Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
J Neural Eng ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39116893

RESUMO

OBJECTIVE: Temporal patterns in neuronal spiking encode stimulus uncertainty, and convey information about high-level functions such as memory and cognition. Estimating the associated information content and understanding how that evolves with time assume significance in the investigation of neuronal coding mechanisms and abnormal signaling. However, existing estimators of the entropy rate, a measure of information content, either ignore the inherent nonstationarity, or employ dictionary-based Lempel-Ziv (LZ) methods that converge too slowly for one to study temporal variations in sufficient detail. Against this backdrop, we seek estimates that handle nonstationarity, are fast converging, and hence allow meaningful temporal investigations. Approach: We proposed a homogeneous Markov model approximation of spike trains within windows of suitably chosen length and an entropy rate estimator based on empirical probabilities that converges quickly. Main results: We constructed mathematical families of nonstationary Markov processes with certain bi/multi-level properties (inspired by neuronal responses) with known entropy rates, and validated the proposed estimator against those. Further statistical validations were presented on data collected from hippocampal (and primary visual cortex) neuron populations in terms of single neuron behavior as well as population heterogeneity. Our estimator appears to be statistically more accurate and converges faster than existing LZ estimators, and hence well suited for temporal studies. Significance: The entropy rate analysis revealed not only informational and process memory heterogeneity among neurons, but distinct statistical patterns in neuronal populations (from two different brain regions) under basal and post-stimulus conditions. Taking inspiration, we envision future large-scale studies of different brain regions enabled by the proposed tool (estimator), potentially contributing to improved functional modeling of the brain and identification of statistical signatures of neurodegenerative diseases. .

2.
Sci Rep ; 14(1): 18599, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127843

RESUMO

Fault detection and isolation in unmanned aerial vehicle (UAV) propellers are critical for operational safety and efficiency. Most existing fault diagnosis techniques rely basically on traditional statistical-based methods that necessitate better approaches. This study explores the application of untraditional feature extraction methodologies, namely Permutation Entropy (PE), Lempel-Ziv Complexity (LZC), and Teager-Kaiser Energy Operator (TKEO), on the PADRE dataset, which encapsulates various rotor fault configurations. The extracted features were subjected to a Chi-Square (χ2) feature selection process to identify the most significant features for input into a Deep Neural Network. The Taguchi method was utilized to test the performance of the recorded features, correspondingly. Performance metrics, including Accuracy, F1-Score, Precision, and Recall, were employed to evaluate the model's effectiveness before and after the feature selection. The achieved accuracy has increased by 0.9% when compared with results utilizing traditional statistical methods. Comparative analysis with prior research reveals that the proposed untraditional features surpass traditional methods in diagnosing UAV propeller faults. It resulted in improved performance metrics with Accuracy, F1-Score, Precision, and Recall reaching 99.6%, 99.5%, 99.5%, and 99.5%, respectively. The results suggest promising directions for future research in UAV maintenance and safety protocols.

3.
Int J Geriatr Psychiatry ; 39(6): e6112, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837281

RESUMO

OBJECTIVES: People with Alzheimer's Disease (AD) experience changes in their level and content of consciousness, but there is little research on biomarkers of consciousness in pre-clinical AD and Mild Cognitive Impairment (MCI). This study investigated whether levels of consciousness are decreased in people with MCI. METHODS: A multi-site site magnetoencephalography (MEG) dataset, BIOFIND, comprising 83 people with MCI and 83 age matched controls, was analysed. Arousal (and drowsiness) was assessed by computing the theta-alpha ratio (TAR). The Lempel-Ziv algorithm (LZ) was used to quantify the information content of brain activity, with higher LZ values indicating greater complexity and potentially a higher level of consciousness. RESULTS: LZ was lower in the MCI group versus controls, indicating a reduced level of consciousness in MCI. TAR was higher in the MCI group versus controls, indicating a reduced level of arousal (i.e. increased drowsiness) in MCI. LZ was also found to be correlated with mini-mental state examination (MMSE) scores, suggesting an association between cognitive impairment and level of consciousness in people with MCI. CONCLUSIONS: A decline in consciousness and arousal can be seen in MCI. As cognitive impairment worsens, measured by MMSE scores, levels of consciousness and arousal decrease. These findings highlight how monitoring consciousness using biomarkers could help understand and manage impairments found at the preclinical stages of AD. Further research is needed to explore markers of consciousness between people who progress from MCI to dementia and those who do not, and in people with moderate and severe AD, to promote person-centred care.


Assuntos
Nível de Alerta , Disfunção Cognitiva , Magnetoencefalografia , Humanos , Disfunção Cognitiva/fisiopatologia , Feminino , Masculino , Idoso , Nível de Alerta/fisiologia , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Estado de Consciência/fisiologia , Doença de Alzheimer/fisiopatologia , Biomarcadores/análise , Algoritmos , Pessoa de Meia-Idade , Testes de Estado Mental e Demência
4.
Cogn Neurodyn ; 18(3): 1197-1207, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38826650

RESUMO

A data set of clinical studies of electroencephalogram recordings (EEG) following data acquisition protocols in control individuals (Eyes Closed Wakefulness - Eyes Open Wakefulness, Hyperventilation, and Optostimulation) are quantified with information theory metrics, namely permutation Shanon entropy and permutation Lempel Ziv complexity, to identify functional changes. This work implement Linear mixed-effects models (LMEMs) for confirmatory hypothesis testing. The results show that EEGs have high variability for both metrics and there is a positive correlation between them. The mean of permutation Lempel-Ziv complexity and permutation Shanon entropy used simultaneously for each of the four states are distinguishable from each other. However, used separately, the differences between permutation Lempel-Ziv complexity or permutation Shanon entropy of some states were not statistically significant. This shows that the joint use of both metrics provides more information than the separate use of each of them. Despite their wide use in medicine, LMEMs have not been commonly applied to simultaneously model metrics that quantify EEG signals. Modeling EEGs using a model that characterizes more than one response variable and their possible correlations represents a new way of analyzing EEG data in neuroscience.

5.
Entropy (Basel) ; 26(6)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38920512

RESUMO

We refine and extend Ziv's model and results regarding perfectly secure encryption of individual sequences. According to this model, the encrypter and the legitimate decrypter share a common secret key that is not shared with the unauthorized eavesdropper. The eavesdropper is aware of the encryption scheme and has some prior knowledge concerning the individual plaintext source sequence. This prior knowledge, combined with the cryptogram, is harnessed by the eavesdropper, who implements a finite-state machine as a mechanism for accepting or rejecting attempted guesses of the plaintext source. The encryption is considered perfectly secure if the cryptogram does not provide any new information to the eavesdropper that may enhance their knowledge concerning the plaintext beyond their prior knowledge. Ziv has shown that the key rate needed for perfect secrecy is essentially lower bounded by the finite-state compressibility of the plaintext sequence, a bound that is clearly asymptotically attained through Lempel-Ziv compression followed by one-time pad encryption. In this work, we consider some more general classes of finite-state eavesdroppers and derive the respective lower bounds on the key rates needed for perfect secrecy. These bounds are tighter and more refined than Ziv's bound, and they are attained using encryption schemes that are based on different universal lossless compression schemes. We also extend our findings to the case where side information is available to the eavesdropper and the legitimate decrypter but may or may not be available to the encrypter.

6.
Synthese ; 203(5): 154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706520

RESUMO

Natural language syntax yields an unbounded array of hierarchically structured expressions. We claim that these are used in the service of active inference in accord with the free-energy principle (FEP). While conceptual advances alongside modelling and simulation work have attempted to connect speech segmentation and linguistic communication with the FEP, we extend this program to the underlying computations responsible for generating syntactic objects. We argue that recently proposed principles of economy in language design-such as "minimal search" criteria from theoretical syntax-adhere to the FEP. This affords a greater degree of explanatory power to the FEP-with respect to higher language functions-and offers linguistics a grounding in first principles with respect to computability. While we mostly focus on building new principled conceptual relations between syntax and the FEP, we also show through a sample of preliminary examples how both tree-geometric depth and a Kolmogorov complexity estimate (recruiting a Lempel-Ziv compression algorithm) can be used to accurately predict legal operations on syntactic workspaces, directly in line with formulations of variational free energy minimization. This is used to motivate a general principle of language design that we term Turing-Chomsky Compression (TCC). We use TCC to align concerns of linguists with the normative account of self-organization furnished by the FEP, by marshalling evidence from theoretical linguistics and psycholinguistics to ground core principles of efficient syntactic computation within active inference.

7.
J Affect Disord ; 356: 105-114, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38580036

RESUMO

BACKGROUND: Seeking objective quantitative indicators is important for accurately recognizing major depressive disorder (MDD). Lempel-Ziv complexity (LZC), employed to characterize neurological disorders, faces limitations in tracking dynamic changes in EEG signals due to defects in the coarse-graining process, hindering its precision for MDD objective quantitative indicators. METHODS: This work proposed Adaptive Permutation Lempel-Ziv Complexity (APLZC) and Adaptive Weighted Permutation Lempel-Ziv Complexity (AWPLZC) algorithms by refining the coarse-graining process and introducing weight factors to effectively improve the precision of LZC in characterizing EEGs and further distinguish MDD patients better. APLZC incorporated the ordinal pattern, while False Nearest Neighbor and Mutual Information algorithms were introduced to determine and adjust key parameters adaptively. Furthermore, we proposed AWPLZC by assigning different weights to each pattern based on APLZC. Thirty MDD patients and 30 healthy controls (HCs) were recruited and their 64-channel resting EEG signals were collected. The complexities of gamma oscillations were then separately computed using LZC, APLZC, and AWPLZC algorithms. Subsequently, a multi-channel adaptive K-nearest neighbor model was constructed for identifying MDD patients and HCs. RESULTS: LZC, APLZC, and AWPLZC algorithms achieved accuracy rates of 78.29 %, 90.32 %, and 95.13 %, respectively. Sensitivities reached 67.96 %, 85.04 %, and 98.86 %, while specificities were 88.62 %, 95.35 %, and 89.92 %, respectively. Notably, AWPLZC achieved the best performance in accuracy and sensitivity, with a specificity limitation. LIMITATION: The sample size is relatively small. CONCLUSION: APLZC and AWPLZC algorithms, particularly AWPLZC, demonstrate superior effectiveness in differentiating MDD patients from HCs compared with LZC. These findings hold significant clinical implications for MDD diagnosis.


Assuntos
Algoritmos , Transtorno Depressivo Maior , Eletroencefalografia , Humanos , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/diagnóstico , Adulto , Feminino , Masculino , Processamento de Sinais Assistido por Computador , Pessoa de Meia-Idade , Estudos de Casos e Controles , Sensibilidade e Especificidade
8.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38471778

RESUMO

Nonoscillatory measures of brain activity such as the spectral slope and Lempel-Ziv complexity are affected by many neurological disorders and modulated by sleep. A multitude of frequency ranges, particularly a broadband (encompassing the full spectrum) and a narrowband approach, have been used especially for estimating the spectral slope. However, the effects of choosing different frequency ranges have not yet been explored in detail. Here, we evaluated the impact of sleep stage and task engagement (resting, attention, and memory) on slope and complexity in a narrowband (30-45 Hz) and broadband (1-45 Hz) frequency range in 28 healthy male human subjects (21.54 ± 1.90 years) using a within-subject design over 2 weeks with three recording nights and days per subject. We strived to determine how different brain states and frequency ranges affect slope and complexity and how the two measures perform in comparison. In the broadband range, the slope steepened, and complexity decreased continuously from wakefulness to N3 sleep. REM sleep, however, was best discriminated by the narrowband slope. Importantly, slope and complexity also differed between tasks during wakefulness. While narrowband complexity decreased with task engagement, the slope flattened in both frequency ranges. Interestingly, only the narrowband slope was positively correlated with task performance. Our results show that slope and complexity are sensitive indices of brain state variations during wakefulness and sleep. However, the spectral slope yields more information and could be used for a greater variety of research questions than Lempel-Ziv complexity, especially when a narrowband frequency range is used.


Assuntos
Eletroencefalografia , Vigília , Humanos , Masculino , Eletroencefalografia/métodos , Sono , Encéfalo , Atenção
9.
Epilepsy Res ; 201: 107333, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422800

RESUMO

BACKGROUND: This study aimed to construct prediction models for the recognizing of anxiety disorders (AD) in patients with epilepsy (PWEs) by combining clinical features with quantitative electroencephalogram (qEEG) features and using machine learning (ML). METHODS: Nineteen clinical features and 20-min resting-state EEG were collected from 71 PWEs comorbid with AD and another 60 PWEs without AD who met the inclusion-exclusion criteria of this study. The EEG were preprocessed and 684 Phase Locking Value (PLV) and 76 Lempel-Ziv Complexity (LZC) features on four bands were extracted. The Fisher score method was used to rank all the derived features. We constructed four models for recognizing AD in PWEs, whether PWEs based on different combinations of features using eXtreme gradient boosting (XGboost) and evaluated these models using the five-fold cross-validation method. RESULTS: The prediction model constructed by combining the clinical, PLV, and LZC features showed the best performance, with an accuracy of 96.18%, precision of 94.29%, sensitivity of 98.33%, F1-score of 96.06%, and Area Under the Curve (AUC) of 0.96. The Fisher score ranking results displayed that the top ten features were depression, educational attainment, α_P3LZC, α_T6-PzPLV, α_F7LZC, ß_Fp2-O1PLV, θ_T4-CzPLV, θ_F7-PzPLV, α_Fp2LZC, and θ_T4-PzPLV. CONCLUSIONS: The model, constructed by combining the clinical and qEEG features PLV and LZC, efficiently identified the presence of AD comorbidity in PWEs and might have the potential to complement the clinical diagnosis. Our findings suggest that LZC features in the α band and PLV features in Fp2-O1 may be potential biomarkers for diagnosing AD in PWEs.


Assuntos
Ansiedade , Epilepsia , Humanos , Ansiedade/diagnóstico , Ansiedade/epidemiologia , Transtornos de Ansiedade/diagnóstico , Transtornos de Ansiedade/epidemiologia , Comorbidade , Epilepsia/diagnóstico , Epilepsia/epidemiologia , Eletroencefalografia , Aprendizado de Máquina
10.
Brain Res ; 1824: 148662, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37924926

RESUMO

OBJECTIVE: Anxiety disorders (AD) are critical factors that significantly (about one-fifth) impact the quality of life (QoL) in patients with epilepsy (PWE). Objective diagnostic methods have contributed to the identification of PWE susceptible to AD. This study aimed to identify AD in PWE by constructing a diagnostic model based on the phase locking value (PLV) and Lempel-Ziv Complexity (LZC) features of the electroencephalogram (EEG). METHODS: EEG data from 131 patients with epilepsy (PWE) were enrolled in this study. Patients were divided into two groups, anxiety disorder (AD, n = 61) and non-anxiety disorder (NAD, n = 70), according to the Hamilton Rating Scale for Anxiety (HAM-A). Support vector machine (SVM) and K-Nearest-Neighbor(KNN) algorithms were used to construct three models - the PLVEEG, LZCEEG, and PLVEEG + LZCEEG feature models. Finally, the area under the receiver operating characteristic curve (AUC) and statistical analyses were performed to evaluate the model performance. RESULTS: The efficiency of the KNN-based PLCEEG + LZCEEG feature model was the best, and the accuracy, precision, recall, F1-score, and AUC of the model after five-fold cross-validations scores were 87.89 %, 82.27 %, 98.33 %, 88.95 %, and 0.89, respectively. When the model efficiency was optimal, 29 EEG features were suggested. Further analysis of these features indicated 22 EEG features that were significantly different between the two groups, including 50 % features of the alpha (α)-band. CONCLUSIONS: The PLVEEG + LZCEEG model features can identify AD in PWE. The PLVEEG and LZCEEG characteristics of the α-band may further be explored as potential biomarkers for AD in PWE.


Assuntos
Epilepsia , Qualidade de Vida , Humanos , Epilepsia/diagnóstico , Ansiedade/diagnóstico , Transtornos de Ansiedade , Eletroencefalografia/métodos
11.
J Neural Eng ; 20(6)2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38055962

RESUMO

Objective.General anesthesia (GA) can induce reversible loss of consciousness. Nonetheless, the electroencephalography (EEG) characteristics of patients with minimally consciousness state (MCS) during GA are seldom observed.Approach.We recorded EEG data from nine MCS patients during GA. We used the permutation Lempel-Ziv complexity (PLZC), permutation fluctuation complexity (PFC) to quantify the type I and II complexities. Additionally, we used permutation cross mutual information (PCMI) and PCMI-based brain network to investigate functional connectivity and brain networks in sensor and source spaces.Main results.Compared to the preoperative resting state, during the maintenance of surgical anesthesia state, PLZC decreased (p< 0.001), PFC increased (p< 0.001) and PCMI decreased (p< 0.001) in sensor space. The results for these metrics in source space are consistent with sensor space. Additionally, node network indicators nodal clustering coefficient (NCC) (p< 0.001) and nodal efficiency (NE) (p< 0.001) decreased in these two spaces. Global network indicators normalized average path length (Lave/Lr) (p< 0.01) and modularity (Q) (p< 0.05) only decreased in sensor space, while the normalized average clustering coefficient (Cave/Cr) and small-world index (σ) did not change significantly. Moreover, the dominance of hub nodes is reduced in frontal regions in these two spaces. After recovery of consciousness, PFC decreased in the two spaces, while PLZC, PCMI increased. NCC, NE, and frontal region hub node dominance increased only in the sensor space. These indicators did not return to preoperative levels. In contrast, global network indicatorsLave/LrandQwere not significantly different from the preoperative resting state in sensor space.Significance.GA alters the complexity of the EEG, decreases information integration, and is accompanied by a reconfiguration of brain networks in MCS patients. The PLZC, PFC, PCMI and PCMI-based brain network metrics can effectively differentiate the state of consciousness of MCS patients during GA.


Assuntos
Encéfalo , Estado Vegetativo Persistente , Humanos , Eletroencefalografia/métodos , Estado de Consciência , Anestesia Geral
12.
Biophys Rev ; 15(5): 1367-1378, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37974990

RESUMO

We review current methods and bioinformatics tools for the text complexity estimates (information and entropy measures). The search DNA regions with extreme statistical characteristics such as low complexity regions are important for biophysical models of chromosome function and gene transcription regulation in genome scale. We discuss the complexity profiling for segmentation and delineation of genome sequences, search for genome repeats and transposable elements, and applications to next-generation sequencing reads. We review the complexity methods and new applications fields: analysis of mutation hotspots loci, analysis of short sequencing reads with quality control, and alignment-free genome comparisons. The algorithms implementing various numerical measures of text complexity estimates including combinatorial and linguistic measures have been developed before genome sequencing era. The series of tools to estimate sequence complexity use compression approaches, mainly by modification of Lempel-Ziv compression. Most of the tools are available online providing large-scale service for whole genome analysis. Novel machine learning applications for classification of complete genome sequences also include sequence compression and complexity algorithms. We present comparison of the complexity methods on the different sequence sets, the applications for gene transcription regulatory regions analysis. Furthermore, we discuss approaches and application of sequence complexity for proteins. The complexity measures for amino acid sequences could be calculated by the same entropy and compression-based algorithms. But the functional and evolutionary roles of low complexity regions in protein have specific features differing from DNA. The tools for protein sequence complexity aimed for protein structural constraints. It was shown that low complexity regions in protein sequences are conservative in evolution and have important biological and structural functions. Finally, we summarize recent findings in large scale genome complexity comparison and applications for coronavirus genome analysis.

13.
Entropy (Basel) ; 25(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37372189

RESUMO

Marine background noise (MBN) is the background noise of the marine environment, which can be used to invert the parameters of the marine environment. However, due to the complexity of the marine environment, it is difficult to extract the features of the MBN. In this paper, we study the feature extraction method of MBN based on nonlinear dynamics features, where the nonlinear dynamical features include two main categories: entropy and Lempel-Ziv complexity (LZC). We have performed single feature and multiple feature comparative experiments on feature extraction based on entropy and LZC, respectively: for entropy-based feature extraction experiments, we compared feature extraction methods based on dispersion entropy (DE), permutation entropy (PE), fuzzy entropy (FE), and sample entropy (SE); for LZC-based feature extraction experiments, we compared feature extraction methods based on LZC, dispersion LZC (DLZC) and permutation LZC (PLZC), and dispersion entropy-based LZC (DELZC). The simulation experiments prove that all kinds of nonlinear dynamics features can effectively detect the change of time series complexity, and the actual experimental results show that regardless of the entropy-based feature extraction method or LZC-based feature extraction method, they both present better feature extraction performance for MBN.

14.
J Neurol ; 270(8): 3958-3969, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37138179

RESUMO

Neural oscillations and signal complexity have been widely studied in neurodegenerative diseases, whereas aperiodic activity has not been explored yet in those disorders. Here, we assessed whether the study of aperiodic activity brings new insights relating to disease as compared to the conventional spectral and complexity analyses. Eyes-closed resting-state electroencephalography (EEG) was recorded in 21 patients with dementia with Lewy bodies (DLB), 28 patients with Parkinson's disease (PD), 27 patients with mild cognitive impairment (MCI) and 22 age-matched healthy controls. Spectral power was differentiated into its oscillatory and aperiodic components using the Irregularly Resampled Auto-Spectral Analysis. Signal complexity was explored using the Lempel-Ziv algorithm (LZC). We found that DLB patients showed steeper slopes of the aperiodic power component with large effect sizes compared to the controls and MCI and with a moderate effect size compared to PD. PD patients showed steeper slopes with a moderate effect size compared to controls and MCI. Oscillatory power and LZC differentiated only between DLB and other study groups and were not sensitive enough to detect differences between PD, MCI, and controls. In conclusion, both DLB and PD are characterized by alterations in aperiodic dynamics, which are more sensitive in detecting disease-related neural changes than the traditional spectral and complexity analyses. Our findings suggest that steeper aperiodic slopes may serve as a marker of network dysfunction in DLB and PD features.


Assuntos
Disfunção Cognitiva , Doença por Corpos de Lewy , Doença de Parkinson , Humanos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/diagnóstico
15.
Sensors (Basel) ; 23(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37112384

RESUMO

The quantitative diagnosis of rolling bearings is essential to automating maintenance decisions. Over recent years, Lempel-Ziv complexity (LZC) has been widely used for the quantitative assessment of mechanical failures as one of the most valuable indicators for detecting dynamic changes in nonlinear signals. However, LZC focuses on the binary conversion of 0-1 code, which can easily lose some effective information about the time series and cannot fully mine the fault characteristics. Additionally, the immunity of LZC to noise cannot be insured, and it is difficult to quantitatively characterize the fault signal under strong background noise. To overcome these limitations, a quantitative bearing fault diagnosis method based on the optimized Variational Modal Decomposition Lempel-Ziv complexity (VMD-LZC) was developed to fully extract the vibration characteristics and to quantitatively characterize the bearing faults under variable operating conditions. First, to compensate for the deficiency that the main parameters of the variational modal decomposition (VMD) have to be selected by human experience, a genetic algorithm (GA) is used to optimize the parameters of the VMD and adaptively determine the optimal parameters [k, α] of the bearing fault signal. Furthermore, the IMF components that contain the maximum fault information are selected for signal reconstruction based on the Kurtosis theory. The Lempel-Ziv index of the reconstructed signal is calculated and then weighted and summed to obtain the Lempel-Ziv composite index. The experimental results show that the proposed method is of high application value for the quantitative assessment and classification of bearing faults in turbine rolling bearings under various operating conditions such as mild and severe crack faults and variable loads.

16.
J Bioinform Syst Biol ; 6(1): 10-17, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033694

RESUMO

Tissue culture environment liberates cells fromordinary laws of multi-cellular organisms. This liberation enables cells several behaviors, such as proliferation, dedifferentiation, acquisition of pluripotency, immortalization, and reprogramming. Recently, the quantitative value of cellular dedifferentiation and differentiation was defined as "liberality", which is measurable as Shannon entropy of numerical transcriptome data and Lempel-Zip complexity of nucleotide sequence transcriptome data. The increasing liberality induced by the culture environment had first been observed in animal cells and had reconfirmed in plant cells.The phenomena may be common across the kingdom, also in a social amoeba. We measured the liberality of the social amoeba which disaggregated from multicellular aggregates and transferred into a liquid medium.

17.
BMC Neurol ; 23(1): 140, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013466

RESUMO

BACKGROUND AND OBJECTIVE: Electroencephalography (EEG) and neuroimaging measurements have been highly encouraged to be applied in clinics of disorders of consciousness (DOC) to improve consciousness detection. We tested the relationships between neural complexity measured on EEG and residual consciousness levels in DOC patients. METHODS: Resting-state EEG was recorded from twenty-five patients with DOC. Lempel-Ziv complexity (LZC) and permutation Lempel-Ziv complexity (PLZC) were measured on the EEG, and their relationships were analyzed with the consciousness levels of the patients. RESULTS: PLZC and LZC values significantly distinguished patients with a minimally conscious state (MCS), vegetative state/unresponsive wakefulness syndrome (VS/UWS), and healthy controls. PLZC was significantly correlated with the Coma Recovery Scale-Revised (CRS-R) scores of DOC patients in the global brain, particularly in electrodes locating in the anterior and posterior brain regions. Patients with higher CRS-R scores showed higher PLZC values. The significant difference in PLZC values between MCS and VS/UWS was mainly located in the bilateral frontal and right hemisphere regions. CONCLUSION: Neural complexity measured on EEG correlates with residual consciousness levels of DOC patients. PLZC showed higher sensitivity than LZC in the classification of consciousness levels.


Assuntos
Transtornos da Consciência , Estado de Consciência , Humanos , Transtornos da Consciência/diagnóstico , Encéfalo/diagnóstico por imagem , Estado Vegetativo Persistente/diagnóstico , Coma , Eletroencefalografia/métodos
18.
Epileptic Disord ; 25(3): 331-342, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36938881

RESUMO

AIM: To analyze whether the Lempel-Ziv Complexity (LZC) in quantitative electroencephalogram differs between the temporal lobe epilepsy (TLE) patients with or without cognitive impairment (CI) and explore the diagnostic value of LZC for identifying CI in TLE patients. METHODS: Twenty-two clinical features and 20-min EEG recordings were collected from 48 TLE patients with CI and 27 cognitively normal (CON) TLE patients. Seventy-six LZC features were calculated for 19 leads in four frequency bands (alpha, beta, delta, and theta). The clinical and LZC features were compared between the two groups. A support vector machine (SVM) was subsequently constructed using the leave-one-out method of cross-validation for LZC features with statistical differences. RESULTS: Regarding the clinical features, the level of education (p < .001), hippocampal atrophy and sclerosis (p = .029), and depression (p = .037) were statistically different between the two groups. For the LZC features, there were statistically significant differences in the alpha (Fp1, Fz, Cz, Pz, C3, C4, T3, T4, T5, T6, F3, F4, F7, F8, O1, and O2), beta (Fp2), and theta (F7) oscillations. The mean LZC in the alpha band was higher in the TLE-CI group than that in the CON group, and there were no differences in the remaining bands. The SVM model showed 74.51% accuracy, 79.63% sensitivity, 84.30% F1 score, 68.75% specificity, and .85 area under the curve scores. CONCLUSIONS: The LZC in the alpha band might have the potential to be used as a biomarker for the diagnosis of TLE combined with CI. The TLE-CI group, on the other hand, exhibited a higher degree of complexity in alpha oscillations, which were widespread and occurred in all brain regions.


Assuntos
Disfunção Cognitiva , Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/diagnóstico , Eletroencefalografia/métodos , Encéfalo , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia
19.
Am J Physiol Heart Circ Physiol ; 324(4): H461-H469, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36735403

RESUMO

The utility of rodents for research related to atrial fibrillation (AF) is growing exponentially. However, the obtained arrhythmic waveforms are often mixed with ventricular signals and the ability to analyze regularity and complexity of such events is limited. Recently, we introduced an implantable quadripolar electrode adapted for advanced atrial electrophysiology in ambulatory rats. Notably, we have found that the implantation itself leads to progressive atrial remodeling, presumably because of mechanical loading of the atria. In the present study, we developed an algorithm to clean the atrial signals from ventricular mixing and thereafter quantify the AF substrate in an objective manner based on waveform complexity. Rats were sequentially examined 1-, 4-, and 8-wk postelectrode implantation using a standard AF triggering protocol. Preburst ventricular mixing was sampled and automatically subtracted based on QRS detection in the ECG. Thereafter, the "pure" atrial signals were analyzed by Lempel-Ziv complexity algorithm and a complexity ratio (CR) was defined for each signal by normalizing the postburst to the preburst values. Receiver operating characteristic (ROC) curve analysis indicated an optimal CR cutoff of 1.236 that detected irregular arrhythmic events with high sensitivity (94.5%), specificity (93.1%), and area under the curve (AUC) (0.96, 95% confidence interval, 0.945-0.976). Automated and unbiased analysis indicated a gradual increase in signal complexity over time with augmentation of high frequencies in power spectrum analysis. Our findings indicate that CR algorithm detects irregularity in a highly efficient manner and can also detect the atrial remodeling induced by electrode implantation. Thus, CR analysis can strongly facilitate standardized AF research in rodents.NEW & NOTEWORTHY Rodents are increasingly used in AF research. However, because of technical difficulties including atrial waveform mixing by ventricular signals, most studies do not discriminate between irregular (i.e., AF) and regular atrial arrhythmias. Here, we develop an unbiased computerized tool to "pure" the atrial signals from ventricular mixing and thereafter analyze AF substrate based on the level of irregularity in an objective manner. This novel tool can facilitate standardized AF research in rodents.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Ratos , Animais , Fibrilação Atrial/diagnóstico , Átrios do Coração , Algoritmos , Eletrodos Implantados , Eletrocardiografia/métodos
20.
ISA Trans ; 133: 273-284, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35811158

RESUMO

Dispersion Lempel-Ziv complexity (DLZC) and multiscale DLZC (MDLZC) are very recently introduced complexity indicators to quantify the dynamic change of time series in acoustics signals. They introduce the mapping steps of dispersion entropy (DE), which can effectively identify time series with different characteristics, but ignore the fluctuation information and have poor stability. In order to overcome these shortcomings, this paper firstly adds fluctuation information to DLZC and proposes fluctuation-based DLZC (FDLZC) as an alternative to the classical time series complexity index, followed by introducing an improved coarse-graining operation to propose the refined composite multiscale FDLZC (RCMFDLZC), which increases the number of features and also ensures the stability of FDLZC, and finally select the subsequence containing the most information by the minimum redundancy maximum relevance (mRMR) feature selection algorithm for subsequent experiments. The experimental results show that the extracted RCMFDLZC features have the strongest separability and better clustering effect in both bearing fault signals and ship radiated noise signals, and the RCMFDLZC-based signal analysis method also has higher recognition rate compared with other methods in bearing fault diagnosis and ship signal classification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA