been confirmed via transference number analysis (TNM) that the transport mechanism in the prepared electrolyte is predominantly ionic in nature with a high transference number of ion (ti)of 0.983. From a linear sweep voltammetry (LSV) study, the electrolyte was found to be electrochemically constant as the voltage sweeps linearly up to 1.25 V. The cyclic voltammetry (CV) curve covered most of the area of the current-potential plot with no redox peaks and the sweep rate was found to be affecting the capacitance. The electric double-layer capacitor (EDLC) has shown a great performance of specific capacitance (108.3 F/g), ESR(47.8 ohm), energy density (12.2 W/kg) and power density (1743.4 W/kg) for complete 100 cycles at a current density of 0.5 mA cm-2.

14.
Polymers (Basel) ; 13(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33803001

RESUMO

The fabrication of energy storage EDLC in this work is achieved with the implementation of a conducting chitosan-methylcellulose-NH4NO3-glycerol polymer electrolyte system. The simple solution cast method has been used to prepare the electrolyte. The impedance of the samples was fitted with equivalent circuits to design the circuit diagram. The parameters associated with ion transport are well studied at various plasticizer concentrations. The FTIR investigation has been done on the films to detect the interaction that occurs among plasticizer and polymer electrolyte. To get more insights into ion transport parameters, the FTIR was deconvoluted. The transport properties achieved from both impedance and FTIR are discussed in detail. It was discovered that the transport parameter findings are in good agreement with both impedance and FTIR studies. A sample with high transport properties was characterized for ion dominancy and stability through the TNM and LSV investigations. The dominancy of ions in the electrolyte verified as the tion of the electrolyte is established to be 0.933 whereas it is potentially stable up to 1.87 V. The rechargeability of the EDLC is steady up to 500 cycles. The internal resistance, energy density, and power density of the EDLC at the 1st cycle are 53 ohms, 6.97 Wh/kg, and 1941 W/kg, respectively.

15.
Polymers (Basel) ; 13(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33916979

RESUMO

In this work, a pair of biopolymer materials has been used to prepare high ion-conducting electrolytes for energy storage application (ESA). The chitosan:methylcellulose (CS:MC) blend was selected as a host for the ammonium thiocyanate NH4SCN dopant salt. Three different concentrations of glycerol was successfully incorporated as a plasticizer into the CS-MC-NH4SCN electrolyte system. The structural, electrical, and ion transport properties were investigated. The highest conductivity of 2.29 × 10-4 S cm-1 is recorded for the electrolyte incorporated 42 wt.% of plasticizer. The complexation and interaction of polymer electrolyte components are studied using the FTIR spectra. The deconvolution (DVN) of FTIR peaks as a sensitive method was used to calculate ion transport parameters. The percentage of free ions is found to influence the transport parameters of number density (n), ionic mobility (µ), and diffusion coefficient (D). All electrolytes in this work obey the non-Debye behavior. The highest conductivity electrolyte exhibits the dominancy of ions, where the ionic transference number, tion value of (0.976) is near to infinity with a voltage of breakdown of 2.11 V. The fabricated electrochemical double-layer capacitor (EDLC) achieves the highest specific capacitance, Cs of 98.08 F/g at 10 mV/s by using the cyclic voltammetry (CV) technique.

16.
Polymers (Basel) ; 13(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530553

RESUMO

The polymer electrolyte system of chitosan/dextran-NaTf with various glycerol concentrations is prepared in this study. The electrical impedance spectroscopy (EIS) study shows that the addition of glycerol increases the ionic conductivity of the electrolyte at room temperature. The highest conducting plasticized electrolyte shows the maximum DC ionic conductivity of 6.10 × 10-5 S/cm. Field emission scanning electron microscopy (FESEM) is used to investigate the effect of plasticizer on film morphology. The interaction between the electrolyte components is confirmed from the existence of the O-H, C-H, carboxamide, and amine groups. The XRD study is used to determine the degree of crystallinity. The transport parameters of number density (n), ionic mobility (µ), and diffusion coefficient (D) of ions are determined using the percentage of free ions, due to the asymmetric vibration (υas(SO3)) and symmetric vibration (υs(SO3)) bands. The dielectric property and relaxation time are proved the non-Debye behavior of the electrolyte system. This behavior model is further verified by the existence of the incomplete semicircle arc from the Argand plot. Transference numbers of ion (tion) and electron (te) for the highest conducting plasticized electrolyte are identified to be 0.988 and 0.012, respectively, confirming that the ions are the dominant charge carriers. The tion value are used to further examine the contribution of ions in the values of the diffusion coefficient and mobility of ions. Linear sweep voltammetry (LSV) shows the potential window for the electrolyte is 2.55 V, indicating it to be a promising electrolyte for application in electrochemical energy storage devices.

17.
Chem Eng J ; 420: 127575, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33162783

RESUMO

Virus-induced infection such as SARS-CoV-2 is a serious threat to human health and the economic setback of the world. Continued advances in the development of technologies are required before the viruses undergo mutation. The low concentration of viruses in environmental samples makes the detection extremely challenging; simple, accurate and rapid detection methods are in urgent need. Of all the analytical techniques, electrochemical methods have the established capabilities to address the issues. Particularly, the integration of nanotechnology would allow miniature devices to be made available at the point-of-care. This review outlines the capabilities of electrochemical methods in conjunction with nanotechnology for the detection of SARS-CoV-2. Future directions and challenges of the electrochemical biosensors for pathogen detection are covered including wearable and conformal biosensors, detection of plant pathogens, multiplexed detection, and reusable biosensors for on-site monitoring, thereby providing low-cost and disposable biosensors.

18.
Environ Technol ; 42(3): 444-458, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31185882

RESUMO

Current investigation has for the first time synthesized chromium sulphide diethyldithiocarbamate [Cr2S3(Et2DTC)] complex utilizing diethyldithiocarbamate (DDTC) utilizing single source precursor method. Thin films of bilayer chromium sulphide diethyldithiocarmate and molybdenum disulphide [Cr2S3-MoS2(Et2DTC)] were deposited on the fluorine doped tin oxide (FTO) substrate by physical vapour deposition (PVD). Synthesized complex and bilayer were characterized by Xray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectrophotometry (UV-Vis), and scanning electron microscopy (SEM) for exploration of the compositional, optical, crystalline and morphological parameters, respectively. FT-IR peaks expressed the chelation of [Cr2S3(Et2DTC)] expressing interactions between chromium sulphide and the ligand. The band gaps obtained from Tauc plot were 3.89 (direct) and 3.38 eV (indirect), respectively for Cr2S3(Et2DTC) complex. The direct and indirect band gap of 3.75 and 3.35 eV, respectively, were obtained for [Cr2S3-MoS2(Et2DTC)] bilayer thin films. Average crystallite size of 13 (hexagonal orientation) and 13.4 (orthorhombic orientation) nm and for Cr2S3(Et2DTC) complex and [Cr2S3-MoS2(Et2DTC)] bilayer thin films expressed from XRD. SEM micrographs expressed cannular and rod protrusions for Cr2S3-DDTC complex and smoother and unvarnished surficial characteristics for [Cr2S3-MoS2(Et2DTC)] bilayer thin films corresponding to compactness and uniformity of the films. Furthermore, [Cr2S3-MoS2(Et2DTC)] also expressed remarkable electrochemical aspects of the current generation and operational stability of analysed through 5760 s at 100 mA analysed via linear sweep voltammetry and chronoamperometry. The fabricated films can be efficiently used in optoelectronic devices. Current work can be extended to the optimization of bilayer thin films fabrication for achieving an alleviation in the band gaps.


Assuntos
Molibdênio , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
19.
Membranes (Basel) ; 10(12)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276495

RESUMO

The polymer electrolyte based on Dx:Cs:Mg(CH3COO)2:Ni with three different glycerol concentrations have been prepared. The impedance study has verified that the electrolyte with 42 wt.% of glycerol (A3) has the highest ionic conductivity of 7.71 × 10-6 S cm-1 at room temperature. The ionic conductivity is found to be influenced by the transport parameters. From the dielectric analysis, it was shown that the electrolytes in this system obeyed the non-Debye behavior. The A3 electrolyte exhibited a dominancy of ions (tion > te) with a breakdown voltage of 2.08 V. The fabricated electrochemical double layer capacitor (EDLC) achieved the specific capacitance values of 24.46 F/g and 39.68 F/g via the cyclic voltammetry (CV) curve and the charge-discharge profile, respectively. The other significant parameters to evaluate the performance of EDLC have been determined, such as internal resistance (186.80 to 202.27 Ω) energy density (4.46 Wh/kg), power density (500.58 to 558.57 W/kg) and efficiency (92.88%).

20.
Materials (Basel) ; 13(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143345

RESUMO

In this study, porous cationic hydrogen (H+) conducting polymer blend electrolytes with an amorphous structure were prepared using a casting technique. Poly(vinyl alcohol) (PVA), chitosan (CS), and NH4SCN were used as raw materials. The peak broadening and drop in intensity of the X-ray diffraction (XRD) pattern of the electrolyte systems established the growth of the amorphous phase. The porous structure is associated with the amorphous nature, which was visualized through the field-emission scanning electron microscope (FESEM) images. The enhancement of DC ionic conductivity with increasing salt content was observed up to 40 wt.% of the added salt. The dielectric and electric modulus results were helpful in understanding the ionic conductivity behavior. The transfer number measurement (TNM) technique was used to determine the ion (tion) and electron (telec) transference numbers. The high electrochemical stability up to 2.25 V was recorded using the linear sweep voltammetry (LSV) technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA