Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.534
Filtrar
1.
Brain Commun ; 6(5): fcae277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39239152

RESUMO

Compelling evidence suggests that cognitive decline in Alzheimer's disease is associated with the accumulation and aggregation of tau protein, with the most toxic aggregates being in the form of oligomers. This underscores the necessity for direct isolation and analysis of brain-derived tau oligomers from patients with Alzheimer's disease, potentially offering novel perspectives into tau toxicity. Alzheimer's brain-derived tau oligomers are potent inhibitors of synaptic plasticity; however, the involved mechanism is still not fully understood. We previously reported a significantly reduced incidence of Alzheimer's disease in ageing humans chronically treated with a Food and Drug Administration-approved calcineurin inhibitor, FK506 (tacrolimus), used as an immunosuppressant after solid organ transplant. Using a combination of electrophysiological and RNA-sequencing techniques, we provide here evidence that FK506 has the potential to block the acute toxic effect of brain-derived tau oligomers on synaptic plasticity, as well as to restore the levels of some key synaptic mRNAs. These results further support FK506 as a promising novel therapeutic strategy for the treatment of Alzheimer's disease.

2.
Biosens Bioelectron ; 267: 116784, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39288708

RESUMO

Nanozymes are potential candidates for constructing sensors due to their adjustable activity, high stability, and high cost-effectiveness. However, due to the lack of reasonable means, designing and preparing efficient nanozymes remains challenging. Herein, inspired by the property of natural laccase, we applied the novel and facile low-temperature plasma (LTP) technology to fabricate a series of different base-ligand Cu metal organic framework (MOF) nanozymes (namely, A-Cu, G-Cu, C-Cu and T-Cu nanozymes) with laccase-like activity successfully. Owing to the different catalytic capacities of four types of base-Cu-MOF nanozymes in the response to five common effective bioactive substances, we constructed the nanozyme-encoded array sensor for the identification of different bioactive compounds. As a result, the four-channel colorimetric sensor array was constructed, in which four laccase-like nanozymes were utilized as the sensing units, achieving high-throughput, high-sensitivity and rapid detection/identification of five common bioactive compounds in the concentration range of 1.5-150 µg mL-1 through different color output patterns. It is worth noting that the as-prepared sensor array can successfully distinguish the natural bioactive compounds in a variety of real samples. Furthermore, with the assistance of smartphones, we also designed a portable smart sensing approach for detecting the bioactive compounds effectively in food. This study has therefore not only provided an effective way for preparation highly effectively nanozymes, but also established a new sensing platform for intelligent sensing of bioactive components in food.

3.
Neurobiol Dis ; 201: 106664, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39278510

RESUMO

AMP-activated protein kinase (AMPK) is an αßγ heterotrimer protein kinase that functions as a molecular sensor to maintain energy homeostasis. Accumulating evidence suggests a role of AMPK signaling in the regulation of synaptic plasticity and cognitive function; however, isoform-specific roles of AMPK in the central nervous system (CNS) remain elusive. Regulation of the AMPK activities has focused on the manipulation of the α or γ subunit. Meanwhile, accumulating evidence indicates that the ß subunit is critical for sensing nutrients such as fatty acids and glycogen to control AMPK activity. Here, we generated transgenic mice with conditional suppression of either AMPKß1 or ß2 in neurons and characterized potential isoform-specific roles of AMPKß in cognitive function and underlying mechanisms. We found that AMPKß2 (but not ß1) suppression resulted in impaired recognition memory, reduced hippocampal synaptic plasticity, and altered structure of hippocampal postsynaptic densities and dendritic spines. Our study implicates a role for the AMPKß2 isoform in the regulation of synaptic and cognitive function.

4.
Neuropeptides ; 108: 102474, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39305554

RESUMO

There is an interplay between the gonadotropin-releasing hormone (GnRH) and melatoninergic systems. The key enzyme of melatonin synthesis (arylalkylamine N-acetyltransferase, AANAT), and GnRH receptors are expressed in the hippocampus. While it has been shown that hippocampal AANAT enzyme activity is necessary for proper hippocampal cognitive function, their role in long-term potentiation (LTP) induction is not fully understood. In current study, the impact of GnRH on LTP induction was investigated, while hippocampal melatonin synthesis had been inhibited. The melatonin synthesis was inhibited by AANAT-siRNA administration, and LTP was induced using in vivo field potential electrophysiological recording. Animals were divided into 5 groups: Intact, vehicle, siRNA, GnRH and siRNA+GnRH. All animals, except intact group, experienced the stereotaxic surgery and intra-hippocampal cannulation to receive vehicle agent, AANAT siRNA (0.5 µg/hip), GnRH (1 ng/rat), and AANAT siRNA+GnRH. The recognition memory was assessed by Novel object recognition test. The field potential electrophysiology experiment was conducted by stimulating the Schaffer collateral pathway, and LTP induction was carried out through high-frequency stimulation (HFS). After recording, animals' brain was isolated and quickly frozen for further hippocampal melatonin levels measurement by LC-MS and AANAT mRNA levels by qRT-PCR. GnRH injection in the hippocampus increased local AANAT-mRNA expression and melatonin levels. GnRH-treated animals displayed higher LTP amplitude compared to intact, vehicle and siRNA groups. While the reduction in hippocampal melatonin levels by AANAT-siRNA inhibited LTP and impaired recognition memory, the GnRH prevented these adverse effects. The data suggests that GnRH have protective effects against AANAT-siRNA-induced LTP decline. The protective mechanism at least partially, may be related to the increased expression of local AANAT-mRNA.

5.
Wellcome Open Res ; 9: 300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39221440

RESUMO

Background: Early life stress (ELS) is an important risk factor in the aetiology of depression. Developmental glucocorticoid exposure impacts multiple brain regions with the hippocampus being particularly vulnerable. Hippocampal mediated behaviours are dependent upon the ability of neurones to undergo long-term potentiation (LTP), an N-methyl-D-aspartate receptor (NMDAR) mediated process. In this study we investigated the effect of ELS upon hippocampal NMDAR function. Methods: Hooded Long-Evans rat pups (n=82) were either undisturbed or maternally separated for 180 minutes per day (MS180) between post-natal day (PND) 1 and PND14. Model validation consisted of sucrose preference (n=18) and novelty supressed feeding (NSFT, n=34) tests alongside assessment of corticosterone (CORT) and paraventricular nucleus (PVN) cFos reactivity to stress and hippocampal neurogenesis (all n=18). AMPA/NMDA ratios (n=19), miniEPSC currents (n=19) and LTP (n=15) were assessed in whole-cell patch clamp experiments in CA1 pyramidal neurones. Results: MS180 animals showed increased feeding latency in the NSFT alongside increased overall CORT in the restraint stress experiment and increased PVN cFos expression in males but no changes in neurogenesis or sucrose preference. MS180 was associated with a lower AMPA/NMDA ratio with no change in miniEPSC amplitude or area. There was no difference in short- or long-term potentiation between MS180 and control animals nor were there any changes during the induction protocol. Conclusions: The MS180 model showed a behavioural phenotype consistent with previous work. MS180 animals showed increased NMDAR function with preliminary evidence suggesting that this was not concurrent with an increase in LTP.


Highly stressful early life events are the biggest risk factor for developing depression in adulthood. The hippocampus is a brain region that is highly susceptible to this stress and is crucial for coordinating learning and memory which underpins many aspects of cognitive function. Our study investigated if changes in the way that the neurons in the hippocampus communicate could provide explanations as to why early life stress predisposes to depression. We used an animal model of early life stress where rat pups are separated from their mother for three hours per day during their early life. Upon adulthood this resulted in the rats being slower to eat food in a new environment, a standard test of anxiety behaviour. We then used a technique called ex-vivo patch clamp electrophysiology to study how the individual neurons in their hippocampi and their connections functioned after early life stress. We measured the relative power of the signals from two key synaptic receptors essential for communication between neurons: AMPA and NMDA receptors. AMPA receptors are the key receptors enabling communication between neurons at synapses whereas NMDA receptors allow a neuron to become more sensitive to input signals and adapt synaptic strength. Animals with early life stress had more NMDA receptor function relative to AMPA function compared to control animals. We used a technique called miniEPSC recordings to rule out any change in AMPA receptor function in ELS animals meaning an effect specific to NMDA receptors. However, we found no changes to the ability for synapses to adapt their strength between groups. This work presents evidence for changes in hippocampal neurons and synapses caused by early life stress but further work is needed to understand how this relates to depression.

6.
Behav Brain Res ; 476: 115250, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39277140

RESUMO

Schizophrenia is a disorder with a higher cognitive decline in early adulthood, causing impaired retention of episodic memories. However, the physiological and behavioral functions that underlie cognitive deficits with a potential mechanism to ameliorate and improve cognitive performance are unknown. In this study, we used the MK-801 neurodevelopmental schizophrenia-like model. Rats were divided into two groups: one received MK-801, and the other received saline for five consecutive days (7-11 postnatal days, PND). We evaluated synaptic plasticity late-LTP and spatial memory consolidation in early adolescence and young adulthood using extracellular field recordings in acute hippocampal slices and the Barnes maze task. Next, we examined D1 receptor (D1R) activation as a mechanism to ameliorate cognitive impairments. Our results suggest that MK-801 neonatal treatment induces impairment in late-LTP expression and deficits in spatial memory retrieval in early adolescence that is maintained until young adulthood. Furthermore, we found that activation of dopamine D1R ameliorates the impairments and promotes a robust expression of late-LTP and an improved performance in the Barnes maze task, suggesting a novel and potential therapeutic role in treating cognitive impairments in schizophrenia.

7.
Plant Direct ; 8(9): e591, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39247583

RESUMO

The spatial accumulation of hordeins in the developing endosperm of barley grains was examined by immunofluorescence microscopy (immunolight microscopy [iLM]) and immunoelectron microscopy (iEM) to establish the timing and subcellular pattern of hordein synthesis and deposition. The pattern seen for hordeins was compared to other abundant grain proteins, such as serpin Z4 and lipid transfer protein 1 (LTP1). Hordein accumulates throughout grain development, from 6 to 37 days post-anthesis (DPA). In contrast, serpin Z4 was present at 6 DPA, but the greatest synthesis and accumulation occurred during the middle of seed development, from 15 to 30 DPA. LTP1 accumulated later in seed development, from 15 to 30 DPA. Hordeins accumulated within the lumen of the endoplasmic reticulum (ER), were exocytosed from the ER membrane, and accumulated in protein bodies, which then fused either with the protein storage vacuoles or with other protein bodies, which also later fused with the protein storage vacuoles. iEM showed hordein, and LTP1 appeared not to traverse the Golgi apparatus (GA). Hordein, LTP1, and serpin Z4 colocalized to the same protein bodies and were co-transported to the protein storage vacuole in the same protein bodies. It is likely that this represents a general transport mechanism common to storage proteins in developing grains.

8.
Neurobiol Stress ; 32: 100666, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39224830

RESUMO

Post-traumatic stress disorder (PTSD) is a severe stress-dependent psychiatric disorder characterized by impairment of fear memory extinction; however, biological markers to determine impaired fear memory extinction in PTSD remain unclear. In male mice with PTSD-like behaviors elicited by single prolonged stress (SPS), 19 differentially expressed proteins in the hippocampus were identified compared with controls. Among them, a biological macromolecular protein named deleted in colorectal cancer (DCC) was highly upregulated. Specific overexpression of DCC in the hippocampus induced similar impairment of long-term potentiation (LTP) and fear memory extinction as observed in SPS mice. The impairment of fear memory extinction in SPS mice was improved by inhibiting the function of hippocampal DCC using a neutralizing antibody. Mechanistic studies have shown that knocking down or inhibiting µ-calpain in hippocampal neurons increased DCC expression and induced impairment of fear memory extinction. Additionally, SPS-triggered impairment of hippocampal LTP and fear memory extinction could be rescued through activation of the Rac1-Pak1 signaling pathway. Our study provides evidence that calpain-mediated regulation of DCC controls hippocampal LTP and fear memory extinction in SPS mice, which likely through activation of the Rac1-Pak1 signaling pathway.

9.
J Neurosci ; 44(36)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39117456

RESUMO

Monocular deprivation (MD) causes an initial decrease in synaptic responses to the deprived eye in juvenile mouse primary visual cortex (V1) through Hebbian long-term depression (LTD). This is followed by a homeostatic increase, which has been attributed either to synaptic scaling or to a slide threshold for Hebbian long-term potentiation (LTP) rather than scaling. We therefore asked in mice of all sexes whether the homeostatic increase during MD requires GluN2B-containing NMDA receptor activity, which is required to slide the plasticity threshold but not for synaptic scaling. Selective GluN2B blockade from 2-6 d after monocular lid suture prevented the homeostatic increase in miniature excitatory postsynaptic current (mEPSC) amplitude in monocular V1 of acute slices and prevented the increase in visually evoked responses in binocular V1 in vivo. The decrease in mEPSC amplitude and visually evoked responses during the first 2 d of MD also required GluN2B activity. Together, these results support the idea that GluN2B-containing NMDA receptors first play a role in LTD immediately following eye closure and then promote homeostasis during prolonged MD by sliding the plasticity threshold in favor of LTP.


Assuntos
Dominância Ocular , Potenciais Pós-Sinápticos Excitadores , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Receptores de N-Metil-D-Aspartato , Animais , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Camundongos , Masculino , Dominância Ocular/fisiologia , Feminino , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Evocados Visuais/fisiologia , Córtex Visual/fisiologia , Córtex Visual/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Privação Sensorial/fisiologia , Potenciação de Longa Duração/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/fisiologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Estimulação Luminosa/métodos
10.
J Neuroinflammation ; 21(1): 200, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129007

RESUMO

BACKGROUND: We recently reported that the dopamine (DA) analogue CA140 modulates neuroinflammatory responses in lipopolysaccharide-injected wild-type (WT) mice and in 3-month-old 5xFAD mice, a model of Alzheimer's disease (AD). However, the effects of CA140 on Aß/tau pathology and synaptic/cognitive function and its molecular mechanisms of action are unknown. METHODS: To investigate the effects of CA140 on cognitive and synaptic function and AD pathology, 3-month-old WT mice or 8-month-old (aged) 5xFAD mice were injected with vehicle (10% DMSO) or CA140 (30 mg/kg, i.p.) daily for 10, 14, or 17 days. Behavioral tests, ELISA, electrophysiology, RNA sequencing, real-time PCR, Golgi staining, immunofluorescence staining, and western blotting were conducted. RESULTS: In aged 5xFAD mice, a model of AD pathology, CA140 treatment significantly reduced Aß/tau fibrillation, Aß plaque number, tau hyperphosphorylation, and neuroinflammation by inhibiting NLRP3 activation. In addition, CA140 treatment downregulated the expression of cxcl10, a marker of AD-associated reactive astrocytes (RAs), and c1qa, a marker of the interaction of RAs with disease-associated microglia (DAMs) in 5xFAD mice. CA140 treatment also suppressed the mRNA levels of s100ß and cxcl10, markers of AD-associated RAs, in primary astrocytes from 5xFAD mice. In primary microglial cells from 5xFAD mice, CA140 treatment increased the mRNA levels of markers of homeostatic microglia (cx3cr1 and p2ry12) and decreased the mRNA levels of a marker of proliferative region-associated microglia (gpnmb) and a marker of lipid-droplet-accumulating microglia (cln3). Importantly, CA140 treatment rescued scopolamine (SCO)-mediated deficits in long-term memory, dendritic spine number, and LTP impairment. In aged 5xFAD mice, these effects of CA140 treatment on cognitive/synaptic function and AD pathology were regulated by dopamine D1 receptor (DRD1)/Elk1 signaling. In primary hippocampal neurons and WT mice, CA140 treatment promoted long-term memory and dendritic spine formation via effects on DRD1/CaMKIIα and/or ERK signaling. CONCLUSIONS: Our results indicate that CA140 improves neuronal/synaptic/cognitive function and ameliorates Aß/tau pathology and neuroinflammation by modulating DRD1 signaling in primary hippocampal neurons, primary astrocytes/microglia, WT mice, and aged 5xFAD mice.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Camundongos Transgênicos , Doenças Neuroinflamatórias , Receptores de Dopamina D1 , Transdução de Sinais , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Camundongos , Peptídeos beta-Amiloides/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Receptores de Dopamina D1/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia , Cognição/efeitos dos fármacos , Dopamina/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Humanos
11.
Proc Natl Acad Sci U S A ; 121(34): e2312511121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39141354

RESUMO

Schizophrenia phenotypes are suggestive of impaired cortical plasticity in the disease, but the mechanisms of these deficits are unknown. Genomic association studies have implicated a large number of genes that regulate neuromodulation and plasticity, indicating that the plasticity deficits have a genetic origin. Here, we used biochemically detailed computational modeling of postsynaptic plasticity to investigate how schizophrenia-associated genes regulate long-term potentiation (LTP) and depression (LTD). We combined our model with data from postmortem RNA expression studies (CommonMind gene-expression datasets) to assess the consequences of altered expression of plasticity-regulating genes for the amplitude of LTP and LTD. Our results show that the expression alterations observed post mortem, especially those in the anterior cingulate cortex, lead to impaired protein kinase A (PKA)-pathway-mediated LTP in synapses containing GluR1 receptors. We validated these findings using a genotyped electroencephalogram (EEG) dataset where polygenic risk scores for synaptic and ion channel-encoding genes as well as modulation of visual evoked potentials were determined for 286 healthy controls. Our results provide a possible genetic mechanism for plasticity impairments in schizophrenia, which can lead to improved understanding and, ultimately, treatment of the disorder.


Assuntos
Plasticidade Neuronal , Esquizofrenia , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Esquizofrenia/metabolismo , Humanos , Plasticidade Neuronal/genética , Simulação por Computador , Potenciação de Longa Duração/genética , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Sinapses/genética , Eletroencefalografia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Modelos Neurológicos , Depressão Sináptica de Longo Prazo/genética , Masculino , Potenciais Evocados Visuais/fisiologia
12.
Cerebellum ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096432

RESUMO

Long-term depression (LTD) of synaptic transmission at parallel fiber (PF)-Purkinje cell (PC) synapses plays an important role in cerebellum-related motor coordination and learning. LTD is induced by the conjunction of PF stimulation and climbing fiber (CF) stimulation or somatic PC depolarization, while long-term potentiation (LTP) is induced by PF stimulation alone. Therefore, it is considered that different types of stimulation induce different types of synaptic plasticity. However, we found that a small number of conjunctive stimulations (PF + somatic depolarization of PC) induced LTP, but did not induce LTD of a small size. This LTP was not associated with changes in paired-pulse ratio, suggesting postsynaptic origin. Additionally this LTP was dependent on nitric oxide. This LTP was also induced by a smaller number of physiological conjunctive PF and CF stimuli. These results suggested that a larger number or longer period of conjunctive stimulation is required to induce LTD by overcoming LTP. Ca2+ transients at the PC dendritic region was measured by calcium imaging during LTD-inducing conjunctive stimulation. Peak amplitude of Ca2+ transients increased gradually during repetitive conjunctive stimulation. Instantaneous peak amplitude was not different between the early phase and late phase, but the average amplitude was larger in the later phase than in the early phase. These results show that LTD overcomes LTP, and increased Ca2+ integration or a number of stimulations is required for LTD induction.

13.
Hippocampus ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39143939

RESUMO

Early life, or juvenility, stands out as the most pivotal phase in neurodevelopment due to its profound impact over the long-term cognition. During this period, significant changes are made in the brain's connections both within and between different areas, particularly in tandem with the development of more intricate behaviors. The hippocampus is among the brain regions that undergo significant postnatal remodeling, including dendritic arborization, synaptogenesis, the formation of complex spines and neuron proliferation. Given the crucial role of the hippocampus in spatial memory processing, it has been observed that spatial memory abilities continue to develop as the hippocampus matures, particularly before puberty. The N-methyl-d-aspartate (NMDA) type of glutamate receptor channel is crucial for the induction of activity-dependent synaptic plasticity and spatial memory formation in both rodents and humans. Although extensive evidence shows the role of NMDA receptors (NMDAr) in spatial memory and synaptic plasticity, the studies addressing the role of NMDAr in spatial memory of juveniles are sparse and mostly limited to adult males. In the present study, we, therefore, aimed to investigate the effects of systemic NMDAr blockade by the MK-801 on spatial memory (novel object location memory, OLM) and hippocampal plasticity in the form of long-term potentiation (LTP) of both male and female juvenile rats. Our results show the sex-dimorphic role of NMDAr in spatial memory and plasticity during juvenility, as systemic NMDAr blockade impairs the OLM and LTP in juvenile males without an effect on juvenile females. Taken together, our results demonstrate that spatial memory and hippocampal plasticity are NMDAr-dependent in juvenile males and NMDAr-independent in juvenile females. These sex-specific differences in the mechanisms of spatial memory and plasticity may imply gender-specific treatment for spatial memory disorders even in children.

14.
Cereb Cortex ; 34(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39172095

RESUMO

Aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder (AQP4-NMOSD) is an autoimmune disease characterized by suboptimal recovery from attacks and long-term disability. Experimental data suggest that AQP4 antibodies can disrupt neuroplasticity, a fundamental driver of brain recovery. A well-established method to assess brain LTP is through intermittent theta-burst stimulation (iTBS). This study aimed to explore neuroplasticity in AQP4-NMOSD patients by examining long-term potentiation (LTP) through iTBS. We conducted a proof-of-principle study including 8 patients with AQP4-NMOSD, 8 patients with multiple sclerosis (MS), and 8 healthy controls (HC) in which iTBS was administered to induce LTP-like effects. iTBS-induced LTP exhibited significant differences among the 3 groups (p: 0.006). Notably, AQP4-NMOSD patients demonstrated impaired plasticity compared to both HC (p = 0.01) and pwMS (p = 0.02). This pilot study provides the first in vivo evidence supporting impaired neuroplasticity in AQP4-NMOSD patients. Impaired cortical plasticity may hinder recovery following attacks suggesting a need for targeted rehabilitation strategies.


Assuntos
Aquaporina 4 , Neuromielite Óptica , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Aquaporina 4/metabolismo , Aquaporina 4/imunologia , Feminino , Neuromielite Óptica/fisiopatologia , Neuromielite Óptica/imunologia , Adulto , Masculino , Pessoa de Meia-Idade , Córtex Cerebral/fisiologia , Plasticidade Neuronal/fisiologia , Projetos Piloto , Potenciação de Longa Duração/fisiologia , Autoanticorpos/imunologia
15.
Brain Behav Immun Health ; 40: 100826, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39161874

RESUMO

Background: Inhibition of p38 alpha mitogen activated protein kinase (p38α) has shown great promise as a treatment for Alzheimer's disease (AD) in preclinical tests. However, previous preclinical studies were performed in "pure" models of AD pathology. A vast majority of AD patients have comorbid dementia-contributing pathologies, particularly some form of vascular damage. The present study therefore aimed to test the potential of p38α inhibition to address dysfunction in the context of comorbid amyloid and vascular pathologies. Methods: An amyloid overexpressing mouse strain (5xFAD) was placed on an 8-week long diet to induce the hyperhomocysteinemia (HHcy) model of small vessel disease. Mice were treated with the brain-penetrant small molecule p38α inhibitor MW150 for the duration of the HHcy diet, and subsequently underwent behavioral, neuroimaging, electrophysiological, or biochemical/immunohistochemical analyses. Results: MW150 successfully reduced behavioral impairment in the Morris Water Maze, corresponding with attenuation of synaptic loss, reduction in tau phosphorylation, and a partial normalization of electrophysiological parameters. No effect of MW150 was observed on the amyloid, vascular, or neuroinflammatory endpoints measured. Conclusions: This study provides proof-of-principle that the inhibition of p38α is able to provide benefit even in the context of mixed pathological contributions to cognitive impairment. Interestingly, the benefit was mediated primarily via rescue of neuronal function without any direct effects on the primary pathologies. These data suggest a potential use for p38 inhibitors in the preservation of cognition across contexts, and in particular AD, either alone or as an adjunct to other AD therapies (i.e. anti-amyloid approaches). Future studies to delineate the precise neuronal pathways implicated in the benefit may help define other specific comorbid conditions amenable to this type of approach or suggest future refinement in pharmacological targeting.

16.
Cell Mol Life Sci ; 81(1): 358, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158722

RESUMO

Long-term synaptic plasticity is typically associated with morphological changes in synaptic connections. However, the molecular mechanisms coupling functional and structural aspects of synaptic plasticity are still poorly defined. The catalytic activity of type I phosphoinositide-3-kinase (PI3K) is required for specific forms of synaptic plasticity, such as NMDA receptor-dependent long-term potentiation (LTP) and mGluR-dependent long-term depression (LTD). On the other hand, PI3K signaling has been linked to neuronal growth and synapse formation. Consequently, PI3Ks are promising candidates to coordinate changes in synaptic strength with structural remodeling of synapses. To investigate this issue, we targeted individual regulatory subunits of type I PI3Ks in hippocampal neurons and employed a combination of electrophysiological, biochemical and imaging techniques to assess their role in synaptic plasticity. We found that a particular regulatory isoform, p85α, is selectively required for LTP. This specificity is based on its BH domain, which engages the small GTPases Rac1 and Cdc42, critical regulators of the actin cytoskeleton. Moreover, cofilin, a key regulator of actin dynamics that accumulates in dendritic spines after LTP induction, failed to do so in the absence of p85α or when its BH domain was overexpressed as a dominant negative construct. Finally, in agreement with this convergence on actin regulatory mechanisms, the presence of p85α in the PI3K complex determined the extent of actin polymerization in dendritic spines during LTP. Therefore, this study reveals a molecular mechanism linking structural and functional synaptic plasticity through the coordinate action of PI3K catalytic activity and a specific isoform of the regulatory subunits.


Assuntos
Fatores de Despolimerização de Actina , Actinas , Espinhas Dendríticas , Hipocampo , Potenciação de Longa Duração , Animais , Espinhas Dendríticas/metabolismo , Potenciação de Longa Duração/fisiologia , Actinas/metabolismo , Hipocampo/metabolismo , Hipocampo/citologia , Fatores de Despolimerização de Actina/metabolismo , Ratos , Proteínas rac1 de Ligação ao GTP/metabolismo , Sinapses/metabolismo , Polimerização , Proteína cdc42 de Ligação ao GTP/metabolismo , Plasticidade Neuronal/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Neurônios/metabolismo , Transdução de Sinais , Camundongos , Células Cultivadas
17.
J Comput Neurosci ; 52(3): 183-196, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39120822

RESUMO

Theta burst stimulation (TBS) is a form of repetitive transcranial magnetic stimulation (rTMS) with unknown underlying mechanisms and highly variable responses across subjects. To investigate these issues, we developed a simple computational model. Our model consisted of two neurons linked by an excitatory synapse that incorporates two mechanisms: short-term plasticity (STP) and spike-timing-dependent plasticity (STDP). We applied a variable-amplitude current through I-clamp with a TBS time pattern to the pre- and post-synaptic neurons, simulating synaptic plasticity. We analyzed the results and provided an explanation for the effects of TBS, as well as the variability of responses to it. Our findings suggest that the interplay of STP and STDP mechanisms determines the direction of plasticity, which selectively affects synapses in extended neurons and underlies functional effects. Our model describes how the timing, number, and intensity of pulses delivered to neurons during rTMS contribute to induced plasticity. This not only successfully explains the different effects of intermittent TBS (iTBS) and continuous TBS (cTBS), but also predicts the results of other protocols such as 10 Hz rTMS. We propose that the variability in responses to TBS can be attributed to the variable span of neuronal thresholds across individuals and sessions. Our model suggests a biologically plausible mechanism for the diverse responses to TBS protocols and aligns with experimental data on iTBS and cTBS outcomes. This model could potentially aid in improving TBS and rTMS protocols and customizing treatments for patients, brain areas, and brain disorders.


Assuntos
Simulação por Computador , Modelos Neurológicos , Plasticidade Neuronal , Neurônios , Ritmo Teta , Estimulação Magnética Transcraniana , Ritmo Teta/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Humanos , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Animais
18.
Cell Biochem Funct ; 42(6): e4100, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39090824

RESUMO

Synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), is an essential phenomenon in memory formation as well as maintenance along with many other cognitive functions, such as those needed for coping with external stimuli. Synaptic plasticity consists of gradual changes in the biochemistry and morphology of pre- and postsynaptic neurons, particularly in the hippocampus. Consuming marijuana as a primary source of exocannabinoids immediately impairs attention and working memory-related tasks. Evidence regarding the effects of cannabinoids on LTP and memory is contradictory. While cannabinoids can affect a variety of specific cannabinoid receptors (CBRs) and nonspecific receptors throughout the body and brain, they exert miscellaneous systemic and local cerebral effects. Given the increasing use of cannabis, mainly among the young population, plus its potential adverse long-term effects on learning and memory processes, it could be a future global health challenge. Indeed, the impact of cannabinoids on memory is multifactorial and depends on the dosage, timing, formula, and route of consumption, plus the background complex interaction of the endocannabinoids system with other cerebral networks. Herein, we review how exogenously administrated organic cannabinoids, CBRs agonists or antagonists, and endocannabinoids can affect LTP and synaptic plasticity through various receptors in interaction with other cerebral pathways and primary neurotransmitters.


Assuntos
Canabinoides , Potenciação de Longa Duração , Memória , Plasticidade Neuronal , Canabinoides/farmacologia , Canabinoides/metabolismo , Humanos , Plasticidade Neuronal/efeitos dos fármacos , Animais , Potenciação de Longa Duração/efeitos dos fármacos , Memória/efeitos dos fármacos , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Receptores de Canabinoides/metabolismo , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos
19.
Plant Cell Environ ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115239

RESUMO

Worldwide food security is severely threatened by the devastating wheat stripe rust disease. The utilization of resistant wheat cultivars represents the most cost-effective and efficient strategy for combating this disease. However, the lack of resistant resources has been a major bottleneck in breeding for wheat disease resistance. Therefore, revealing novel gene resources for combating stripe rust and elucidating the underlying resistance mechanism is of utmost urgency. In this study, we identified that the soybean NF-YB transcription factor GmNF-YB20 in wheat provides resistance to the stripe rust fungus (Puccinia striiformis f. sp. tritici, Pst). Wheat lines with stable overexpression of the GmNF-YB20 enhanced resistance against multiple Pst races. Transcriptome profiling of GmNF-YB20 transgenic wheat under Pst infection unveiled its involvement in the lipid signaling pathway. RT-qPCR assays suggested that GmNF-YB20 increased transcript levels of multiple nonspecific lipid transfer protein (LTP) genes during wheat-Pst interaction, luciferase reporter analysis illustrates that it activates the transcription of TaLTP1.50 in wheat protoplast, and GmNF-YB20 overexpressed wheat plants had higher total LTP content in vivo during Pst infection. Overexpression of TaLTP1.50 in wheat significantly increased resistance to Pst, whereas knockdown of TaLTP1.50 exhibited the opposite trends, indicating that TaLTP1.50 plays a positive role in wheat resistance. Taken together, our findings provide perspective regarding the molecular mechanism of GmNF-YB20 in wheat and highlight the potential use for wheat breeding.

20.
Methods Mol Biol ; 2831: 209-217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39134852

RESUMO

Plasticity of synaptic transmission underlies learning and memory. It is accompanied by changes in the density and size of synapses, collectively called structural plasticity. Therefore, understanding the mechanism of structural plasticity is critical for understanding the mechanism of synaptic plasticity. In this chapter, we describe the procedures and equipment required to image structural plasticity of a single dendritic spine, which hosts excitatory synapses in the central nervous system, and underlying molecular interactions/biochemical reactions using two-photon fluorescence lifetime microscopy (2P-FLIM) in combination with Förster resonance energy transfer (FRET)-based biosensors.


Assuntos
Espinhas Dendríticas , Transferência Ressonante de Energia de Fluorescência , Microscopia de Fluorescência por Excitação Multifotônica , Plasticidade Neuronal , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Espinhas Dendríticas/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Transferência Ressonante de Energia de Fluorescência/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Sinapses/metabolismo , Sinapses/fisiologia , Camundongos , Técnicas Biossensoriais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA