Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 468
Filtrar
1.
J Environ Manage ; 367: 122093, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39106804

RESUMO

Wildfire intensity and severity have been increasing in the Iberian Peninsula in recent years, particularly in the Galicia region, due to rising temperatures and accumulating drier combustible vegetation in unmanaged lands. This leads to substantial emissions of air pollutants, notably fine particles (PM2.5), posing a risk to public health. This study aims to assess the impact of local and regional wildfires on PM2.5 levels in Galicia's main cities and their implications for air quality and public health. Over a decade (2013-2022), PM2.5 data during wildfire seasons were analyzed using statistical methods and Lagrangian tracking to monitor smoke plume evolution. The results reveal a notable increase in PM2.5 concentration during the wildfire season (June-November) in Galicia, surpassing health guidelines during extreme events and posing a significant health risk to the population. Regional wildfire analyses indicate that smoke plumes from Northern Portugal contribute to pollution in Galician cities, influencing the seasonality of heightened PM2.5 levels. During extensive wildfires, elevated PM2.5 concentration values persisted for several days, potentially exacerbating health concerns in Galicia. These findings underscore the urgency of implementing air pollution prevention and management measures in the region, including developing effective alerts for large-scale events and improved wildfire management strategies to mitigate their impact on air quality in Galician cities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Material Particulado , Incêndios Florestais , Espanha , Material Particulado/análise , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Cidades
2.
Curr Biol ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39106864

RESUMO

Having a profound influence on marine and coastal environments worldwide, jellyfish hold significant scientific, economic, and public interest.1,2,3,4,5 The predictability of outbreaks and dispersion of jellyfish is limited by a fundamental gap in our understanding of their movement. Although there is evidence that jellyfish may actively affect their position,6,7,8,9,10 the role of active swimming in controlling jellyfish movement, and the characteristics of jellyfish swimming behavior, are not well understood. Consequently, jellyfish are often regarded as passively drifting or randomly moving organisms, both conceptually2,11 and in process studies.12,13,14 Here we show that the movement of jellyfish is modulated by distinctly directional swimming patterns that are oriented away from the coast and against the direction of surface gravity waves. Taking a Lagrangian viewpoint from drone videos that allows the tracking of multiple adjacent jellyfish, and focusing on the scyphozoan jellyfish Rhopilema nomadica as a model organism, we show that the behavior of individual jellyfish translates into a synchronized directional swimming of the aggregation as a whole. Numerical simulations show that this counter-wave swimming behavior results in biased correlated random-walk movement patterns that reduce the risk of stranding, thus providing jellyfish with an adaptive advantage critical to their survival. Our results emphasize the importance of active swimming in regulating jellyfish movement and open the way for a more accurate representation in model studies, thus improving the predictability of jellyfish outbreaks and their dispersion and contributing to our ability to mitigate their possible impact on coastal infrastructure and populations.

3.
Environ Sci Pollut Res Int ; 31(38): 50529-50543, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39096458

RESUMO

Odor pollution is the biggest source of complaints from citizens concerning environmental issues after noise. Often, the need for corrective actions is evaluated through simulations performed with atmospheric dispersion models. To save resources, air pollution control institutions perform a first-level odor impact assessment, for screening purposes. This is often based on Gaussian dispersion models (GDM), which does not need high computational power. However, their outputs tend to be conservative regarding the analyzed situation, rather than representative of the real in-site conditions. Hence, regulations and guidelines adopted at an institutional level for authorization/control purposes are based on Lagrangian particle dispersion models (LPDM). These models grant a more accurate simulation of the pollutants' dispersion even if they are more demanding regarding both technical skills and computing power. The present study aims to increase the accuracy of screening odor impact assessment by identifying the correlation function of the outputs derived from the two simulation models. The case study is placed in northern Italy, where a single-point source, with various stack heights, was considered. The case study is placed in northern Italy, where a single-point source, with various stack heights, was considered. The obtained correlation functions allow the practitioner to have a more accurate first-level odor impact assessment, to save time for training, and to reduce the site-specific meteorological data before proceeding with the simulation. The identified functions could allow institutions to estimate the results that would have been forecasted with the application of the more complex LPDM, applying, however, the much simpler GDM. This solution grants an accurate tool which can be used to address citizens' concerns while saving workforce and technical resources. Limitations are related to the specificity of the method regarding type sources, orography, and meteorological conditions. Comparison with other screening tools is also presented and discussed.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Odorantes , Monitoramento Ambiental/métodos , Poluição do Ar , Modelos Teóricos , Itália
4.
Artigo em Inglês | MEDLINE | ID: mdl-39153065

RESUMO

The Mediterranean Sea is one of the most critically polluted areas due to its semi-enclosed structure and its highly anthropized shoreline. Rivers are significant vectors for pollutant transfers from the continental to the marine environment. In this context, a 3D Lagrangian simulation of the dispersion of riverine microplastics (MPs) was performed, which included the application of a recently developed model that reassessed the MP fluxes discharged by rivers. MP physical properties from river samples were further investigated to approximate vertical displacement in modeled ocean currents. The use of a high-resolution circulation model, integrating Stokes drift, turbulent diffusion, and MP sinking and rising velocities, enabled us to establish stock balances. Our simulation suggested that 65% of river inputs may be made of floating MPs drifting in the surface layer and 35% of dense MPs sinking to deeper layers. The Eastern Mediterranean tends to accumulate floating MPs, primarily originating from the Western Mediterranean Basin, where major river sources are concentrated. After 2 years of simulation, modeled stranding sequestered 90% of the MP inputs, indicating relatively short average residence times from a few days to months at most for particles at sea. Although spatial distribution patterns stabilized after this period and a steady state may have been approached, the surface concentrations we modeled generally remained below field observations. This suggested either an underestimation of sources (rivers and unaccounted sources), by a factor of 6 at most, or an overestimation of MP withdrawal through stranding, to be reduced from 90 to around 60% or less if unaccounted sinks were considered.

5.
Risk Anal ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955987

RESUMO

Europe faces regular introductions and reintroductions of bluetongue virus (BTV) serotypes, most recently exemplified by the incursion of serotype 3 in the Netherlands. Although the long-distance wind dispersal of the disease vector, Culicoides spp., is recognized as a virus introduction pathway, it remains understudied in risk assessments. A Quantitative Risk Assessment framework was developed to estimate the risk of BTV-3 incursion into mainland Europe from Sardinia, where the virus has been present since 2018. We used an atmospheric transport model (HYbrid Single-Particle Lagrangian Integrated Trajectory) to infer the probability of airborne dispersion of the insect vector. Epidemiological disease parameters quantified the virus prevalence in vector population in Sardinia and its potential first transmission after introduction in a new area. When assuming a 24h maximal flight duration, the risk of BTV introduction from Sardinia is limited to the Mediterranean Basin, mainly affecting the southwestern area of the Italian Peninsula, Sicily, Malta, and Corsica. The risk extends to the northern and central parts of Italy, Balearic archipelago, and mainland France and Spain, mostly when maximal flight duration is longer than 24h. Additional knowledge on vector flight conditions and Obsoletus complex-specific parameters could improve the robustness of the model. Providing both spatial and temporal insights into BTV introduction risks, our framework is a key tool to guide global surveillance and preparedness against epizootics.

6.
J Neural Eng ; 21(4)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39074496

RESUMO

Objective.Implanted neural microelectrodes are an important tool for recording from and stimulating the cerebral cortex. The performance of chronically implanted devices, however, is often hindered by the development of a reactive tissue response. Previous computational models have investigated brain strain from micromotions of neural electrodes after they have been inserted, to investigate design parameters that might minimize triggers to the reactive tissue response. However, these models ignore tissue damage created during device insertion, an important contributing factor to the severity of inflammation. The objective of this study was to evaluate the effect of electrode geometry, insertion speed, and surface friction on brain tissue strain during insertion.Approach. Using a coupled Eulerian-Lagrangian approach, we developed a 3D finite element model (FEM) that simulates the dynamic insertion of a neural microelectrode in brain tissue. Geometry was varied to investigate tip bluntness, cross-sectional shape, and shank thickness. Insertion velocities were varied from 1 to 8 m s-1. Friction was varied from frictionless to 0.4. Tissue strain and potential microvasculature hemorrhage radius were evaluated for brain regions along the electrode shank and near its tip.Main results. Sharper tips resulted in higher mean max principal strains near the tip except for the bluntest tip on the square cross-section electrode, which exhibited high compressive strain values due to stress concentrations at the corners. The potential vascular damage radius around the electrode was primarily a function of the shank diameter, with smaller shank diameters resulting in smaller distributions of radial strain around the electrode. However, the square shank interaction with the tip taper length caused unique strain distributions that increased the damage radius in some cases. Faster insertion velocities created more strain near the tip but less strain along the shank. Increased friction between the brain and electrode created more strain near the electrode tip and along the shank, but frictionless interactions resulted in increased tearing of brain tissue near the tip.Significance. These results demonstrate the first dynamic FEM study of neural electrode insertion, identifying design factors that can reduce tissue strain and potentially mitigate initial reactive tissue responses due to traumatic microelectrode array insertion.


Assuntos
Eletrodos Implantados , Análise de Elementos Finitos , Microeletrodos , Estresse Mecânico , Animais , Encéfalo/fisiologia , Modelos Neurológicos , Simulação por Computador , Fricção
7.
Comput Biol Med ; 179: 108836, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38968764

RESUMO

Automated identification of cardiac vortices is a formidable task due to the complex nature of blood flow within the heart chambers. This study proposes a novel approach that algorithmically characterizes the identification criteria of these cardiac vortices based on Lagrangian Averaged Vorticity Deviation (LAVD). For this purpose, the Recurrent All-Pairs Field Transforms (RAFT) is employed to assess the optical flow over the Phase Contrast Magnetic Resonance Imaging (PC-MRI), and to construct a continuous blood flow velocity field and reduce errors that arise from the integral process of LAVD. Additionally, Generalized Hough Transform (GHT) is applied for automated depiction of the structure of cardiac vortices. The effectiveness of this method is demonstrated and validated by the computation of the acquired cardiac flow data. The results of this comprehensive visual and analytical study show that the evolution of cardiac vortices can be effectively described and displayed, and the RAFT framework for optical flow can synthesize the in-between PC-MRIs with high accuracy. This allows cardiologists to acquire a deeper understanding of intracardiac hemodynamics and its impact on cardiac functional performance.


Assuntos
Algoritmos , Humanos , Velocidade do Fluxo Sanguíneo/fisiologia , Imageamento por Ressonância Magnética/métodos , Modelos Cardiovasculares , Coração/fisiologia , Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
8.
Sci Total Environ ; 947: 174372, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38960183

RESUMO

The southeastern Bay of Biscay has been described as a "dead end" for floating marine litter, often accumulating along small-scale linear streaks. Coastal Current Convergence Structures (CCS), often associated with vertical motions at river plume edges, estuarine fronts, or other physical processes, can be at the origin of the accumulation. Understanding the formation of CCS and their role in the transport of marine litter is essential to better quantify and to help mitigate marine litter pollution. The Lagrangian framework, used to estimate the absolute dispersion, and the finite-size Lyapunov exponents (FSLE), have proved very effective for identifying CCS in the current velocity field. However, the quality of CCS identification depends strongly on the Eulerian fields. Two surface current velocity data sets were used in the analysis: the remotely sensed velocities from the EuskOOS High-Frequency Radar (HFR) network and velocities from three-dimensional model outputs. They were complemented by drifting buoy velocity measurements. An optimization method, involving the fusion of drifting buoys and HFR velocities is proposed to better reconstruct the fine-scale structure of the current velocity field. Merging these two sources of velocity data reduced the mean Lagrangian error and the Root Mean Square Error (RMSE) by 50 % and 30 % respectively, significantly improving velocity reconstruction. FSLE ridgelines obtained from the Lagrangian analysis of optimized velocities were compared with remotely sensed concentrations of Chlorophyll-a. It was shown that ridgelines control the spatial distribution of phytoplankton. They fundamentally represent the CCS which can potentially affect marine litter aggregation. Analysis of the absolute dispersion revealed large stirring in the alongshore direction which was also confirmed by spatial distribution of FSLE ridgelines. The alignment between FSLE ridgelines and patterns of high Chlorophyll-a concentration was observed, often determining the limits of river plume expansion in the study area.

9.
J Math Biol ; 89(2): 16, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890206

RESUMO

In this paper, a multi-patch and multi-group vector-borne disease model is proposed to study the effects of host commuting (Lagrangian approach) and/or vector migration (Eulerian approach) on disease spread. We first define the basic reproduction number of the model, R 0 , which completely determines the global dynamics of the model system. Namely, if R 0 ≤ 1 , then the disease-free equilibrium is globally asymptotically stable, and if R 0 > 1 , then there exists a unique endemic equilibrium which is globally asymptotically stable. Then, we show that the basic reproduction number has lower and upper bounds which are independent of the host residence times matrix and the vector migration matrix. In particular, nonhomogeneous mixing of hosts and vectors in a homogeneous environment generally increases disease persistence and the basic reproduction number of the model attains its minimum when the distributions of hosts and vectors are proportional. Moreover, R 0 can also be estimated by the basic reproduction numbers of disconnected patches if the environment is homogeneous. The optimal vector control strategy is obtained for a special scenario. In the two-patch and two-group case, we numerically analyze the dependence of the basic reproduction number and the total number of infected people on the host residence times matrix and illustrate the optimal vector control strategy in homogeneous and heterogeneous environments.


Assuntos
Número Básico de Reprodução , Simulação por Computador , Conceitos Matemáticos , Modelos Biológicos , Doenças Transmitidas por Vetores , Número Básico de Reprodução/estatística & dados numéricos , Doenças Transmitidas por Vetores/transmissão , Doenças Transmitidas por Vetores/epidemiologia , Doenças Transmitidas por Vetores/prevenção & controle , Humanos , Animais , Vetores de Doenças , Modelos Epidemiológicos
10.
Artigo em Inglês | MEDLINE | ID: mdl-38884891

RESUMO

Neurological complexities resulting from surgery requiring cardiopulmonary bypass (CPB) remain a major concern, encompassing a spectrum of complications including thromboembolic stroke and various cognitive impairments. Surgical manipulation during CPB is considered the primary cause of these neurological complications. This study addresses the overall lack of knowledge concerning CPB hemodynamics within the aorta, employing a combined experimental-computational modeling approach, featuring computational fluid dynamics simulations validated with an in vitro CPB flow loop under steady conditions. Parametric studies were systematically performed, varying parameters associated with CPB techniques (pump flow rate and hemodiluted blood viscosity) and properties related to formed emboli (size and density). This represents the first comprehensive investigation into the individual and combined effects of these factors. Our findings reveal critical insights into the operating conditions of CPB, indicating a positive correlation between pump flow rate and emboli transport into the aortic branches, potentially increasing the risk of stroke. It was also found that larger emboli were more often transported into the aortic branches at higher pump flow rates, while smaller emboli preferred lower flow rates. Further, as blood is commonly diluted during CPB to decrease its viscosity, more emboli were found to enter the aortic branches with greater hemodilution. The combined effects of these parameters are captured using the non-dimensional Stokes number, which was found to positively correlate with emboli transport into the aortic branches. These findings contribute to our understanding of embolic stroke risk factors during CPB and shed light on the complex interplay between CPB parameters.

11.
J Comput Phys ; 5102024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38912295

RESUMO

Immersed boundary methods have seen an enormous increase in popularity over the past two decades, especially for problems involving complex moving/deforming boundaries. In most cases, the boundary conditions on the immersed body are enforced via forcing functions in the momentum equations, which in the case of fractional step methods may be problematic due to: i) creation of slip-errors resulting from the lack of explicitly enforcing boundary conditions on the (pseudo-)pressure on the immersed body; ii) coupling of the solution in the fluid and solid domains via the Poisson equation. Examples of fractional-step formulations that simultaneously enforce velocity and pressure boundary conditions have also been developed, but in most cases the standard Poisson equation is replaced by a more complex system which requires expensive iterative solvers. In this work we propose a new formulation to enforce appropriate boundary conditions on the pseudo-pressure as part of a fractional-step approach. The overall treatment is inspired by the ghost-fluid method typically utilized in two-phase flows. The main advantage of the algorithm is that a standard Poisson equation is solved, with all the modifications needed to enforce the boundary conditions being incorporated within the right-hand side. As a result, fast solvers based on trigonometric transformations can be utilized. We demonstrate the accuracy and robustness of the formulation for a series of problems with increasing complexity.

12.
Sci Total Environ ; 942: 173808, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38848912

RESUMO

High concentrations of microplastic (MP) particles have been reported in the Arctic Ocean. However, studies on the high-resolution lateral and vertical transport of MPs from the European waters to the Arctic are still scarce. Here, we provide information about the concentrations and compositions of MPs in surface, subsurface, and deeper waters (< 1 m, ∼ 4 m, and 17-1679 m) collected at 18 stations on six transects along the Norwegian Coastal Current (NCC) using an improved Neuston Catamaran, the COntinuos MicroPlastic Automatic Sampling System (COMPASS), and in situ pumps, respectively. FTIR microscopy and spectroscopy were applied to measure MP concentration, polymer composition, and size distribution. Results indicate that the concentrations of small microplastics (SMPs, <300 µm) varied considerably (0-1240 MP m-3) within the water column, with significantly higher concentrations in the surface (189 MP m-3) and subsurface (38 MP m-3) waters compared to deeper waters (16 MP m-3). Furthermore, the average concentration of SMPs in surface water samples was four orders of magnitude higher than the abundance of large microplastics (LMPs, >300 µm), and overall, SMPs <50 µm account for >80 % of all detected MPs. However, no statistically significant geographical patterns were observed in SMP concentrations in surface/subsurface seawaters between the six sampling transects, suggesting a relatively homogeneous horizontal distribution of SMPs in the upper ocean within the NCC/Norwegian Atlantic Current (NwAC) interface. The Lagrangian particle dispersal simulation model further enabled us to assess the large-scale transport of MPs from the Northern European waters to the Arctic.

13.
Sci Rep ; 14(1): 13053, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844488

RESUMO

Impulse waves are generated by rapid subaerial mass movements including landslides, avalanches and glacier break-offs, which pose a potential risk to public facilities and residents along the shore of natural lakes or engineered reservoirs. Therefore, the prediction and assessment of impulse waves are of considerable importance to practical engineering. Tsunami Squares, as a meshless numerical method based on a hybrid Eulerian-Lagrangian algorithm, have focused on the simulation of landslide-generated impulse waves. An updated numerical scheme referred to as Tsunami Squares Leapfrog, was developed which contains a new smooth function able to achieve space and time convergence tests as well as the Leapfrog time integration method enabling second-order accuracy. The updated scheme shows improved performance due to a lower wave decay rate per unit propagation distance compared to the original implementation of Tsunami Squares. A systematic benchmark testing of the updated scheme was conducted by simulating the run-up, reflection and overland flow of solitary waves along a slope for various initial wave amplitudes, water depths and slope angles. For run-up, the updated scheme shows good performance when the initial relative wave amplitude is smaller than 0.4. Otherwise, the model tends to underestimate the run-up height for mild slopes, while an overestimation is observed for steeper slopes. With respect to overland flow, the prediction error of the maximum flow height can be limited to ± 50% within a 90% confidence interval. However, the prediction of the front propagation velocity can only be controlled to ± 100% within a 90% confidence interval. Furthermore, a sensitivity analysis of the dynamic friction coefficient of water was performed and a suggested range from 0.01 to 0.1 was given for reference.

14.
Sci Rep ; 14(1): 11014, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745064

RESUMO

Oceanic eddies exhibit remarkable coherence and longevity compared to other transient features in the surrounding flow. They possess the ability to transport properties over extensive distances while maintaining their material identity intact. The Lagrangian Coherent Structure (LCS) framework has proven effective in capturing these coherent eddies, where they display a solid-body-like rotation. Although various LCS approaches have been employed to investigate different facets of coherent eddies, a comprehensive understanding of their three-dimensional structures and internal dynamics remains elusive. This study aims to advance our comprehension of coherent eddies' structural characteristics and delve into the precise nature of their internal dynamics by utilizing the Lagrangian Averaged Vorticity Deviation approach. Two eddies, one cyclonic and the other anti-cyclonic, were chosen from a high-resolution simulation carried out in the Bay of Bengal using the Regional Ocean Modeling System (ROMS). The findings unveil that these eddies have three-dimensional coherent cores resembling gently tapered cones that are broader at the surface and gradually narrow towards the bottom. Intriguingly, the dynamically coherent core of these eddies exhibits simultaneous upwelling and downwelling while maintaining their volumes during advection due to persistent material coherence. The three-dimensional trajectories followed by the fluid parcels inside the coherent core are helical. Their two-dimensional horizontal projections show alternating spiral bands of upwelling and downwelling which are the manifestations of Vortex Rossby Waves. These observations lead to a conceptual framework of a three-dimensional helico-spiralling recirculation pattern within the coherent cores of eddies.

15.
J Environ Manage ; 360: 121118, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759562

RESUMO

Offshore oil exploration and production in deepwater are associated with environmental risks to marine ecosystems. This research introduces DWOSM (Deep Water Oil Spill Model), a three-dimensional Lagrangian model, which is developed to simulate the transport and fate of oil spills resulting from subsea blowouts. DWOSM comprises three interconnected modules: DWOSM-DSD, which predicts the oil droplet size distribution from a blowout release; DWOSM-NearField, simulating plume dynamics and tracking oil droplets within the plume region; and DWOSM-FarField, modeling the evolution of dispersed oil beyond the near-field. Compared to other oil spill models, this integrated approach improves the transition between near and far fields using a near-field particle tracking algorithm. It also employs the thermodynamic models to enable the prediction of oil properties under varying deep water pressure and temperature. To gauge the reliability and efficacy of DWOSM, a hypothetical case situated within a North American context is employed for model testing. The DWOSM and its each module are juxtaposed with other established oil spill models. The outcomes indicate that DWOSM yields comparable results to these models by providing reasonable predictions of a deepwater blowout. The model's verification through case scenario testing and comparison underscores its potential as a decision tool for assessing and managing the potential environmental impacts of offshore petroleum activities.


Assuntos
Poluição por Petróleo , Modelos Teóricos , Petróleo
16.
Conserv Biol ; : e14295, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38766922

RESUMO

Purse-seine fishers using drifting fish aggregating devices (dFADs), mainly built with bamboo, plastic buoys, and plastic netting, to aggregate and catch tropical tuna, deploy 46,000-65,000 dFADs per year in the Pacific Ocean. Some of the major concerns associated with this widespread fishing device are potential entanglement of sea turtles and other marine fauna in dFAD netting; marine debris and pollution; and potential ecological damage via stranding on coral reefs, beaches, and other essential habitats for marine fauna. To assess and quantify the potential connectivity (number of dFADs deployed in an area and arriving in another area) between dFAD deployment areas and important oceanic or coastal habitat of critically endangered leatherback (Dermochelys coriacea) and hawksbill (Eretmochelys imbricata) sea turtles in the Pacific Ocean, we conducted passive-drift Lagrangian experiments with simulated dFAD drift profiles and compared them with known important sea turtle areas. Up to 60% of dFADs from equatorial areas were arriving in essential sea turtle habitats. Connectivity was less when only areas where dFADs are currently deployed were used. Our simulations identified potential regions of dFAD interactions with migration and feeding habitats of the east Pacific leatherback turtle in the tropical southeastern Pacific Ocean; coastal habitats of leatherback and hawksbill in the western Pacific (e.g., archipelagic zones of Indonesia, Papua New Guinea, and Solomon Islands); and foraging habitat of leatherback in a large equatorial area south of Hawaii. Additional research is needed to estimate entanglements of sea turtles with dFADs at sea and to quantify the likely changes in connectivity and distribution of dFADs under new management measures, such as use of alternative nonentangling dFAD designs that biodegrade, or changes in deployment strategies, such as shifting locations.


Simulación de las trayectorias de dispositivos de concentración de peces a la deriva para identificar las interacciones potenciales con las tortugas marinas en peligro de extinción Resumen Los pescadores que usan redes de cerco con dispositivos de concentración de peces a la deriva (dFADs), hechos principalmente con bambú, boyas de plástico y redes de plástico, para concentrar y capturar atún, instalan entre 46,000 y 65,000 dFADs al año en el Océano Pacífico. Algunas de las problemáticas principales asociadas con este dispositivo de pesca de uso extenso son el enredamiento potencial de tortugas marinas y otras especies marinas en las redes de los dFADs; los desechos marinos y la contaminación; y el potencial daño ecológico por el varamiento en los arrecifes de coral, playas y otros hábitats esenciales para la fauna marina. Realizamos experimentos lagrangianos de deriva pasiva con la simulación de perfiles de deriva de los dFADs y los comparamos con áreas conocidas de importancia para las tortugas marinas. Esto fue con el objetivo de evaluar y cuantificar la conectividad potencial (número de dFADs instalados en un área que llegan a otra área) entre las áreas de instalación de dFADs y los hábitats oceánicos o costeros importantes para la tortuga laúd (Dermochelys coriacea) y la tortuga de carey (Eretmochelys imbricata), ambas en peligro crítico de extinción, en el Océano Pacífico. Hasta el 60% de los dFADs de las áreas ecuatoriales llegaron a los hábitats esenciales para las tortugas marinas. La conectividad fue menor sólo cuando se usaron áreas en donde actualmente hay dFADs instalados. Nuestras simulaciones identificaron regiones potenciales de interacción entre los dFADs y los hábitats de migración y alimentación de la tortuga laúd en el sureste tropical del Océano Pacífico; los hábitats costeros de ambas especies en el Pacífico occidental (p. ej.: zonas de archipiélagos en Indonesia, Papúa Nueva Guinea y en las Islas Salomón); y en el hábitat de forrajeo de la tortuga laúd en una gran área ecuatorial al sur de Hawái. Se requiere de mayor investigación para estimar el enredamiento de las tortugas marinas con los dFADs en el mar y para cuantificar los cambios probables en la conectividad y la distribución de los dFADs bajo nuevas medidas de manejo, como el uso alternativo de diseños que eviten el enredamiento y sean biodegradables, o cambios en las estrategias de instalación, como la reubicación.

17.
Water Res ; 256: 121629, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38643642

RESUMO

Despite advances in wastewater treatment plant (WWTP) efficiencies, multiple contaminants of concern, such as microplastics, pharmaceuticals, and per- and poly-fluoroalkyl substances (PFAS) remain largely untreated near discharge points and can be highly concentrated before they are fully mixed within the receiving river. Environmental agencies enforce mixing zone permits for the temporary exceedance of water quality parameters beyond targeted control levels under the assumption that contaminants are well-mixed and diluted downstream of mixing lengths, which are typically quantified using empirical equations derived from one-dimensional transport models. Most of these equations were developed in the 1970s and have been assumed to be standard practice since then. However, their development and validation lacked the technological advances required to test them in the field and under changing flow conditions. While new monitoring techniques such as remote sensing and infrared imaging have been employed to visualize mixing lengths and test the validity of empirical equations, those methods cannot be easily repeated due to high costs or flight restrictions. We investigated the application of Lagrangian and Eulerian monitoring approaches to experimentally quantify mixing lengths downstream of a WWTP discharging into the Rio Grande near Albuquerque, New Mexico (USA). Our data spans river to WWTP discharges ranging between 2-22x, thus providing a unique dataset to test long-standing empirical equations in the field. Our results consistently show empirical equations could not describe our experimental mixing lengths. Specifically, while our experimental data revealed "bell-shaped" mixing lengths as a function of increasing river discharges, all empirical equations predicted monotonically increasing mixing lengths. Those mismatches between experimental and empirical mixing lengths are likely due to the existence of threshold processes defining mixing at different flow regimes, i.e., jet diffusion at low flows, the Coanda effect at intermediate flows, and turbulent mixing at higher flows, which are unaccounted for by the one-dimensional empirical formulas. Our results call for a review of the use of empirical mixing lengths in streams and rivers to avoid widespread exposures to emerging contaminants.


Assuntos
Monitoramento Ambiental , Rios , Poluentes Químicos da Água , Rios/química , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Movimentos da Água , Modelos Teóricos , Eliminação de Resíduos Líquidos , Águas Residuárias
18.
J Environ Radioact ; 275: 107416, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520991

RESUMO

In September 2017, numerous measurement stations recorded large surface concentrations of Ru106 in Europe. This event was well recorded by various monitoring stations worldwide and offer a valuable framework to compare the modelling strategies deployed to quickly evaluate where the plume goes and with what concentrations. In general, the source and its intensity are not known and hypotheses have to be done. Models have to be fast and accurate: Lagrangian and Eulerian are often used but rarely compared. In this study, the FLEXPART Lagrangian model and the WRF-CHIMERE Eulerian models are used to simulate the emissions, transport and deposition of this source of Ru106. First, it is shown that the hypothesis of location, timing and intensity of the source is realistic, by comparison to surface measurements. Second, sensitivity analysis performed with the Eulerian model and several transport scheme showed that this model may provide better results than the Lagrangian one. It opens the door to further development, including chemistry and mixing with other pollutants during these specific events.


Assuntos
Poluentes Radioativos do Ar , Atmosfera , Monitoramento de Radiação , Monitoramento de Radiação/métodos , Poluentes Radioativos do Ar/análise , Atmosfera/química , Rutênio , Modelos Teóricos , Modelos Químicos , Europa (Continente)
19.
J Hazard Mater ; 469: 134065, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38531264

RESUMO

Semi-dry desulfurization is an efficient means of SO2 removal from the effluent gases from electrolysis cells in aluminum smelters. These gases are at low temperature and contain low concentrations of SO2, as opposed to thermal power plants. The removal is carried out by injecting powdered alkaline sorbent, hydrated lime (solid particles), into the SO2-containing gas (gas phase) in the presence of humidity. The reaction is controlled by the adsorption of SO2 onto the surface of lime. This study involves the mathematical modelling of a lab-scale scrubber using a Lagrangian-Eulerian approach in order to analyze the desulfurization efficiency. The model was validated based on experimental data. A parametric study was carried out to investigate the effects of particle size, sorbent amount, and relative humidity (RH) on the desulfurization efficiency. The results show that the particle size is the most important parameter; as the particle size decreases, the desulfurization efficiency increases. However, using finer particles may increase the process cost. The loss in SO2 capture efficiency due to the use of coarser particle size could be compensated by increasing the relative humidity (RH) of the gas, another key parameter of the process.

20.
Heliyon ; 10(6): e26407, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38509888

RESUMO

Pork stands out as the most extensively produced and consumed meat globally. With advancements in technology, genetics, and management, the structure of the pig supply chain has transformed from the traditional birth-to-slaughter raising method to incorporate four primary specialized operations: breeding, farrowing, nursery, and fattening. Fattening, constituting approximately 70% of a market pig's entire life cycle, heavily relies on resources, notably in feed consumption. Despite the integration of feed production with pig farming in modern industrial setups through farming contracts, separate decision-making processes for production planning in both stages often result in overall inefficiency. This research proposes an optimization-based methodology to plan production for a vertically integrated setting of three supply chain echelons: a feed mill, fattening farms, and a slaughterhouse. Key coordinated decisions include creating production plans for specific feed formulations at the feed mill and organizing farming cycles at fattening farms to meet the demand of the slaughterhouse The aim is to optimize pig growth while minimizing the overall costs. The methodology includes a mixed-integer linear programming model for the pig supply chain, and a Lagrangian heuristic as method to make coordinated production plans. Computational experiments were conducted using diverse case-study data based on pig supply chains in Thatland. Compared with the results using a commercial software, Lingo's Simplex method, our proposed heuristic could find optimal solutions quicker for smaller problem instances and produce more effective feasible solutions within limited time frames for larger scenarios.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA