RESUMO
Many researchers have noted the limited adoption of farming management practices that should increase the resilience of smallholder farmers to weather shocks and mitigate their impact on the changing climate in sub-Saharan Africa. In this paper, we evaluate the dynamics of adopting "good agricultural practices" in Malawi, using data from a three-wave panel collected as part of an impact assessment of the Sustainable Agricultural Production Programme, funded by the International Fund for Agricultural Development. In addition to project impacts, we also evaluate additional mechanisms though which farmers may learn about the costs and benefits of different practices. We also evaluate the extent to which climatic conditions - such as being located in drought-prone or heavy rainfall areas - drive adoption decisions. Given the three waves of data, we first look at the range of adoption pathways observed, through the use of an adoption pathway trees. We identify six pathways, noting that adoption is not continuous for a large percentage of households. We then run a multinomial logit to assess the factors that increase the likelihood of falling into different adoption categories vis-a-vis remaining a never adopter. Results suggest that learning through information dissemination, such as through the SAPP project, and wider learning opportunities significantly increased the likelihood of pursuing different adoption pathways, while climatic conditions and learning through observing have limited impacts. On the other hand, for land-intensive management practices, being located in drought-prone areas or being located in areas prone to heavy rainfall increased the likelihood of pursuing different adoption pathways, as did greater ability to learn by observing. Learning by information sharing had limited impacts for land-intensive adoption pathway decisions. Overall, results suggest that information dissemination is important, though the mechanism differs by type of practice promoted. Flexibility in adoption status is an attribute of this system and there is a need to identify and promote practices that are both flexible and increase resilience to climate change.
RESUMO
Amid rapid environmental changes, the interplay between climate change and human activity is reshaping land use, emphasizing the significance of human-earth system dynamics. This study, rooted in human-earth system theory, explores the complex relationships between land use patterns, climate change, and human activities across China from 1996 to 2022. Using a comprehensive analytical framework that combines Geographical Detector (GeoDetector), Random Forest (RF) model, Data Envelopment Analysis (DEA), Spearman's rank correlation, and k-means clustering, we analyzed data from national land surveys, climate records, and nighttime light observations. Our findings indicate a significant, though regionally varied, transformation in land use: arable land decreased by 1.67 %, driven by intense urbanization and policy shifts, particularly in rapidly urbanizing Jiangsu province where arable land diminished by 19.19 %. In contrast, construction land in the northern regions increased by 225.91 million hectares. Climatic influences are apparent, with rising temperatures positively correlating with arable land expansion in the Northeast and Northwest, and urban land in Jiangsu province increasing by 35.51 %. Variations in precipitation patterns were linked to changes in forested areas. This study highlights the dynamic and intricate interactions within the human-earth system, stressing the urgent need for sustainable land management and climate adaptation strategies that improve land use efficiency and resilience. Our research offers a solid foundation for informed policy-making in land management and climate adaptation, advocating a human-earth system science approach to address future environmental and societal challenges.
RESUMO
Two-fifth of the world's population will be confronted by dire land and water shortage for food production by 2050. Here we provide nuanced insights into the Sahel dryland dynamics and rationale behind its underperforming croplands amid climate extremes. We develop a gridded multi-criteria drought index for the growing season (June-October) and analyse its spatial and temporal degree of uniformity to designate the drought, climate and cultivable zones. Evidence is drawn from Sahelian Sudan, representing 1.03 million km2 of the African Sahel, during 1940-2020. Results show that cultivation of marginal lands has persisted apace. The peak areas of these marginal lands explain â¼50 % of the variations in crop yield, considering the two staple crops, sorghum and millet. Furthermore, the low yields mismatch the steadily growing planted areas of these crops. Compared to wet conditions, droughts expand (shrink) the median size of hyper-arid (arid) area by 466 % (46 %), limiting farming opportunities for 3.5-35.8 % of the croplands. The northernmost borderline of the arid zone determines the rainfed suitability, but potentially cultivable arid areas require contingency risk-reduction plans. Conversely, semi-arid and dry sub-humid zones reveal areas endowed with uniform climate. Skillful climate forecasting should thus guide policymaking towards sustainable agriculture therein. The paper suggests paths towards more effective agricultural policy interventions. Agricultural production entails the Sahel drought being defined in terms of agricultural impacts instead of meteorological conditions. Land use planners and inhabitants must relieve the plight of misconceiving and overlooking the fact of intrinsic interannual rainfall variability. Determining what a dangerous drought is for the Sahel agriculture sector or system is crucial. Sahel farming systems should opt for highly flexible agricultural practices based on the above-identified cultivable areas.
RESUMO
The phosphate solubilizing properties of Lysinibacillus macroides ST-30, Pseudomonas pelleroniana N-26, and Bacillus cereus ST-6 were tested for the chickpea crop of the Tarai region of Uttarakhand. These microbially inoculated plants have shown significant (p > 0.05) improvement in the plant health and crop health parameters, viz., root length, shoot length, fresh weight, dry weight, nodule number, nodule fresh weight, nodule dry weight, chlorophyll content, and nitrate reductase. The highest shoot length (46.10 cm) and chlorophyll content (0.57 mg g-1 fresh weight) were observed in ST-30 at 75 DAS with 20 kg P2O5/ha. Similarly, for plant P content, an increase of 90.12% over control was recorded in the same treatment. Treatments consisting of Lysinibacillus macroides ST-30 along with 20 kg/ha P2O5 were found to be most suitable as phosphatic fertilizer. Conclusively, sustainable agriculture practices in the Tarai as well as the field region may be developed based on a strategy of exploring microbial inoculants from the pristine region of the Western Himalayas. The presence and abundance of bacterial inoculants were confirmed through qRT-PCT. We conclude that the effective plant growth-promoting bacterium Lysinibacillus macroides ST-30 broadens the spectrum of phosphate solubilizers available for field applications and might be used together with 20 Kg/ha P2O5.
RESUMO
Artisanal and small-scale mining (ASM) significantly influences the socio-economic development of many low-to-middle-income countries, albeit sometimes at the expense of environmental and human health. Characterized by its labor-intensive extraction from confined (<5 ha) or peripheral mineral reserves, congregated ASM practices can rival the spatial footprint of industrial mines. The unregulated and informal nature of many ASM activities presents monitoring challenges that remote sensing (RS) methods aim to address. While local-scale ASM mapping has seen success, scaling these methods to regional or global levels remains unclear. We review literature on mapping ASM to determine: (1) if studies represent the global distribution and diversity of ASM activities, (2) how ASM's unique characteristics influence the choice of RS methods, and (3) which RS approaches are the most accurate and cost-effective. We found current studies disproportionately focused on ASM regions in Africa, which highlights the need to extend the research to other regions with unique ASM characteristics, such as coal and sand mining in India and China. The selection of RS approaches is heavily influenced by local ASM contexts, the scale of analysis, and resource constraints such as funding for high-resolution imagery and validation data availability. We argue that accurate regional-scale ASM mapping (>100,000 km2) requires innovative combinations of data and methods to overcome data management and storage challenges. Local community participation, including miners, is vital for on-ground mapping and monitoring capacity. We outline a research agenda needed to develop a range of approaches for mapping and monitoring ASM in under-studied regions. By synthesizing effective methods, we provide a foundation for generating accurate and comprehensive spatial data, addressing the issues of inaccurate and incomplete data that global ASM platforms aim to resolve. This spatial data can guide policymakers, NGOs, and businesses in making informed decisions and targeted interventions to improve ASM sector safety, sustainability, and efficiency. Leveraging cloud-based geoprocessing platforms, with regularly updated global satellite image archives, combined with crowd-sourced on-ground information offers a potential solution for sustained regional-scale monitoring.
RESUMO
Land degradation often results in poor soil quality in many parts of Ethiopia, including the study area. To address this issue and promote sustainable land management practices, various land use and management methods (LUMMs) have been implemented. However, little information is available regarding how these management practices influence overall soil quality dynamics of the study area. This study aimed at evaluating soil quality dynamics in the Urago micro-watershed, central highlands of Ethiopia, under major LUMMs: barren land (BL), grassland (GL), established farm boundary (EFB), restored degraded land (RDL), and stone-supported soil bund (SSB). Forty-five disturbed and fifteen undisturbed soil samples were collected from the ploughed soil layer (0-20 cm) of each LUMM and analysed for selected physicochemical properties to be used as indicators of soil quality. Principal component analysis and multiple correlation were used to select the minimum data set (MDS) to evaluate the overall soil quality index (SQI). The MDS included SOC, clay content, exchangeable Mg2+, and available P, which could replace other indicators for assessing the overall soil quality dynamics of the study watershed. The result showed notable variations in particle-size fractions, soil organic carbon (SOC), total nitrogen (TN), available P (av. P), and exchangeable Na+, K+, and Mg2+ levels among the LUMMs. RDL had higher sand and silt contents than SSB, whereas SSB had higher clay content compared to RDL, GL, and BL. GL, RDL, and EFB showed significantly higher levels of SOC, TN, and av. P, respectively, compared to other LUMMs. The obtained SQI showed that GL had the highest score (0.847), followed by SSB (0.703), RDL (0.701), EFB (0.644), and BL (0.628). This underscores the significance of stone-supported soil bund and restored degraded land as an efficient management method to enhance soil quality and agro-ecosystem through conserving soil and encouraging sustainable farming practices.
Assuntos
Agricultura , Conservação dos Recursos Naturais , Monitoramento Ambiental , Solo , Etiópia , Solo/química , Monitoramento Ambiental/métodos , Conservação dos Recursos Naturais/métodos , Agricultura/métodos , Nitrogênio/análise , Pradaria , Fósforo/análise , Carbono/análiseRESUMO
This study utilized MODIS true color satellite imagery to analyse blowing sand and dust events dynamics in the Middle East from 2010 to 2021, focusing on Syria, Iraq, and Jordan. A total of 4923 dust point sources were detected, with a significant concentration (~90 %) located within the Tigris-Euphrates Basin (Nearest Neighbor Ratio = 0.41, Ñ < 0.001). Land cover analysis revealed that bare land, comprising most of the study area, was the predominant source of dust emissions. Wetlands, though only constituting about 1 % of the area, showed the highest frequency of dust sources per unit area, highlighting their role as critical dust emission hotspots. The study emphasizes the impact of drought and anthropogenic factors, such as poor land management, on blowing dust intensity. It suggests the necessity of strategic land management practices, including re-vegetation of arid areas, reducing soil exposure, and implementing wind erosion control measures. To effectively address the transboundary nature of dust emissions, the findings underscore the importance of fostering regional cooperation through mechanisms such as shared environmental monitoring and data exchange platforms, joint management of cross-border natural resources, and collaborative policy making.
RESUMO
Carbon (C) sequestration in soils is a promising CO2 removal approach. So far, the focus has been on how to increase the content of soil organic C (SOC), while the management soil inorganic C (SIC), i.e. carbonate minerals, has received little attention, because SIC is thought to be much less involved in biotic C cycling than SOC. However, in principle SIC management potentially provides a long-term solution, with a much greater capacity for C sequestration than SOC. The forgotten link is the dissolved inorganic carbon (DIC), i.e. CO2 species dissolved in soil solution, and its fate throughout the unsaturated zone (USZ). The return of CO2 respired by deep roots to the atmosphere, either directly through CO2 degassing or indirectly through DIC leaching, may not necessarily take place over decades or centuries. CO2 diffusion decreases sharply with depth due to reduced porosity of the subsoil and more water-filled pores. The downward water percolation rate is often only a few centimeters per year, and the large amount of respired CO2 compared to the leached DIC results in a relatively small amount of CO2 being transferred to the groundwater. Therefore, respired CO2 at deeper soil depth can be defined as a hitherto unknown ecosystem service of deep-rooted plants i.e. providing a net C sink as inorganic C in the USZ. A conservative estimation suggests a C sink as SIC of at least 80 kg C ha-1 y-1, comparable to reported annual C sequestration as SOC in temperate grasslands.
RESUMO
We present the first published ethnographic description of landscape burning by Hadza hunter-gatherers of northern Tanzania and identify environmental, social, and cultural influences on Hadza landscape burning, thereby broadening the ethnographic record of anthropogenic burning practices described for hunter-gatherer communities. We report interview data collected in 2022 and 2023, describing their practices and attitudes regarding the causes and consequences of burning. We provide context by comparing our observations with those recorded for hunting and gathering populations in Africa, Australia, and North America. Hadza landscape burning is generally a solitary and male-dominated activity, contrary to ethnographic accounts of Indigenous landscape burning from North America and Australia. The primary goals stated by Hadza for landscape burning were improved hunting, reduced hazards from dangerous animals, and to reduce the density of livestock. Firsthand observations suggest that landscape burning has decreased over the past 20 years, and this historical trend is supported by interviews. Satellite imagery also suggests an overall decrease in burning activity in the region from 2001 to 2022. Among the Hadza, landscape burning is a culturally influenced and strongly gender-biased activity that is rapidly disappearing. Because burning can radically transform landscapes, these practices often generate or amplify conflicts of interest between groups with different land use strategies. Hadza report serious social conflict with pastoralists over landscape burning, and our study suggests this tension has constrained the practice in the past two decades.
RESUMO
Urban street dust (UStD) is a vital issue for human health and is crucial for urban sustainability. This study aims to enhance the creation of safe, affordable, and resilient cities by examining environmental contamination and health risks in urban residential areas. Specifically, it investigates the concentrations and spatial distribution of chromium (Cr), cadmium (Cd), nickel (Ni), copper (Cu), lead (Pb), and zinc (Zn) in UStD in Yenimahalle, Ankara. The mean concentrations of Zn, Cr, Pb, Cd, Ni, and Cu in UStD were 97.98, 66.88, 55.22, 52.45, 38.37, and 3.81 mg/kg, respectively. The geoaccumulation pollution index (Igeo) values for these elements were: Cd (5.12), Ni (1.61), Cr (1.21), Pb (1.13), Cu (0.78), and Zn (0.24). These indices indicate that the area is moderately polluted with Cr, Pb, and Ni, uncontaminated to moderately contaminated with Cu and Zn, and extremely polluted with Cd. The hazard index (HI) values for Cr, Cd, Ni, Cu, Pb, and Zn were below the non-carcinogenic risk threshold for adults, indicating no significant risk. However, for children, the HI values for Pb, Ni, Cd, and Zn were 3.37, 1.80, 1.25, and 1.25, respectively, suggesting a higher risk. Carcinogenic risk (RI) of Cd, Ni, and Pb was significant for both children and adults, indicating that exposure through ingestion, inhalation, and dermal contact is hazardous. The findings highlight the need for strategic mitigation measures for both natural and anthropogenic activities, providing essential insights for residents, policymakers, stakeholders, and urban planners.
Assuntos
Cidades , Poeira , Metais Pesados , Metais Pesados/análise , Humanos , Poeira/análise , Medição de Risco , Turquia , Monitoramento Ambiental , Exposição Ambiental/análiseRESUMO
Active management practices to reduce or promote particular vegetation, known as vegetation treatments, are a common part of environmental management and they are conducted for a variety of purposes including wildfire risk mitigation, invasive species management, and ecological restoration. Vegetation treatment for wildfire mitigation in particular have increased dramatically in the Western United States in the past several decades. While vegetation treatments are common, data regarding the timing, location, and type of treatments conducted are often only maintained by the organization that conducted the work, hampering the ability of managers and researchers to understand the distribution and timing of vegetation treatments across a landscape. This dataset is a collection of spatially referenced records of vegetation treatments such as mechanical thinning, prescribed burning, and herbicide applications that were conducted in the state of New Mexico, USA and adjacent parts of Colorado, Oklahoma, and Texas. Spatial data were collected through requests to the regional or state offices for the relevant agencies (e.g., The Bureau of Land Management, the U.S. Forest Service, New Mexico State Forestry Division). The accuracy of this data collection approach was assessed by conducting more intensive data collection in five randomly selected focal watersheds across New Mexico. In these watersheds local offices of the larger agencies were contacted, as well as any smaller groups (e.g., soil and water conservation districts, municipalities, and environmental non-profits), and in person visits were made to gather any information on vegetation treatments possible. The overall dataset includes records of treatments spanning a century and includes records of 9.9 million acres of treatments conducted by more than a dozen different organizations. In the five focal watershed that we surveyed the database contained 7.4 % fewer acres of treated land than the more intensive interview approach. This spatially extensive dataset on vegetation treatments will be useful for researchers quantifying or modelling the effect of vegetation management on fire risk and behaviour. Additionally, this data will be useful to ecologists studying the distribution, movement, and habitat associations of a variety of plant an animal species. Finally, this data will be useful for research on landscape conservation and management.
RESUMO
Virtual fencing (VF) technology is gaining interest due to its potential to facilitate sustainable grazing management. It allows farmers to contain grazing livestock without physical fences, thereby reducing the time and labour associated with the implementation of conventional fences. From a conservation perspective, some sensitive areas within uplands should not be grazed during certain periods of the year, and VF provides an invisible and moveable fence line that can exclude livestock from these areas. However, there are also concerns associated with its use, including animal welfare impacts, cost-effectiveness, and public perception. The extent to which VF can contribute to make livestock systems more sustainable remains to be investigated. To address this gap, this study investigates the potential of VF to promote sustainable grazing management using the Efficiency, Substitution, and Redesign framework, which has been used for the first time in this context. The framework is particularly relevant in taking an active and normative approach to identify key aspects to focus on to help achieve sustainability. We consulted stakeholders including farmers, wildlife inspectors, veterinarians, policy officers, researchers, NGOs, farm advisors or certification managers, through focus groups (N = 4) and in-depth, semi-structured interviews (N = 5). Stakeholders have highlighted the potential of VF to provide new opportunities to increase the efficiency and sustainability of livestock grazing systems, enabling their redesign, and contributing to improved environmental and animal welfare outcomes, as well as higher financial and social performance. However, there are important aspects that remain to be addressed to achieve such redesign, including issues of reliability due to poor network signal, animals' ability to learn, biosecurity and safety issues related to the absence of physical fences, farm suitability and farmers' ability to use the systems effectively. This study highlights the need to ensure that the development and uptake of VF are mutually beneficial to farmers, animals, and the wider farming industry. This includes a highlight on the importance of participative approaches to involve key stakeholders to address concerns and maximise the potential of the technology.
Assuntos
Criação de Animais Domésticos , Conservação dos Recursos Naturais , Gado , Animais , Criação de Animais Domésticos/métodos , Conservação dos Recursos Naturais/métodos , Bem-Estar do Animal , Fazendeiros , Grupos Focais , HerbivoriaRESUMO
Soil erosion is a major environmental problem in Ethiopia, reducing topsoil and agricultural land productivity. Soil loss estimation is a critical component of sustainable land management practices because it provides important information about soil erosion hotspot areas and prioritizes areas that require immediate management interventions. This study integrates the Revised Universal Soil Loss Equation (RUSLE) with Google Earth Engine (GEE) to estimate soil erosion rates and map soil erosion in the Upper Tekeze Basin, Northern Ethiopia. SoilGrids250 m, CHIRPS-V2, SRTM-V3, MERIT Hydrograph, NDVI from sentinel collections and land use land cover (LULC) data were accessed and processed in the GEE Platform. LULC was classified using Random forest (RF) classification algorithm in the GEE platform. Landsat surface reflectance images from Landsat 8 Operational land imager (OLI) sensors (2021) was used for LULC classification. Besides, different auxiliary data were utilized to improve the classification accuracy. Using the RUSLE-GEE framework, we analyzed the soil loss rate in different agroecologies and LULC types in the upper Tekeze basin in Waghimra zone. The results showed that the average soil loss rate in the Upper Tekeze basin is 25.5 t ha-1 yr-1. About 63 % of the basin is experiencing soil erosion above the maximum tolerable rate, which should be targeted for land management interventions. Specifically, 55 % of the study area, which is covered by unprotected shrubland is experiencing mean annual soil loss of 34.75 t ha-1 yr-1 indicating the need for immediate soil conservation intervention. The study also revealed evidence that this high mean soil loss rate of the basin can be reduced to a tolerable rate by implementing integrative watershed management and exclosures. Furthermore, this study demonstrated that GEE could be a good source of datasets and a computing platform for RUSLE, in particular for data scarce semi-arid and arid environments. The results from this study are reliable for decision-making for rapid soil erosion assessment and intervention prioritization.
RESUMO
Land management technology (LMT) adoption is one of Ethiopia's crucial strategies to combat soil depletion and promote agricultural production. However, there is scant information concerning the intensity, interdependent nature, and households' decision to adopt multiple LMTs. Thus, the purpose of this study is to identify factors influencing households' decisions to adopt multiple LMTs and the intensity and interdependency of the technologies in the Goyrie watershed of southern Ethiopia. The data was collected from 291 randomly selected household heads, focus group discussion participants, and key informant interview respondents. The quantitative data was analyzed using descriptive statistics and econometric methods like multivariate probit and ordered probit modeling, while the qualitative data was presented through content analysis. The result indicated that more than half of respondents (67 %) applied one or two LMTs. The highest complementary effects were observed in mixed soil bunds with desho grasses and manure applications. However, soil bunds and fanya-juu, manure application and agroforestry showed interchangeability with one another. Sex, education, family size, landholding size, access to development agents and credit institutions, training, and village membership increased the probability of adopting multiple LMTs, whereas age, land rent, and crop sharing discouraged the likelihood of households' decisions to adopt LMT. The results of the ordered probit model revealed that village membership and contact with extension agents highly encouraged the intensity of LMT adoptions. Thus, policymakers and planners should consider social, institutional, human asset, and technological related factors to increase adoption rates and intensity of land management technologies.
RESUMO
Investigating plant responses to climate change is key to develop suitable adaptation strategies. However, whether changes in land management can alleviate increasing drought threats to crops in the future is still unclear. We conducted a management × drought experiment with winter wheat (Triticum aestivum L.) to study plant water and vegetative traits in response to drought and management (conventional vs organic farming, with intensive vs conservation tillage). Water traits (root water uptake pattern, stem metaxylem area, leaf water potential, stomatal conductance) and vegetative traits (plant height, leaf area, leaf Chl content) were considered simultaneously to characterise the variability of multiple traits in a trait space, using principal component analysis. Management could not alleviate the drought impacts on plant water traits as it mainly affected vegetative traits, with yields ultimately being affected by both management and drought. Trait spaces were clearly separated between organic and conventional management as well as between drought and control conditions. Moreover, changes in trait space triggered by management and drought were independent from each other. Neither organic management nor conservation tillage eased drought impacts on winter wheat. Thus, our study raised concerns about the effectiveness of these management options as adaptation strategies to climate change.
Assuntos
Secas , Característica Quantitativa Herdável , Estações do Ano , Triticum , Água , Triticum/fisiologia , Triticum/crescimento & desenvolvimento , Análise de Componente Principal , Folhas de Planta/fisiologia , Agricultura/métodos , Raízes de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimentoRESUMO
The SDG 15.3.1 target of Land Degradation Neutrality (LDN) only has 15 years from conception (in 2015) to realization (in 2030). Therefore, investigating the effectiveness and challenges of LDN has become a priority, especially in drylands, where fragile ecosystems intersect with multiple disturbances. In this study, solutions are proposed and validated based on the challenges of LDN. We chose the Northern Slope of the Tianshan Mountains as a case study and set baselines in 2005 and 2010. The region and degree of land change (including degraded, stable, and improved) were depicted at the pixel scale (100 × 100 m), and LDN realization was assessed at the regional scale (including administrative districts and 5000 × 5000 m grids). The results showed a significant disparity between the two baselines. The number of areas that realized the LDN target was rare, regardless of the scale of the administrative districts or grids. Chord plots, Spearman's correlation, and curve estimation were employed to reveal the relationship between LDN and seven natural or socioeconomic factors. We found that substantial degradation was closely related to the expansion of unused, urban, and mining land and reduction in water, glaciers, and forests. Further evidence suggests that agricultural development both positively and negatively affects LDN, whereas urbanization and mining activities are undesirable for LDN. Notably, the adverse effects of glacier melting require additional attention. Therefore, we consider the easy-to-achieve and hard-to-achieve baselines as the mandatory and desirable targets of LDN, respectively, and focus further efforts in three aspects: preventing agricultural exploitation from occupying ecological resources, defining reasonable zones for urbanization and mining, and reducing greenhouse gas emissions to mitigate warming. Overall, this study is expected to be a beneficial addition to existing LDN theoretical systems and serve as a case validation of the challenges of LDN in drylands.
RESUMO
Forests boast essential resources and potential to mitigate climate change, meriting the development of conservation policies on all governmental scales. Ecosystem services provided by forests, including biodiversity, air quality, and food and fuel production, make forests valuable assets for climate-vulnerable communities that often lack the means to cope with ecosystem service degradation resulting from climate change. Historically, these vulnerable communities are previously marginalized and socio-economically limited, and climate change augments already-existing injustices. Policy discussions around managing forests and carbon, therefore, must consider environmental justice as well as diversity, equity, and inclusion to better meet the needs of all constituents. Using R, we perform a review of forest, climate, and policy peer-reviewed literature published between 2018 and 2021 for prevalence of topics related to diversity, equity, inclusion, and justice (DEIJ). We select DEIJ terms a priori and a posteriori based on our understanding of DEIJ and common considerations of the literature. Out of 2891 unique articles, 15.7% of literature mentioned at least one DEIJ term in the title, keyword list, or abstract. We identify which journals have published DEIJ literature more often in the context of forest, climate, and policy, and we perform a co-occurrence analysis of additional common themes. Concepts such as ecosystem services and economics appeared often in the literature, as well as REDD+ as a specifically mentioned policy. We call for increased consideration of DEIJ in forest, climate, and policy discussions and literature, as vulnerable communities historically have been excluded from and victimized by the conversations held among large, economically motivated entities.
Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Justiça Ambiental , Florestas , Biodiversidade , Ecossistema , Clima , Política AmbientalRESUMO
Background: Soil organic nitrogen (SON) levels can respond effectively to crop metabolism and are directly related to soil productivity. However, simultaneous comparisons of SON dynamics using isotopic tracing in diverse agroecosystems are lacking, especially in karst areas with fragile ecology. Methods: To better understand the response of SON dynamics to environmental changes under the coupling of natural and anthropogenic disturbances, SON contents and their stable N isotope (δ15NSON) compositions were determined in abandoned cropland (AC, n = 16), grazing shrubland (GS, n = 11), and secondary forest land (SF, n = 20) from a typical karst area in southwest China. Results: The SON contents in the SF (mean: 0.09%) and AC (mean: 0.10%) profiles were obviously lower than those in the GS profile (mean: 0.31%). The δ15NSON values ranged from 4.35-7.59, 3.79-7.23, and 1.87-7.08 for the SF, AC, and GS profiles, respectively. Decomposition of organic matter controlled the SON variations in the secondary forest land by the covered vegetation, and that in the grazing shrubland by goat excreta. δ15NSON ranges were controlled by the covered vegetation, and the δ15NSON fractionations during SON transformation were influenced by microorganisms in all surface soil. Conclusions: The excreta of goats that contained 15N-enriched SON induced a heavier δ15NSON composition in the grazed shrubland. Long-term cultivation consumes SON, whereas moderate grazing increases SON content to reduce the risk of soil degradation. This study suggests that optimized crop-livestock production may benefit the sustainable development of agroecosystems in karst regions.
Assuntos
Nitrogênio , Solo , Nitrogênio/análise , Solo/química , Florestas , Ecologia , ChinaRESUMO
In natural habitats, especially in arid and semi-arid areas that are fragile ecosystems, vegetation degradation is one of the most important factors affecting the variability of soil health. Studying physicochemical and biological parameters that serve as indicators of soil health offers important information on the potential risk of land degradation and the progression of changes in soil performance and health during recovery periods. This study specifically examines the impact of vegetation degradation on soil health indicators and the duration needed to improve the physical, chemical, and biological parameters in a semi-arid mountainous area site types with the dominance of Quercus macranthera Fisch & C.A. Mey and Carpinus orientalis Miller in northern Iran. In different years (2003, 2013, and 2023), litter and soil samples (at depths of 0-10, 10-20, and 20-30 cm) were collected in different types of degraded sites. Additionally, in 2023, a non-degraded site was chosen as a control and similar samples were collected. A total of 48 litter (12 samples for each of the study site types) and 144 soil (4 study site types × 3 depths × 12 samples) samples were collected. In order to investigate the spatial changes of soil basal respiration (or CO2 emission), which is involved in global warming, from each site type, 50 soil samples were taken along two 250-meter transects. The findings showed that litter P and Mg contents in the non-degraded site were 1.6 times higher than in degraded site types (2003). Following vegetation degradation, soil fertility indicators decreased by 2-4 times. The biota population was lower by about 80 % under the degraded site types (2003) than in the non-degraded site, and the density of fungi and bacteria in the degraded site types was almost half that of the non-degraded site types. Geostatistics showed the high variance (linear model) of CO2 emissions in areas without degradation. In addition, vegetation degradation significantly reduced soil carbon and nitrogen mineralization. Although soil health indicators under the degraded vegetation have improved over time (30 years), results showed that even thirty years is not enough for the full recovery of a degraded ecosystem, and more time is needed for the degraded area to reach the same conditions as the non-degraded site. Considering the time required for natural restoration in degraded site types, it is necessary to prioritize the conservation of vegetation and improve the ecosystem restoration process with adequate interventions.
Assuntos
Recuperação e Remediação Ambiental , Florestas , Solo , Solo/química , Clima , Meio Ambiente , Irã (Geográfico) , Quercus , Betulaceae , Tempo , Biota , Conservação dos Recursos NaturaisRESUMO
Wars have serious negative effects on the total environment. This study reviews 193 case studies worldwide in order to better understand these impacts and their potential management before, during and after war. The synthesis of the evidence shows that military actions damage landscape resources. Aerial bombings have great negative impacts by damaging environmental conservation efforts, destroying trees, disturbing soilscapes and undermining soil health. In addition, war exterminates wildlife and their ecological niches and contributes to atmospheric and water pollution. Overall, military leaders and personnel have shown little concern about these impacts. Limited postwar restoration activities are also undertaken to reduce war-driven environmental impacts. The study highlights some good practices on how to manage the total environment during the warfare. Therefore, communities must share best lessons to remain in a sustainable peace, restore the war-damaged environment, and enhance sustainable economic development.