Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e27352, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38496865

RESUMO

Lianhua Qingwen capsule is a famous traditional Chinese medicine (TCM) prescription that is widely used for the treatment of respiratory diseases in China. To facilitate in-depth and global characterization of the chemical constituents of Lianhua Qingwen capsule, a profiling method based on ultra-high performance liquid chromatography coupled with Fourier transform ion cyclotron resonance mass spectrometry (UHPLC-FT-ICR-MS) was applied in both positive and negative ion modes for the comprehensive characterization of the chemical profiles of Lianhua Qingwen capsule. A total of 596 compounds were identified or tentatively characterized, including 137 flavonoids, 46 phenylpropanoids, 43 phenylethanoid glycosides, 145 terpenoids, 83 organic acids and their derivatives, 15 quinones, 39 alkaloids, 32 alcohol glycosides and 56 other compounds. Thus, this results widely extended and enriched the chemical constituents of Lianhua Qingwen capsule, which will provide comprehensive and valuable information for its quality control and further pharmacological study, facilitate understanding the effective substance and pharmacodynamic material basis, thereby providing a solid foundation for further development of the Lianhuaqingwen capsule.

2.
Chin Med ; 19(1): 15, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263035

RESUMO

BACKGROUND: COVID-19 is continuing to ravage globally and has resulted in a huge health and financial burden. Chinese proprietary medicines, such as Lianhua Qingwen (LHQW) and Huoxiang Zhengqi (HXZQ) capsules, have been recommended for non-high-risk patients with COVID-19 in China. Based on this, we described the baseline information, using status of LHQW and HXZQ capsules and inoculation history of quarantined patients in the second half of 2022 in Macao. Additionally, we analyzed the underlying association among medicines administration, vaccination and COVID-19 indices, in order to explore novel clues for the regular control and prevention of local epidemic situation in the future. METHODS: A total of 976 patients in Macao quarantine hotels from June to August 2022 were included in the present study, of which, 857 subjects were followed-up for prognosis evaluation. During quarantine, the baseline demographic information, including sex, age, BMI, occupation and personal habits were collected. Additionally, the inoculation history, medicine employment status and cycle threshold (Ct) values were also reported. We interviewed the patients for collection of their symptoms at the beginning and end of quarantine, as well as prognostic ones. Basic statistical description of baseline information, vaccination history and medication were displayed. Chi-squared test or with continuous correction test was employed for comparison of dichotomous data between two or multiple groups. Binary logistic regression was applied to reveal the correlation between potential risk factors and Ct values or prognosis symptoms. We also used Cox regression model to identify the effect of different types of vaccine products on Ct value altering rate. RESULTS: Patients who were female (52.0%), engaged in service industry (31.8%), from Macao native (65.8%), never took physical exercises (33.6%) and preferred irritated diet (59.5%) enjoyed more dominant proportions. Over 80% of participants were inoculated and 74.6% of them chose inactivated COVID-19 vaccine produced by China National Biotech Group (CNBG). Participants used LHQW capsules accounted for 92.1% and the duration of medicating lasted for one to two weeks. All of the reported symptoms were significantly ameliorated after quarantine and the duration of quarantine was concentrated on 21 days. People with different age, sex, occupation and region had different choices of HXZQ administration and vaccination. Additionally, middle dose (4-5 boxes) of LHQW capsules exhibited evidently negative association with positive Ct values (adjusted, - 0.037 ± 0.19, p = 0.04). Two doses of CNBG and one dose of mRNA vaccine had obvious protective effect on reducing Ct positive rate (p = 0.041). Meanwhile, symptoms after quarantine were significantly positive correlated with those in prognosis (adjusted, 1.38 ± 0.18, p < 0.0001). CONCLUSION: Our study found that the administration of LHQW capsules was beneficial for Ct value turning negative, meanwhile, certain mixed inoculation may be the promoting factor to reduce the positive rate of Ct value. These findings provide data basis for the Chinese proprietary medicine treatment and mixed vaccination applying for prevention and control of local COVID-19 epidemic in the future.

3.
Chin J Nat Med ; 21(5): 383-400, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37245876

RESUMO

The COVID-19 pandemic has resulted in excess deaths worldwide. Conventional antiviral medicines have been used to relieve the symptoms, with limited therapeutic effect. In contrast, Lianhua Qingwen Capsule is reported to exert remarkable anti-COVID-19 effect. The current review aims to: 1) uncover the main pharmacological actions of Lianhua Qingwen Capsule for managing COVID-19; 2) verify the bioactive ingredients and pharmacological actions of Lianhua Qingwen Capsule by network analysis; 3) investigate the compatibility effect of major botanical drug pairs in Lianhua Qingwen Capsule; and 4) clarify the clinical evidence and safety of the combined therapy of Lianhua Qingwen Capsule and conventional drugs. Numerous bioactive ingredients in Lianhu Qingwen, such as quercetin, naringenin, ß-sitosterol, luteolin, and stigmasterol, were identified to target host cytokines, and to regulate the immune defence in response to COVID-19. Genes including androgen receptor (AR), myeloperoxidase (MPO), epidermal growth factor receptor (EGFR), insulin (INS), and aryl hydrocarbon receptor (AHR) were found to be significantly involved in the pharmacological actions of Lianhua Qingwen Capsule against COVID-19. Four botanical drug pairs in Lianhua Qingwen Capsule were shown to have synergistic effect for the treatment of COVID-19. Clinical studies demonstrated the medicinal effect of the combined use of Lianhua Qingwen Capsule and conventional drugs against COVID-19. In conclusion, the four main pharmacological mechanisms of Lianhua Qingwen Capsule for managing COVID-19 are revealed. Therapeutic effect has been noted against COVID-19 in Lianhua Qingwen Capsule.


Assuntos
COVID-19 , Medicamentos de Ervas Chinesas , Humanos , Pandemias , Medicamentos de Ervas Chinesas/uso terapêutico , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19
4.
Chin Herb Med ; 15(2): 157-168, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37220535

RESUMO

The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with high pathogenicity and infectiousness has become a sudden and lethal pandemic worldwide. Currently, there is no accepted specific drug for COVID-19 treatment. Therefore, it is extremely urgent to clarify the pathogenic mechanism and develop effective therapies for patients with COVID-19. According to several reliable reports from China, traditional Chinese medicine (TCM), especially for three Chinese patent medicines and three Chinese medicine formulas, has been demonstrated to effectively alleviate the symptoms of COVID-19 either used alone or in combination with Western medicines. In this review, we systematically summarized and analyzed the pathogenesis of COVID-19, the detailed clinical practice, active ingredients investigation, network pharmacology prediction and underlying mechanism verification of three Chinese patent medicines and three Chinese medicine formulas in the COVID-19 combat. Additionally, we summarized some promising and high-frequency drugs of these prescriptions and discussed their regulatory mechanism, which provides guidance for the development of new drugs against COVID-19. Collectively, by addressing critical challenges, for example, unclear targets and complicated active ingredients of these medicines and formulas, we believe that TCM will represent promising and efficient strategies for curing COVID-19 and related pandemics.

5.
Front Microbiol ; 13: 1035941, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504796

RESUMO

Objective: Lianhua Qingwen capsule (LHQW) can attenuate lung injury caused by influenza virus infection. However, it is unclear whether the intestinal microbiota plays a role in LHQW activity in ameliorating viral infectious pneumonia. This study aimed to investigate the role of intestinal microbiota in LHQW activity in ameliorating viral infectious pneumonia and its possible mechanisms. Research design and methods: A mouse model of influenza A viral pneumonia was established by intranasal administration in BALB/c mice. Detection of influenza virus in the lungs, pathological examination of the lungs and small intestine, and biochemical detection of inflammatory indices were performed. The effects of LHQW on intestinal microbiota were evaluated by 16S rRNA gene sequencing. The key components and targets of LHQW were screened via network pharmacology and verified through molecular docking, molecular dynamics simulation, and free binding energy calculations. Results: Body weight decreased, inflammatory factor levels were disturbed, and the lung and intestinal mucosal barriers were significantly injured in the infected group. The alpha diversity of the intestinal microbiota decreased, and the abundance of Bacteroidetes, Muribaculaceae_unclassified, and Streptococcus decreased significantly. LHQW treatment reduced the viral load in the lungs, rescued body weight and survival, alleviated lung and intestinal mucosal barrier injury, reversed the reduction in the intestinal microbiota alpha diversity, and significantly increased the abundance of Bacteroidetes and Muribaculaceae. Network pharmacological analysis showed that six active herbal medicinal compounds from LHQW could regulate the intestinal microbiota and inhibit the immune-inflammatory response through the Toll-like receptor (TLR) and nuclear factor-κB (NF-κB) signalling pathways in the lungs. Conclusion: These results suggest that LHQW is effective for treating influenza A virus infectious pneumonia, and the mechanism is associated with the regulation of the TLR4/NF-κB signalling pathway in the lungs by restoring intestinal microbiota and repairing the intestinal wall.

6.
Biomed Pharmacother ; 142: 111998, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34385103

RESUMO

Lianhua-Qingwen capsule (LQC) is a commonly used Traditional Chinese Medicine (TCM) in China and has 11 herb components. The main active ingredient can target specific molecules and perform many clinic treatment roles. LQC has been authorized by National Medical Products Administration (NMPA) of China to treat severe acute respiratory syndrome (SARS) in 2002-2003, type A influenza virus HIN1 pandemic in 2009, H7N9, H3N2 and coronavirus disease-19 (COVID19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) in 2020. It is also widely used to treat common cold with wind-heat syndrome, chronic rhinosinusitis (CRS), amygdalitis and chronic obstructive pulmonary disease. This article summarizes the advanced research progress of LQC in clinical application, mechanisms and provides new clues in the clinical application of LQC.


Assuntos
Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Cápsulas , Humanos , Medicina Tradicional Chinesa/métodos , Pesquisa Farmacêutica
7.
Front Pharmacol ; 12: 648439, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177573

RESUMO

Influenza is a common respiratory infectious disease. In China, Lianhua Qingwen capsule (LHQWC), a drug with significant clinical efficacy and few side effects, is commonly used to treat influenza. However, the composition of LHQWC is complicated, and currently used quality control methods cannot ensure its consistency. In this study, combined with its clinical efficacy, the targets of LHQWC were screened using network pharmacology. Then, anti-inflammation quality markers of LHQWC were screened and judged by combined chemical with biological evaluation. Cyclooxygenase-2 (COX-2) was identified as one of the main targets of the anti-inflammatory activity of LHQWC. The rate of inhibition of COX-2 by different batches of LHQWC was determined. Furthermore, seven components of LHQWC were identified. The potential quality markers were screened by spectral-effect relationship. As a result, chlorogenic acid, isochlorogenic acid B, and isochlorogenic acid C were identified and confirmed as anti-inflammatory quality markers of LHQWC. We hope that these findings provide a scientific basis for the accurate quality control of LHQWC and serve as a reference for the quality control of other drugs.

8.
Nan Fang Yi Ke Da Xue Xue Bao ; 41(1): 20-30, 2021 Jan 30.
Artigo em Chinês | MEDLINE | ID: mdl-33509749

RESUMO

OBJECTIVE: To explore the potential targets, signal pathways and biological functions that mediate the effect of Lianhua Qingwen capsule in improving clinical cure rate of COVID-19 in light of network pharmacology and molecular docking technology. METHODS: TCMSP, Target, Prediction, CooLGeN, GeneCards, DAVID and other databases were searched for the active components and their target proteins from 13 herbs including Forsythia, Honeysuckle and roasted Ephedra used in Lianhua Qingwen capsule. The common target proteins, signal pathways and biological functions shared by these components and the clinical manifestations of COVID-19 (fever, cough, and fatigue) were identified to construct the network consisting of the component drugs in Lianhua Qingwen capsule, the active ingredients of, their targets of action, and the biological functions involved using Gephi software. RESULTS: A total 160 active components including MOL000522, and MOL003283, MOL003365, MOL003006, MOL003014 in 13 component drugs in Lianhua Qingwen capsule produced therapeutic effects against COVID-19 through 57 target proteins including MAPK1, IL6, HSP90AA1, TNF, and CCL2, involving 35 signaling pathways including NOD-like receptor signaling pathway and Toll-like receptor signaling pathway. The results of molecular docking showed that 83 chemical components had total scores no less than 5.0 for docking with 12 target proteins (including MAPK1, IL6, and HSP90AA1) with high binding activities to form stable conformations. The binding of MOL000522, MOL004989, and MOL003330 with MAPK1; MOL001495 and MOL001494 with NLRP3; MOL004908, MOL004863 and MOL004806 with HSP90AA1; MOL001749 with TLR9; and MOL001495 with AKT1 all had total scores exceeding 9.0. CONCLUSIONS: Lianhua Qingwen capsule contains multiple effective ingredients to improve clinical cure rate of COVID-19, and its therapeutic effect is mediated by multiple protein targets, signal pathways and biological functions.


Assuntos
COVID-19 , Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2 , Tecnologia
9.
J Pharm Anal ; 11(6): 709-716, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35028175

RESUMO

The Lianhua Qingwen (LHQW) capsule is a popular traditional Chinese medicine for the treatment of viral respiratory diseases. In particular, it has been recently prescribed to treat infections caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, due to its complex composition, little attention has been directed toward the analysis of chemical constituents present in the LHQW capsule. This study presents a reliable and comprehensive approach to characterizing the chemical constituents present in LHQW by high-performance liquid chromatography-Q Exactive-Orbitrap mass spectrometry (HPLC-Q Exactive-Orbitrap-MS) coupled with gas chromatography-mass spectrometry (GC-MS). An automated library alignment method with a high mass accuracy (within 5 ppm) was used for the rapid identification of compounds. A total of 104 compounds, consisting of alkaloids, flavonoids, phenols, phenolic acids, phenylpropanoids, quinones, terpenoids, and other phytochemicals, were successfully characterized. In addition, the fragmentation pathways and characteristic fragments of some representative compounds were elucidated. GC-MS analysis was conducted to characterize the volatile compounds present in LHQW. In total, 17 compounds were putatively characterized by comparing the acquired data with that from the NIST library. The major constituent was menthol, and all the other compounds were terpenoids. This is the first comprehensive report on the identification of the major chemical constituents present in the LHQW capsule by HPLC-Q Exactive-Orbitrap-MS, coupled with GC-MS, and the results of this study can be used for the quality control and standardization of LHQW capsules.

10.
Cell Prolif ; 53(12): e12949, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33140889

RESUMO

OBJECTIVES: Coronavirus disease 2019 (COVID-19) is rapidly spreading worldwide. Lianhua Qingwen capsule (LQC) has shown therapeutic effects in patients with COVID-19. This study is aimed to discover its molecular mechanism and provide potential drug targets. MATERIALS AND METHODS: An LQC target and COVID-19-related gene set was established using the Traditional Chinese Medicine Systems Pharmacology database and seven disease-gene databases. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and protein-protein interaction (PPI) network were performed to discover the potential mechanism. Molecular docking was performed to visualize the patterns of interactions between the effective molecule and targeted protein. RESULTS: A gene set of 65 genes was generated. We then constructed a compound-target network that contained 234 nodes of active compounds and 916 edges of compound-target pairs. The GO and KEGG indicated that LQC can act by regulating immune response, apoptosis and virus infection. PPI network and subnetworks identified nine hub genes. The molecular docking was conducted on the most significant gene Akt1, which is involved in lung injury, lung fibrogenesis and virus infection. Six active compounds of LQC can enter the active pocket of Akt1, namely beta-carotene, kaempferol, luteolin, naringenin, quercetin and wogonin, thereby exerting potential therapeutic effects in COVID-19. CONCLUSIONS: The network pharmacological strategy integrates molecular docking to unravel the molecular mechanism of LQC. Akt1 is a promising drug target to reduce tissue damage and help eliminate virus infection.


Assuntos
COVID-19/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ontologia Genética , Humanos , Simulação de Acoplamento Molecular/métodos , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , SARS-CoV-2/patogenicidade
11.
Front Pharmacol ; 11: 746, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523531

RESUMO

As chemical analysis for quality control (QC) of traditional Chinese medicine (TCM) formula is difficult to guarantee the effectiveness, a bioassay method that combines QC with evaluation of therapeutic effects has been developed to assess the TCM quality. Here, we chose a thirteen-component TCM formula, Lianhua Qingwen capsule (LHQW), as a representative sample, to explore the pivotal biomarkers for a bioassay and to investigate close association between QC and pharmacological actions. Initially, our results showed that chemical fingerprinting could not effectively distinguish batches of LHQW. Pharmacological experiments indicated that LHQW could treat influenza A virus (H1N1) infection in the H1N1 mouse model, as claimed in clinical trials, by improving pathologic alterations and bodyweight loss, and decreasing virus replication, lung lesions and inflammation. Furthermore, by using serum metabolomics analysis, we identified two important metabolites, prostaglandin F2α and arachidonic acid, and their metabolic pathway, arachidonic acid metabolism, as vital indicators of LHQW in treatment of influenza. Subsequently, macrophages transcriptomics highlighted the prominent role of cyclooxygenase-2 (COX-2) as the major rate-limiting enzyme in the arachidonic acid metabolism pathway. Finally, COX-2 was validated by in vivo gene expression and in vitro enzymatic activity with 43 batches of LHQW as a viable pharmacological biomarker for the establishment of bioassay-based QC. Our study provides systematic methodology in the pharmacological biomarker exploration for establishing the bioassay-based QC of LHQW or other TCM formulas relating to their pharmacological activities and mechanism.

12.
Zhongguo Zhong Yao Za Zhi ; 42(8): 1474-1481, 2017 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-29071849

RESUMO

To evaluate the efficacy and safety of Lianhua Qingwen capsule for influenza. All reports of the randomized controlled trials (RCTs) on Lianhua Qingwen capsule treating influenza were retrieved from database of CNKI, WANFANG DATA, VIP, PubMed, the Cochrane Library by February 2017. The studies were screened according to the inclusion and exclusion criteria, the data were extracted by 2 authors, the quality of the included RCTs was assessed, and meta-analysis was performed using Revman5.3 software. A total of 1 525 patients and 10 studies were included. The results of meta analysis showed that compared with oseltamivir, Lianhua Qingwen capsule was more effective in alleviating flu symptoms, including the time of headaches disappeared [SMD=-0.25,95% CI(-0.48, -0.01)], the time of sore throat disappeared [SMD=-0.53,95% CI(-0.72, -0.34)], the time of cough disappeared [SMD=-0.39,95%CI(-0.57, -0.21)], whole body aches disappeared [ SMD=-0.49, 95% CI (-0.78, -0.21)], the time of weak disappeared [SMD=-0.56,95%CI (-0.82, -0.29)], and the time of abatement of fever [SMD=-3.47,95%CI(-6.27, -0.67)]. Also, there were some statistical significant differences between the two groups except nasal congestion and the time of virus turning negative. Compared with Ribavirin, Lianhua Qingwen capsule was more effective in terms of the rate of temperature effect, [RR=1.53, 95% CI (1.24, 1.90)], the difference between the two groups was statistically significant. Compared with Ankahuangmin capsules, significant differences were found in terms of the he rate temperature effect [RR=1.37, 95%CI (1.19,1.57)]. Current evidence shows that Lianhua Qingwen capsule is more effective and safer than Oseltamivir, Ribavirin and Ankahuangmin capsules. Due to the low quality of the clinical research, the accuracy of this conclusion needs to be conducted to verify.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Influenza Humana/tratamento farmacológico , Cápsulas , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA