RESUMO
This paper presents a novel numerical approach for approximating the solution of the model describing the infection of C D 4 + T -cells by the human T-cell lymphotropic virus I (HTLV-I).The proposed method utilizes the operational matrix along with spectral method to convert the fractional model into a system of nonlinear algebraic equations. The Levenberg-Marquardt algorithm efficiently solves these equations. The study includes theoretical convergence analysis and error bounds to establish the validity of the proposed method. Through several test problems, we demonstrate the effectiveness and accuracy of the approach. We compare its performance and reliability to other existing methods in the literature. The results indicate that the proposed method is a reliable and efficient approach for solving the model.
RESUMO
PURPOSE: Our objective was to assess a deconvolution and denoising technique based on Legendre polynomials compared to matrix deconvolution on dynamic 18F-FDG renography of healthy patients. METHOD: The study was carried out and compared to the data of 24 healthy patients from a published study who underwent examinations with 99mTc-MAG3 planar scintigraphy and 18F-FDG PET/MRI. Due to corruption issues in some data used in the published article, post-publication measurements were provided. We have been warned that post-publication data were treated differently. The smoothing method switched from Bezier to Savitzky-Golay and the deconvolution from matrix-based (with Tikhonov Regularization) to Richardson-Lucy. A comparison of the split function and mean transit times of the published and post-publication data against our method based on Legendre polynomials was performed. RESULTS: For split function, we only observed a good agreement between the processing methods for the 99mTc-MAG3 and the post-published data. No correlation was found between the split functions obtained on the 99mTc-MAG3 and the 18F-FDG, contrary to the published study. However, all calculated split function values for 18F-FDG and 99mTc-MAG3 were within the established normal range. For the mean transit time, the correlation was moderate with published data and very good with the post-publication measurements for both 99mTc-MAG3 and 18F-FDG. Bias of the Bland-Altman analysis of the mean transit times for 99mTc-MAG3 versus 18F-FDG was 1.1 min (SD 1.7 min) for the published data, - 0.11 min (SD 1.9 min) for the post-publication results and .05 min (SD 1.9 min) for our method. CONCLUSIONS: The processing methods used in the original publication and in the post-publication work were quite complex and required adaptation of the fitting parameters for each individual and each type of examination. Our method did not require any specific adjustment; the same unmodified and fully automated algorithm was successfully applied to all data.
RESUMO
This study presents a computational investigation of a stochastic Zika virus along with optimal control model using the Legendre spectral collocation method (LSCM). By accumulation of stochasticity into the model through the proposed stochastic differential equations, we appropriating the random fluctuations essential in the progression and disease transmission. The stability, convergence and accuracy properties of the LSCM are conscientiously analyzed and also demonstrating its strength for solving the complex epidemiological models. Moreover, the study evaluates the various control strategies, such as treatment, prevention and treatment pesticide control, and identifies optimal combinations that the intervention costs and also minimize the proposed infection rates. The basic properties of the given model, such as the reproduction number, were determined with and without the presence of the control strategies. For R 0 < 0 , the model satisfies the disease-free equilibrium, in this case the disease die out after some time, while for R 0 > 1 , then endemic equilibrium is satisfied, in this case the disease spread in the population at higher scale. The fundamental findings acknowledge the significant impact of stochastic phonemes on the robustness and effectiveness of control strategies that accelerating the need for cost-effective and multi-faceted approaches. In last the results provide the valuable insights for public health department to enabling more impressive mitigation of Zika virus outbreaks and management in real-world scenarios.
Assuntos
Processos Estocásticos , Infecção por Zika virus , Zika virus , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/transmissão , Humanos , Zika virus/fisiologia , Simulação por Computador , Modelos EpidemiológicosRESUMO
Feed efficiency plays a major role in the overall profitability and sustainability of the beef cattle industry, as it is directly related to the reduction of the animal demand for input and methane emissions. Traditionally, the average daily feed intake and weight gain are used to calculate feed efficiency traits. However, feed efficiency traits can be analysed longitudinally using random regression models (RRMs), which allow fitting random genetic and environmental effects over time by considering the covariance pattern between the daily records. Therefore, the objectives of this study were to: (1) propose genomic evaluations for dry matter intake (DMI), body weight gain (BWG), residual feed intake (RFI) and residual weight gain (RWG) data collected during an 84-day feedlot test period via RRMs; (2) compare the goodness-of-fit of RRM using Legendre polynomials (LP) and B-spline functions; (3) evaluate the genetic parameters behaviour for feed efficiency traits and their implication for new selection strategies. The datasets were provided by the EMBRAPA-GENEPLUS beef cattle breeding program and included 2920 records for DMI, 2696 records for BWG and 4675 genotyped animals. Genetic parameters and genomic breeding values (GEBVs) were estimated by RRMs under ssGBLUP for Nellore cattle using orthogonal LPs and B-spline. Models were compared based on the deviance information criterion (DIC). The ranking of the average GEBV of each test week and the overall GEBV average were compared by the percentage of individuals in common and the Spearman correlation coefficient (top 1%, 5%, 10% and 100%). The highest goodness-of-fit was obtained with linear B-Spline function considering heterogeneous residual variance. The heritability estimates across the test period for DMI, BWG, RFI and RWG ranged from 0.06 to 0.21, 0.11 to 0.30, 0.03 to 0.26 and 0.07 to 0.27, respectively. DMI and RFI presented within-trait genetic correlations ranging from low to high magnitude across different performance test-day. In contrast, BWG and RWG presented negative genetic correlations between the first 3 weeks and the other days of performance tests. DMI and RFI presented a high-ranking similarity between the GEBV average of week eight and the overall GEBV average, with Spearman correlations and percentages of individuals selected in common ranging from 0.95 to 1.00 and 93 to 100, respectively. Week 11 presented the highest Spearman correlations (ranging from 0.94 to 0.98) and percentages of individuals selected in common (ranging from 85 to 94) of BWG and RWG with the average GEBV of the entire period of the test. In conclusion, the RRM using linear B-splines is a feasible alternative for the genomic evaluation of feed efficiency. Heritability estimates of DMI, RFI, BWG and RWG indicate enough additive genetic variance to achieve a moderate response to selection. A new selection strategy can be adopted by reducing the performance test to 56 days for DMI and RFI selection and 77 days for BWG and RWG selection.
Assuntos
Genoma , Genômica , Humanos , Bovinos/genética , Animais , Fenótipo , Aumento de Peso/genética , Genótipo , Ingestão de Alimentos/genética , Ração AnimalRESUMO
We aim to develop a direct transcription approach for solving a notable category of optimal control problems governed by nonlinear fractional Fredholm integral equations having delays in both input and output signals. The foundation of the new methodology is based on a multi domains decomposition scheme by utilizing the fractional-order Legendre functions. A new fractional derivative operator associated with the fractional basis is introduced by using the Caputo fractional derivative operator. With the use of derivative and delay operators, one can transform the dynamical system related to the fractional control problem into a new system containing algebraic equations. A wide variety of challenging test problems are studied to provide a detailed explanation of the designed approach.
RESUMO
OBJECTIVES: This study aimed to introduce an improved deconvolution technique for Tc-99m-mercaptoacetyltriglycine renograms based on the combination of a sparse Legendre polynomial representation and the Moore-Penrose inversion matrix (LG). This method reduces the effect of noise on the measurement of renal retention function transit time (TT). METHODS: The stability and accuracy of the proposed method were tested using a renal database containing Monte Carlo-simulated studies and real adult patient data. Two clinical parameters, namely, split function (SF) and mean TT (meanTT), obtained with LG were compared with values calculated with the established method that combines matrix deconvolution and a three-point linear smoothing (F121) as recommended by the 2008 International Scientific Committee of Radionuclides in Nephrourology consensus on renal TT measurements. RESULTS: For simulated data, the root mean square error (RMSE) between the theoretical non-noisy renal retention curve (RRC) and the results of the deconvolution methods applied to the noisy RRC were up to two times lower with LG (p<0.001). The RMSE of the reconvoluted renogram and the theoretical one was also lower for LG (p<0.001) and showed better preservation of the original signal. The SF was neither improved nor degraded by the proposed method. For patient data, no statistically significant difference was found between the SF for the LG method compared with the database values, and the meanTT better agreed with the physician's diagnosis than the matrix or clinical software (Hermes) outputs. A visual improvement of the RRC was also observed. CONCLUSION: By combining the sparse Legendre representation of the renogram curves and the Moore-Penrose matrix inverse techniques, we obtained improved noise reduction in the deconvoluted data, leading to better elimination of non-physiological signals -as negative values- and the avoidance of the smear effect of conventional smoothing on the vascular peak, which both influenced the meanTT measurement.
RESUMO
The main purpose of this paper is design and implementation of a new linear observer for an attitude and heading reference system (AHRS), which includes three-axis accelerometers, gyroscopes, and magnetometers in the presence of sensors and modeling uncertainties. Since the increase of errors over time is the main difficulty of low-cost micro electro mechanical systems (MEMS) sensors producing instable on-off bias, scale factor (SF), nonlinearity and random walk errors, development of a high-precision observer to improve the accuracy of MEMS-based navigation systems is considered. First, the duality between controller and estimator in a linear system is presented as the base of design method. Next, Legendre polynomials together with block-pulse functions are applied for the solution of a common linear time-varying control problem. Through the duality theory, the obtained control solution results in the block-pulse functions and Legendre polynomials observer (BPLPO). According to product properties of the hybrid functions in addition to the operational matrices of integration, the optimal control problem is simplified to some algebraic equations which particularly fit with low-cost implementations. The improved performance of the MEMS AHRS owing to implementation of BPLPO has been assessed through vehicle field tests in urban area compared with the extended Kalman filter (EKF).
RESUMO
The objective of this study was to estimate the components of variance and genetic parameters of test-day milk yield in first lactation Girolando cows, using a random regression model. A total of 126,892 test-day milk yield (TDMY) records of 15,351 first-parity Holstein, Gyr, and Girolando breed cows were used, obtained from the Associação Brasileira dos Criadores de Girolando. To estimate the components of (co) variance, the additive genetic functions and permanent environmental covariance were estimated by random regression in three functions: Wilmink, Legendre Polynomials (third order) and Linear spline Polynomials (three knots). The Legendre polynomial function showed better fit quality. The genetic and permanent environment variances for TDMY ranged from 2.67 to 5.14 and from 9.31 to 12.04, respectively. Heritability estimates gradually increased from the beginning (0.13) to mid-lactation (0.19). The genetic correlations between the days of the control ranged from 0.37 to 1.00. The correlations of permanent environment followed the same trend as genetic correlations. The use of Legendre polynomials via random regression model can be considered as a good tool for estimating genetic parameters for test-day milk yield records.(AU)
O objetivo deste estudo foi estimar os componentes de variância e os parâmetros genéticos da produção de leite no dia do teste (TDMY) em vacas Girolando de primeira lactação, usando modelo de regressão aleatória. Foram utilizados 126.892 registros de produção de leite no dia controle de 15.351 vacas primíparas das raças Holandesa, Gir e Girolando, obtidas na Associação Brasileira dos Criadores de Girolando. Para estimar os componentes de (co) variância, as funções genéticas aditivas e de covariância ambiental permanente foram estimadas por regressão aleatória em três funções: Wilmink, polinômios de Legendre (terceira ordem) e polinômios splines lineares (três nós). A função polinomial de Legendre apresentou melhor qualidade de ajuste. As variâncias genéticas e de ambiente permanente para produção de leite no dia do controle variaram de 2,67 a 5,14 e de 9,31 a 12,04, respectivamente. As estimativas de herdabilidade aumentaram gradativamente do início (0,13) para o meio da lactação (0,19). As correlações genéticas entre os dias do controle variaram de 0,37 a 1,00. As correlações de ambiente permanente seguiram a mesma tendência das correlações genéticas. A utilização dos polinômios de Legendre via modelos de regressão aleatória pode ser considerada como uma boa ferramenta para estimação de parâmetros genéticos da produção de leite no dia do teste.(AU)
Assuntos
Animais , Feminino , Bovinos , Lactação/fisiologia , Padrões de Herança , Leite , Correlação de DadosRESUMO
The random regression test-day model has become the most commonly adopted model for routine genetic evaluations in dairy populations, which allows accurately accounting for genetic and environmental effects over lactation. The objective of this study was to explore appropriate random regression test-day models for genetic evaluation of milk yield in a Holstein population with a relatively small size, which is the common situation in regional or independent breeding companies to preform genetic evaluation. Data included 419,567 test-day records from 54,417 cows from the first lactation. Variance components and breeding values were estimated using a random regression test-day model with different orders (from first to fifth) of Legendre polynomials (LP) and accounted for homogeneous or heterogeneous residual variance across the lactation. Models were compared based on Akaike information criterion (AIC), Bayesian information criterion (BIC), and predictive ability. In general, models with a higher order of LP showed better goodness of fit based on AIC and BIC values. However, models with third, fourth, and fifth order of LP led to similar estimates of genetic parameters and predictive ability. Models with assumption of heterogeneous residual variances achieved better goodness of fit but yielded similar predictive ability compared with those with assumption of homogeneous residual variances. Therefore, a random regression model with third order of LP is suggested to be an appropriate model for genetic evaluation of milk yield in local Chinese Holstein populations.
RESUMO
Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. This paper provides a numerical solution for the mathematical model of the novel coronavirus by the application of alternative Legendre polynomials to find the transmissibility of COVID-19. The mathematical model of the present problem is a system of differential equations. The goal is to convert this system to an algebraic system by use of the useful property of alternative Legendre polynomials and collocation method that can be solved easily. We compare the results of this method with those of the Runge-Kutta method to show the efficiency of the proposed method.
RESUMO
Our purpose was to develop a fully automatic method to deal with the presence of high levels of noise interfering with quantitative analysis of fast, dynamic mercaptoacetyltriglycine renogram images. Methods: A method based on Legendre polynomials to fit and filter time-activity curves was proposed. The method was applied to a renal database that contains Monte Carlo (MC)-simulated studies and real adult patient data. Clinically relevant parameters such as relative function, time to maximum uptake (Tmax), and half-emptying time (T1/2) were obtained with the proposed method, the 1-2-1 filter (F121) method recommended in the 2018 guidelines of the European Association of Nuclear Medicine, and a state-of-the-art commercial software program (Hermes) currently used in routine nuclear medicine. Results: The root mean squared error between reference time-activity curves and the same curves with Poisson noise added was about 2 times lower for the Legendre method than for F121. The left relative function for MC and patient data was statistically equivalent for Hermes, Legendre, and F121 (P < 0.001). For MC studies, the Legendre technique performed better that the Hermes method regarding the known values of Tmax (P < 0.05), and the T1/2 determination was significantly improved (P < 0.05). For patient data, the Legendre and F121 methods were less influenced by noise in the data than the Hermes method, particularly for T1/2. Conclusion: In dynamic nuclear medicine imaging, Legendre polynomials appear to be a promising, fully automatic noise-removal tool that is routinely applicable, accurate, and robust.
Assuntos
Processamento de Imagem Assistida por Computador/métodos , Renografia por Radioisótopo , Tecnécio Tc 99m Mertiatida , Algoritmos , Automação , Padrões de Referência , Razão Sinal-Ruído , Fatores de TempoRESUMO
Autoregressive (AR) and random regression (RR) models were fitted to test-day records from the first three lactations of Brazilian Holstein cattle with the objective of comparing their efficiency for national genetic evaluations. The data comprised 4,142,740 records of milk yield (MY) and somatic cell score (SCS) from 274,335 cows belonging to 2,322 herds. Although heritabilities were similar between models and traits, additive genetic variance estimates using AR were 7.0 (MY) and 22.2% (SCS) higher than those obtained from RR model. On the other hand, residual variances were lower in both traits when estimated through AR model. The rank correlation between EBV obtained from AR and RR models was 0.96 and 0.94 (MY) and 0.97 and 0.95 (SCS), respectively, for bulls (with 10 or more daughters) and cows. Estimated annual genetic gains for bulls (cows) obtained using AR were 46.11 (49.50) kg for MY and -0.019 (-0.025) score for SCS; whereas using RR these values were 47.70 (55.56) kg and -0.022 (-0.028) score. Akaike information criterion was lower for AR in both traits. Although AR model is more parsimonious, RR model assumes genetic correlations different from the unity within and across lactations. Thus, when these correlations are relatively high, these models tend to yield to similar predictions; otherwise, they will differ more and RR model would be theoretically sounder.
Assuntos
Cruzamento , Lactação/genética , Leite , Animais , Brasil , Bovinos , Feminino , Lactação/fisiologia , Masculino , Modelos GenéticosRESUMO
Multiple-point simulations have been introduced over the past decade to overcome the limitations of second-order stochastic simulations in dealing with geologic complexity, curvilinear patterns, and non-Gaussianity. However, a limitation is that they sometimes fail to generate results that comply with the statistics of the available data while maintaining the consistency of high-order spatial statistics. As an alternative, high-order stochastic simulations based on spatial cumulants or spatial moments have been proposed; however, they are also computationally demanding, which limits their applicability. The present work derives a new computational model to numerically approximate the conditional probability density function (cpdf) as a multivariate Legendre polynomial series based on the concept of spatial Legendre moments. The advantage of this method is that no explicit computations of moments (or cumulants) are needed in the model. The approximation of the cpdf is simplified to the computation of a unified empirical function. Moreover, the new computational model computes the cpdfs within a local neighborhood without storing the high-order spatial statistics through a predefined template. With this computational model, the algorithm for the estimation of the cpdf is developed in such a way that the conditional cumulative distribution function (ccdf) can be computed conveniently through another recursive algorithm. In addition to the significant reduction of computational cost, the new algorithm maintains higher numerical precision compared to the original version of the high-order simulation. A new method is also proposed to deal with the replicates in the simulation algorithm, reducing the impacts of conflicting statistics between the sample data and the training image (TI). A brief description of implementation is provided and, for comparison and verification, a set of case studies is conducted and compared with the results of the well-established multi-point simulation algorithm, filtersim. This comparison demonstrates that the proposed high-order simulation algorithm can generate spatially complex geological patterns while also reproducing the high-order spatial statistics from the sample data.
RESUMO
OBJECTIVE: The objective of this study was to estimate genetic parameters of milk, fat, and protein yields within and across lactations in Tunisian Holsteins using a random regression test-day (TD) model. METHODS: A random regression multiple trait multiple lactation TD model was used to estimate genetic parameters in the Tunisian dairy cattle population. Data were TD yields of milk, fat, and protein from the first three lactations. Random regressions were modeled with third-order Legendre polynomials for the additive genetic, and permanent environment effects. Heritabilities, and genetic correlations were estimated by Bayesian techniques using the Gibbs sampler. RESULTS: All variance components tended to be high in the beginning and the end of lactations. Additive genetic variances for milk, fat, and protein yields were the lowest and were the least variable compared to permanent variances. Heritability values tended to increase with parity. Estimates of heritabilities for 305-d yield-traits were low to moderate, 0.14 to 0.2, 0.12 to 0.17, and 0.13 to 0.18 for milk, fat, and protein yields, respectively. Within-parity, genetic correlations among traits were up to 0.74. Genetic correlations among lactations for the yield traits were relatively high and ranged from 0.78±0.01 to 0.82±0.03, between the first and second parities, from 0.73±0.03 to 0.8±0.04 between the first and third parities, and from 0.82±0.02 to 0.84±0.04 between the second and third parities. CONCLUSION: These results are comparable to previously reported estimates on the same population, indicating that the adoption of a random regression TD model as the official genetic evaluation for production traits in Tunisia, as developed by most Interbull countries, is possible in the Tunisian Holsteins.
RESUMO
Longer-lived cows tend to be more profitable and the stayability trait is a selection criterion correlated to longevity. An alternative to the traditional approach to evaluate stayability is its definition based on consecutive calvings, whose main advantage is the more accurate evaluation of young bulls. However, no study using this alternative approach has been conducted for Zebu breeds. Therefore, the objective of this study was to compare linear random regression models to fit stayability to consecutive calvings of Guzerá, Nelore and Tabapuã cows and to estimate genetic parameters for this trait in the respective breeds. Data up to the eighth calving were used. The models included the fixed effects of age at first calving and year-season of birth of the cow and the random effects of contemporary group, additive genetic, permanent environmental and residual. Random regressions were modeled by orthogonal Legendre polynomials of order 1 to 4 (2 to 5 coefficients) for contemporary group, additive genetic and permanent environmental effects. Using Deviance Information Criterion as the selection criterion, the model with 4 regression coefficients for each effect was the most adequate for the Nelore and Tabapuã breeds and the model with 5 coefficients is recommended for the Guzerá breed. For Guzerá, heritabilities ranged from 0.05 to 0.08, showing a quadratic trend with a peak between the fourth and sixth calving. For the Nelore and Tabapuã breeds, the estimates ranged from 0.03 to 0.07 and from 0.03 to 0.08, respectively, and increased with increasing calving number. The additive genetic correlations exhibited a similar trend among breeds and were higher for stayability between closer calvings. Even between more distant calvings (second v. eighth), stayability showed a moderate to high genetic correlation, which was 0.77, 0.57 and 0.79 for the Guzerá, Nelore and Tabapuã breeds, respectively. For Guzerá, when the models with 4 or 5 regression coefficients were compared, the rank correlations between predicted breeding values for the intercept were always higher than 0.99, indicating the possibility of practical application of the least parameterized model. In conclusion, the model with 4 random regression coefficients is recommended for the genetic evaluation of stayability to consecutive calvings in Zebu cattle.
Assuntos
Cruzamento , Bovinos , Animais , Bovinos/genética , Bovinos/fisiologia , Feminino , Modelos Lineares , Modelos Genéticos , Parto , Fenótipo , GravidezRESUMO
BACKGROUND: DNA microarrays offer motivation and hope for the simultaneous study of variations in multiple genes. Gene expression is a temporal process that allows variations in expression levels with a characterized gene function over a period of time. Temporal gene expression curves can be treated as functional data since they are considered as independent realizations of a stochastic process. This process requires appropriate models to identify patterns of gene functions. The partitioning of the functional data can find homogeneous subgroups of entities for the massive genes within the inherent biological networks. Therefor it can be a useful technique for the analysis of time-course gene expression data. We propose a new self-consistent partitioning method of functional coefficients for individual expression profiles based on the orthonormal basis system. RESULTS: A principal points based functional partitioning method is proposed for time-course gene expression data. The method explores the relationship between genes using Legendre coefficients as principal points to extract the features of gene functions. Our proposed method provides high connectivity in connectedness after clustering for simulated data and finds a significant subsets of genes with the increased connectivity. Our approach has comparative advantages that fewer coefficients are used from the functional data and self-consistency of principal points for partitioning. As real data applications, we are able to find partitioned genes through the gene expressions found in budding yeast data and Escherichia coli data. CONCLUSIONS: The proposed method benefitted from the use of principal points, dimension reduction, and choice of orthogonal basis system as well as provides appropriately connected genes in the resulting subsets. We illustrate our method by applying with each set of cell-cycle-regulated time-course yeast genes and E. coli genes. The proposed method is able to identify highly connected genes and to explore the complex dynamics of biological systems in functional genomics.
Assuntos
Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Algoritmos , Análise por Conglomerados , Escherichia coli/genética , Ontologia Genética , Análise de Sequência com Séries de Oligonucleotídeos , Saccharomyces cerevisiae/genética , Processos EstocásticosRESUMO
The objective of this study is to compare random-regression models used to describe changes in evaluation parameters for growth in Tabapuã bovine raised in the Northeast of Brazilian. The M4532-5 random-regression model was found to be best for estimating the variation and heritability of growth characteristics in the animals evaluated. Estimates of direct additive genetic variance increased with age, while the maternal additive genetic variance demonstrated growth from birth to up to nearly 420 days of age. The genetic correlations between the first four characteristics were positive with moderate to large ranges. The greatest genetic correlation was observed between birth weight and at 240 days of age (0.82). The phenotypic correlation between birth weight and other characteristics was low. The M4532-5 random-regression model with 39 parameters was found to be best for describing the growth curve of the animals evaluated providing improved selection for heavier animals when performed after weaning. The interpretation of genetic parameters to predict the growth curve of cattle may allow the selection of animals to accelerate slaughter procedures.
Objetivou-se com esta pesquisa comparar diferentes modelos de regressão aleatória e determinar o mais adequado para descrever mudanças nos parâmetros de avaliação do crescimento de bovinos da raça Tabapuã criados no Nordeste brasileiro. O modelo de regressão aleatória M4532-5 foi definido como sendo o de melhor ajuste para descrição das estimativas de variância e herdabilidades das características de crescimento dos animais avaliados. As estimativas de variância genética aditiva direta aumentaram em função da idade, já as de variância genética aditiva materna mostraram crescimento do nascimento até próximo aos 420 dias. As correlações genéticas entre as quatro primeiras características foram positivas e de magnitudes moderada a alta. A maior correlação genética foi observada entre o peso ao nascer e aos 240 dias (0,82). A correlação fenotípica entre peso ao nascimento e demais características foi baixa. O modelo de regressão aleatória M4532-5 com 39 parâmetros apresentou-se como aquele de melhor ajuste para descrever a curva de crescimento dos animais avaliados. Resposta à seleção para obtenção de animais mais pesados será eficiente quando realizada em idades posteriores ao desmame. Ao se avaliar a curva de crescimento de bovinos por meio da interpretação dos parâmetros genéticos estimados, é possível selecionar animais com maior precocidade de abate.
Assuntos
Animais , Bovinos , Análise de Variância , Crescimento e Desenvolvimento , Análise de Regressão , Fenômenos Genéticos , Padrões de ReferênciaRESUMO
This paper introduces two families of orthogonal polynomials on the interval (-1,1), with weight function [Formula: see text]. The first family satisfies the boundary condition [Formula: see text], and the second one satisfies the boundary conditions [Formula: see text]. These boundary conditions arise naturally from PDEs defined on a disk with Dirichlet boundary conditions and the requirement of regularity in Cartesian coordinates. The families of orthogonal polynomials are obtained by orthogonalizing short linear combinations of Legendre polynomials that satisfy the same boundary conditions. Then, the three-term recurrence relations are derived. Finally, it is shown that from these recurrence relations, one can efficiently compute the corresponding recurrences for generalized Jacobi polynomials that satisfy the same boundary conditions.
RESUMO
ABSTRACT: The objective of this study was to compare the functions of Wilmink and Ali and Schaeffer with Legendre polynomials in random regression models using heterogeneous residual variances for modeling genetic parameters during the first lactation in the Holstein Friesian breed. Five thousand eight hundred and eighty biweekly records of test-day milk production were used. The models included the fixed effects of group of contemporaries and cow age at calving as covariable. Statistical criteria indicated that the WF.33_HE2, LEG.33_HE2, and LEG.55_HE4 functions best described the changes in the variances that occur throughout lactation. Heritability estimates using WF.33_HE2 and LEG.33_HE2 models were similar, ranging from 0.31 to 0.50. The LEG.55_HE4 model diverged from these models, with higher estimates at the beginning of lactation and lower estimates after the 16th fortnight. The LEG55_HE4, among the three better models indicated by the index, is the one with highest number of parameters (14 vs 34) and resulted in lower estimation of residual variance at the beginning and at the end of lactation, but overestimated heritability in the first fortnight and presented a greater difficulty to model genetic and permanent environment correlations among controls. Random regression models that used the Wilmink and Legendre polynomials functions with two residual variance classes appropriately described the genetic variation during lactation of Holstein Friesians reared in Rio Grande do Sul.
RESUMO: Objetivou-se comparar as funções de Wilmink e Ali e Schaeffer com polinômios de Legendre em modelos de regressão aleatória, utilizando variâncias residuais heterogêneas, para modelar parâmetros genéticos ao longo da primeira lactação na raça Holandesa. Foram utilizados cinco mil oitocentos e oitenta registros quinzenais de produção de leite no dia do controle. Os modelos incluíram os efeitos fixos de grupo de contemporâneos e a idade da vaca ao parto como covariável. Os critérios estatísticos apontaram as funções WF.33_HE2, LEG.33_HE2 e a LEG.55_HE4 como as melhores em descrever as mudanças nas variâncias que ocorrem ao longo da lactação. As herdabilidades estimadas pelos modelos WF.33_HE2 e LEG.33_HE2 foram semelhantes, variando de 0,31 a 0,50. O LEG.55_HE4 divergiu destes, no início da lactação, com estimativas superiores e, a partir da 16ª quinzena, com estimativas inferiores. O LEG55_HE4, entre os três melhores modelos indicados pelo índice, é o mais parametrizado (14 vs 34) e resultou em menores estimativas de variância residual no início e no final da lactação, mas superestimou a herdabilidade na primeira quinzena e apresentou maior dificuldade em modelar as correlações genéticas e de ambiente permanente entre os controles. Os modelos de regressão aleatória que usaram a função de Wilmink e Polinômios de Legendre com duas classes de variâncias residuais descreveram adequadamente a variação genética ao longo da lactação de vacas da raça Holandesa, criadas no Rio Grande do Sul.
RESUMO
Repeated measures from the same individual have been analyzed by using repeatability and finite dimension models under univariate or multivariate analyses. However, in the last decade, the use of random regression models for genetic studies with longitudinal data have become more common. Thus, the aim of this research was to estimate genetic parameters for body weight of four experimental chicken lines by using univariate random regression models. Body weight data from hatching to 84 days of age (n = 34,730) from four experimental free-range chicken lines (7P, Caipirão da ESALQ, Caipirinha da ESALQ and Carijó Barbado) were used. The analysis model included the fixed effects of contemporary group (gender and rearing system), fixed regression coefficients for age at measurement, and random regression coefficients for permanent environmental effects and additive genetic effects. Heterogeneous variances for residual effects were considered, and one residual variance was assigned for each of six subclasses of age at measurement. Random regression curves were modeled by using Legendre polynomials of the second and third orders, with the best model chosen based on the Akaike Information Criterion, Bayesian Information Criterion, and restricted maximum likelihood. Multivariate analyses under the same animal mixed model were also performed for the validation of the random regression models. The Legendre polynomials of second order were better for describing the growth curves of the lines studied. Moderate to high heritabilities (h(2) = 0.15 to 0.98) were estimated for body weight between one and 84 days of age, suggesting that selection for body weight at all ages can be used as a selection criteria. Genetic correlations among body weight records obtained through multivariate analyses ranged from 0.18 to 0.96, 0.12 to 0.89, 0.06 to 0.96, and 0.28 to 0.96 in 7P, Caipirão da ESALQ, Caipirinha da ESALQ, and Carijó Barbado chicken lines, respectively. Results indicate that genetic gain for body weight can be achieved by selection. Also, selection for body weight at 42 days of age can be maintained as a selection criterion.