Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 228: 112404, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35196617

RESUMO

Cell function is highly dependent on membrane structure, organization, and fluidity. Therefore, methods to probe the biophysical properties of biological membranes are required. Determination of generalized polarization (GP) values using Laurdan in fluorescence microscopy studies is one of the most widely-used methods to investigate changes in membrane fluidity in vitro and in vivo. In the last couple of decades, there has been a major increase in the number of studies using Laurdan GP, where several different methodological approaches are used. Such differences interfere with data interpretation inasmuch as it is difficult to validate if Laurdan GP variations actually reflect changes in membrane organization or arise from biased experimental approaches. To address this, we evaluated the influence of different methodological details of experimental data acquisition and analysis on Laurdan GP. Our results showed that absolute GP values are highly dependent on several of the parameters analyzed, showing that incorrect data can result from technical and methodological inconsistencies. Considering these differences, we further analyzed the impact of cell variability on GP determination, focusing on basic cell culture conditions, such as cell confluency, number of passages and media composition. Our results show that GP values can report alterations in the biophysical properties of cell membranes caused by cellular adaptation to the culture conditions. In summary, this study provides thorough analysis of the factors that can lead to Laurdan GP variability and suggests approaches to improve data quality, which would generate more precise interpretation and comparison within individual studies and among the literature on Laurdan GP.


Assuntos
Análise de Dados , Corantes Fluorescentes , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Técnicas de Cultura de Células , Membrana Celular/metabolismo , Polarização de Fluorescência , Corantes Fluorescentes/química , Lauratos
2.
Colloids Surf B Biointerfaces ; 161: 375-385, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29102849

RESUMO

The study of surfactant and bio membranes interaction is particularly complex due to the diversity in lipid composition and the presence of proteins in natural membranes. Even more difficult is the study of this interaction in vivo since cellular damage may complicate the interpretation of the results, therefore for most of the studies in this field either artificial or model systems are used. One of the model system most used to study biomembranes are erythrocytes due to their relatively simple structure (they lack nuclei and organelles having only the plasma membrane), their convenient experimental manipulation and availability. In this context, we used rabbit erythrocytes as a model membrane and Laurdan (6-lauroyl-2-dimethylaminonaphthalene) as the fluorescent probe to study changes promoted in the membrane by the interaction with the sucrose monoester of myristic acid, ß-d-fructofuranosyl-6-O-myristoyl-α-d-glucopyranoside (MMS). Surfactant and erythrocytes interaction was studied by measuring hemoglobin release and the changes in water content in the membrane sensed by Laurdan. Using two-photon excitation, three types of measurements were performed: Generalized Polarization (analyzed as average GP values), Fluorescence Lifetime Imaging, FLIM (analyzed using phasor plots) and Spectral imaging (analyzed using spectral phasor). Our data indicate that at sublytical concentration of surfactant (20µM MMS), there is a decrease of about 35% in erythrocytes size, without changes in Laurdan lifetime or emission spectra. We also demonstrate that as hemolysis progress, Laurdan lifetime increased due to the decrease in hemoglobin (strong quencher of Laurdan emission) content inside the erythrocytes. Under these conditions, Laurdan spectral phasor analyses can extract the information on the water content in the membrane in the presence of hemoglobin. Our results indicate an increase in membrane fluidity in presence of MMS.


Assuntos
2-Naftilamina/análogos & derivados , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Lauratos/metabolismo , Ácido Mirístico/metabolismo , Sacarose/metabolismo , 2-Naftilamina/química , 2-Naftilamina/metabolismo , Animais , Membrana Eritrocítica/química , Membrana Eritrocítica/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Hemoglobinas/metabolismo , Hemólise , Lauratos/química , Fluidez de Membrana/efeitos dos fármacos , Surfactantes Pulmonares/farmacologia , Coelhos , Solubilidade , Água/metabolismo
3.
Biochim Biophys Acta Biomembr ; 1860(2): 544-555, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29106974

RESUMO

We compared the lateral structure of giant unilamellar vesicles (GUVs) composed of three pseudo binary mixtures of different glycosphingolipid (GSL), i.e. sulfatide, asialo-GM1 or GM1, with POPC. These sphingolipids possess similar hydrophobic residues but differ in the size and charge of their polar head group. Fluorescence microscopy experiments using LAURDAN and DiIC18 show coexistence of micron sized domains in a molar fraction range that depends on the nature of the GSLs. In all cases, experiments with LAURDAN show that the membrane lateral structure resembles the coexistence of solid ordered and liquid disordered phases. Notably, the overall extent of hydration measured by LAURDAN between the solid ordered and liquid disordered membrane regions show marked similarities and are independent of the size of the GSL polar head group. In addition, the maximum amount of GSL incorporated in the POPC bilayer exhibits a strong dependence on the size of the GSL polar head group following the order sulfatide>asialo-GM1>GM1. This observation is in full harmony with previous experiments and theoretical predictions for mixtures of these GSL with glycerophospholipids. Finally, compared with previous results reported in GUVs composed of mixtures of POPC with the sphingolipids cerebroside and ceramide, we observed distinctive curvature effects at particular molar fraction regimes in the different mixtures. This suggests a pronounced effect of these GSL on the spontaneous curvature of the bilayer. This observation may be relevant in a biological context, particularly in connection with the highly curved structures found in neural cells.


Assuntos
Gangliosídeo G(M1)/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Sulfoglicoesfingolipídeos/química , Lipossomas Unilamelares/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Carbocianinas/química , Corantes Fluorescentes/química , Lauratos/química , Microscopia de Fluorescência , Estrutura Molecular
4.
Bio Protoc ; 8(20): e3063, 2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34532528

RESUMO

Membrane fluidity is a key parameter of bacterial membranes that undergoes quick adaptation in response to environmental challenges and has recently emerged as an important factor in the antibacterial mechanism of membrane-targeting antibiotics. The specific level of membrane fluidity is not uniform across the bacterial cell membrane. Rather, specialized microdomains associated with different cellular functions can exhibit fluidity values that significantly deviate from the average. Assessing changes in the overall membrane fluidity and formation of membrane microdomains is therefore pivotal to understand both the functional organization of the bacterial cell membrane as well as antibiotic mechanisms. Here we describe how two fluorescent membrane dyes, laurdan and DiIC12, can be employed to assess membrane fluidity in living bacteria. We focus on Bacillus subtilis, since this organism has been relatively well-studied with respect to membrane domains. However, we also describe how these assays can be adapted for other bacteria such as Staphylococcus aureus and Streptococcus pneumoniae.

5.
Biochim Biophys Acta ; 1858(9): 2132-2139, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27342371

RESUMO

l-ascorbic acid alkyl esters (ASCn) are lipophilic forms of vitamin C, which maintain some of its antioxidant power. Those properties make this drug family attractive to be used in pharmacological preparations protecting other redox-sensible drugs or designed to reduce possible toxic oxidative processes. In this work, we tested the ability of l-ascorbic acid alkyl esters (ASCn) to modulate the structure, permeability, and rheological properties of phospholipid bilayers. The ASCn studied here (ASC16, ASC14, and ASC12) alter the structural integrity as well as the rheological properties of phospholipid membranes without showing any evident detergent activity. ASC14 appeared as the most efficient drug in destabilize the membrane structure of nano- and micro-size phospholipid liposomes inducing vesicle content leakage and shape elongation on giant unilamellar vesicles. It also was the most potent enhancer of membrane microviscosity and surface water structuring. Only ASC16 induced the formation of drug-enriched condensed domains after its incorporation into the lipid bilayer, while ASC12 appeared as the less membrane-disturbing compound, likely because of its poor, and more superficial, partition into the membrane. We also found that incorporation of ASCn into the lipid bilayers enhanced the reduction of membrane components, compared with soluble vitamin C. Our study shows that ASCn compounds, which vary in the length of the acyl chain, show different effects on phospholipid vesicles used as biomembrane models. Those variances may account for subtly differences in the effectiveness on their pharmacological applications.


Assuntos
Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/química , Membranas Artificiais , Modelos Químicos , Fosfolipídeos/química
6.
Biochim Biophys Acta ; 1828(11): 2450-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23867774

RESUMO

This work comprises a structural and dynamical study of monolayers and bilayers composed of native pulmonary surfactant from mice. Spatially resolved information was obtained using fluorescence (confocal, wide field and two photon excitation) and atomic force microscopy methods. Lipid mass spectrometry experiments were also performed in order to obtain relevant information on the lipid composition of this material. Bilayers composed of mice pulmonary surfactant showed coexistence of distinct domains at room temperature, with morphologies and lateral packing resembling the coexistence of liquid ordered (lo)/liquid disordered (ld)-like phases reported previously in porcine lung surfactant. Interestingly, the molar ratio of saturated (mostly DPPC)/non-saturated phospholipid species and cholesterol measured in the innate material corresponds with that of a DOPC/DPPC/cholesterol mixture showing lo/ld phase coexistence at a similar temperature. This suggests that at quasi-equilibrium conditions, key lipid classes in this complex biological material are still able to produce the same scaffold observed in relevant but simpler model lipid mixtures. Also, robust structural and dynamical similarities between mono- and bi-layers composed of mice pulmonary surfactant were observed when the monolayers reach a surface pressure of 30mN/m. This value is in line with theoretically predicted and recently measured surface pressures, where the monolayer-bilayer equivalence occurs in samples composed of single phospholipids. Finally, squeezed out material attached to pulmonary surfactant monolayers was observed at surface pressures near the beginning of the monolayer reversible exclusion plateau (~40mN/m). Under these conditions this material adopts elongated tubular shapes and displays ordered lateral packing as indicated by spatially resolved LAURDAN GP measurements.


Assuntos
Bicamadas Lipídicas/química , Estrutura Molecular , Surfactantes Pulmonares/química , Animais , Líquido da Lavagem Broncoalveolar , Espectrometria de Massas , Camundongos , Microscopia de Força Atômica , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA