Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
ACS Nano ; 18(41): 27997-28011, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39361472

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive, life-threatening disease with no early detection, few treatments, and dismal outcomes. Although collagen overdeposition is a hallmark of lung fibrosis, current research mostly focuses on the cellular aspect, leaving collagen, particularly its dynamic remodeling (i.e., degradation and turnover), largely unexplored. Here, using a collagen hybridizing peptide (CHP) that specifically binds unfolded collagen chains, we reveal vast collagen denaturation in human IPF lungs and delineate the spatiotemporal progression of collagen denaturation three-dimensionally within fibrotic lungs in mice. Transcriptomic analyses support that lung collagen denaturation is strongly associated with up-regulated collagen catabolism in mice and patients. We thus show that CHP probing differentiates remodeling responses to antifibrotics and highlights the resolution of established fibrosis by agents up-regulating collagen catabolism. We further develop a radioactive CHP that detects fibrosis in vivo in mice as early as 7 days postlung-injury (Ashcroft score: 2-3) by positron emission tomography (PET) imaging and ex vivo in clinical lung specimens. These findings establish collagen denaturation as a promising marker of fibrotic remodeling for the investigation, diagnosis, and therapeutic development of pulmonary fibrosis.


Assuntos
Colágeno , Animais , Colágeno/química , Colágeno/metabolismo , Humanos , Camundongos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/metabolismo , Tomografia por Emissão de Pósitrons , Camundongos Endogâmicos C57BL , Pulmão/patologia , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Masculino , Desnaturação Proteica
2.
Drug Discov Today ; 29(11): 104196, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39368696

RESUMO

Light-sheet fluorescence microscopy (LSFM) combined with tissue clearing has emerged as a powerful technology in drug discovery. LSFM is applicable to a variety of samples, from rodent organs to clinical tissue biopsies, and has been used for characterizing drug targets in tissues, demonstrating the biodistribution of pharmaceuticals and determining their efficacy and mode of action. LSFM is scalable to high-throughput analysis and provides resolution down to the single cell level. In this review, we describe the advantages of implementing LSFM into the drug discovery pipeline and highlight recent advances in this field.

3.
Microscopy (Oxf) ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39340314

RESUMO

The three-dimensional (3D) anatomical structure of living organisms is intrinsically linked to their functions, yet modern life sciences have not fully explored this aspect. Recently, the combination of efficient tissue clearing techniques and light-sheet fluorescence microscopy (LSFM) for rapid 3D imaging has improved access to 3D spatial information in biological systems. This technology has found applications in various fields, including neuroscience, cancer research, and clinical histopathology, leading to significant insights. It allows imaging of entire organs or even whole bodies of animals and humans at multiple scales. Moreover, it enables a form of spatial omics by capturing and analyzing cellome information, which represents the complete spatial organization of cells. While current 3D imaging of cleared tissues has limitations in obtaining sufficient molecular information, emerging technologies such as multi-round tissue staining and super-multicolor imaging are expected to address these constraints. 3D imaging using tissue clearing and light-sheet microscopy thus offers a valuable research tool in the current and future life sciences for acquiring and analyzing large-scale biological spatial information.

4.
J Bone Miner Res ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39303104

RESUMO

The craniofacial bone, crucial for protecting brain tissue and supporting facial structure, undergoes continuous remodeling through mesenchymal (MSCs) or skeletal stem cells (SSCs) in their niches. Gli1 is an ideal marker for labeling MSCs and osteoprogenitors in this region, and Gli1-lineage cells are identified as pivotal for bone growth, development, repair, and regeneration. Despite its significance, the distribution of Gli1-lineage cells across the dental, oral, and craniofacial (DOC) regions remains to be systematically explored. Utilizing tissue-clearing and light sheet fluorescence microscopy (LSFM) with a Gli1CreER; tdTomatoAi14 mouse model, we mapped the spatial distribution of Gli1-lineage cells throughout the skull, focusing on calvarial bones, sutures, bone marrow, teeth, periodontium, jaw bones, and the temporomandibular joint (TMJ). We found Gli1-lineage cells widespread in these areas, underscoring their significance in DOC regions. Additionally, we observed their role in repairing calvarial bone defects, providing novel insights into craniofacial biology and stem cell niches and enhancing our understanding of stem cells and their progeny's behavior in vivo.


This study investigates the presence and role of a specific stem cell population, known as Gli1-lineage cells, in various parts of the skull and facial bones. Using advanced imaging techniques, we found that these cells are widely distributed across the dental, oral, and craniofacial regions, especially in the cranial sutures, teeth, and jaw. Notably, Gli1-lineage cells migrate to the injury site, which is essential in bone repair and regeneration. These findings enhance our understanding of how stem cells contribute to healing and development in the craniofacial region.

5.
Sci Rep ; 14(1): 12770, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834608

RESUMO

Nonlinear microscopy has become an invaluable tool for biological imaging, offering high-resolution visualization of biological specimens. In this manuscript, we present the application of a spectral phase measurement technique, i 2 PIE, to compress broad-bandwidth supercontinuum pulses for two-photon excitation fluorescence light-sheet fluorescence microscopy. The results demonstrated a significant improvement in the two-photon excitation response achieved. We also showed that the implementation of i 2 PIE allowed for enhanced image contrasts when compared to conventional compression techniques, with i 2 PIE producing an image contrast improvement over conventional methods by over 50%.

6.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38712306

RESUMO

Polarized fluorescence microscopy is a valuable tool for measuring molecular orientations, but techniques for recovering three-dimensional orientations and positions of fluorescent ensembles are limited. We report a polarized dual-view light-sheet system for determining the three-dimensional orientations and diffraction-limited positions of ensembles of fluorescent dipoles that label biological structures, and we share a set of visualization, histogram, and profiling tools for interpreting these positions and orientations. We model our samples, their excitation, and their detection using coarse-grained representations we call orientation distribution functions (ODFs). We apply ODFs to create physics-informed models of image formation with spatio-angular point-spread and transfer functions. We use theory and experiment to conclude that light-sheet tilting is a necessary part of our design for recovering all three-dimensional orientations. We use our system to extend known two-dimensional results to three dimensions in FM1-43-labelled giant unilamellar vesicles, fast-scarlet-labelled cellulose in xylem cells, and phalloidin-labelled actin in U2OS cells. Additionally, we observe phalloidin-labelled actin in mouse fibroblasts grown on grids of labelled nanowires and identify correlations between local actin alignment and global cell-scale orientation, indicating cellular coordination across length scales.

7.
Sensors (Basel) ; 24(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38610265

RESUMO

Light Sheet Fluorescence Microscopy (LSFM) has emerged as a valuable tool for neurobiologists, enabling the rapid and high-quality volumetric imaging of mice brains. However, inherent artifacts and distortions introduced during the imaging process necessitate careful enhancement of LSFM images for optimal 3D reconstructions. This work aims to correct images slice by slice before reconstructing 3D volumes. Our approach involves a three-step process: firstly, the implementation of a deblurring algorithm using the work of K. Becker; secondly, an automatic contrast enhancement; and thirdly, the development of a convolutional denoising auto-encoder featuring skip connections to effectively address noise introduced by contrast enhancement, particularly excelling in handling mixed Poisson-Gaussian noise. Additionally, we tackle the challenge of axial distortion in LSFM by introducing an approach based on an auto-encoder trained on bead calibration images. The proposed pipeline demonstrates a complete solution, presenting promising results that surpass existing methods in denoising LSFM images. These advancements hold potential to significantly improve the interpretation of biological data.

8.
Diabetologia ; 67(6): 1066-1078, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38630142

RESUMO

AIMS/HYPOTHESIS: Rodent pancreas development has been described in great detail. On the other hand, there are still gaps in our understanding of the developmental trajectories of pancreatic cells during human ontogenesis. Here, our aim was to map the spatial and chronological dynamics of human pancreatic cell differentiation and proliferation by using 3D imaging of cleared human embryonic and fetal pancreases. METHODS: We combined tissue clearing with light-sheet fluorescence imaging in human embryonic and fetal pancreases during the first trimester of pregnancy. In addition, we validated an explant culture system enabling in vitro proliferation of pancreatic progenitors to determine the mitogenic effect of candidate molecules. RESULTS: We detected the first insulin-positive cells as early as five post-conceptional weeks, two weeks earlier than previously observed. We observed few insulin-positive clusters at five post-conceptional weeks (mean ± SD 9.25±5.65) with a sharp increase to 11 post-conceptional weeks (4307±152.34). We identified a central niche as the location of onset of the earliest insulin cell production and detected extra-pancreatic loci within the adjacent developing gut. Conversely, proliferating pancreatic progenitors were located in the periphery of the epithelium, suggesting the existence of two separated pancreatic niches for differentiation and proliferation. Additionally, we observed that the proliferation ratio of progenitors ranged between 20% and 30%, while for insulin-positive cells it was 1%. We next unveiled a mitogenic effect of the platelet-derived growth factor AA isoform (PDGFAA) in progenitors acting through the pancreatic mesenchyme by increasing threefold the number of proliferating progenitors. CONCLUSIONS/INTERPRETATION: This work presents a first 3D atlas of the human developing pancreas, charting both endocrine and proliferating cells across early development.


Assuntos
Diferenciação Celular , Proliferação de Células , Imageamento Tridimensional , Pâncreas , Humanos , Pâncreas/embriologia , Pâncreas/citologia , Pâncreas/metabolismo , Diferenciação Celular/fisiologia , Feminino , Células-Tronco/citologia , Células-Tronco/metabolismo , Gravidez , Insulina/metabolismo
9.
Small Methods ; 8(10): e2301715, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38461540

RESUMO

Expansion Microscopy (ExM) and Light-Sheet Fluorescence Microscopy (LSFM) are forefront imaging techniques that enable high-resolution visualization of biological specimens. ExM enhances nanoscale investigation using conventional fluorescence microscopes, while LSFM offers rapid, minimally invasive imaging over large volumes. This review explores the joint advancements of ExM and LSFM, focusing on the excellent performance of the integrated modality obtained from the combination of the two, which is refer to as ExLSFM. In doing so, the chemical processes required for ExM, the tailored optical setup of LSFM for examining expanded samples, and the adjustments in sample preparation for accurate data collection are emphasized. It is delve into various specimen types studied using this integrated method and assess its potential for future applications. The goal of this literature review is to enrich the comprehension of ExM and LSFM, encouraging their wider use and ongoing development, looking forward to the upcoming challenges, and anticipating innovations in these imaging techniques.


Assuntos
Imageamento Tridimensional , Microscopia de Fluorescência , Microscopia de Fluorescência/métodos , Imageamento Tridimensional/métodos , Humanos , Animais , Nanotecnologia/métodos
10.
Neurophotonics ; 11(Suppl 1): S11503, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38322247

RESUMO

Significance: Light-sheet fluorescence microscopy is widely used for high-speed, high-contrast, volumetric imaging. Application of this technique to in vivo brain imaging in non-transparent organisms has been limited by the geometric constraints of conventional light-sheet microscopes, which require orthogonal fluorescence excitation and collection objectives. We have recently demonstrated implantable photonic neural probes that emit addressable light sheets at depth in brain tissue, miniaturizing the excitation optics. Here, we propose a microendoscope consisting of a light-sheet neural probe packaged together with miniaturized fluorescence collection optics based on an image fiber bundle for lensless, light-field, computational fluorescence imaging. Aim: Foundry-fabricated, silicon-based, light-sheet neural probes can be packaged together with commercially available image fiber bundles to form microendoscopes for light-sheet light-field fluorescence imaging at depth in brain tissue. Approach: Prototype microendoscopes were developed using light-sheet neural probes with five addressable sheets and image fiber bundles. Fluorescence imaging with the microendoscopes was tested with fluorescent beads suspended in agarose and fixed mouse brain tissue. Results: Volumetric light-sheet light-field fluorescence imaging was demonstrated using the microendoscopes. Increased imaging depth and enhanced reconstruction accuracy were observed relative to epi-illumination light-field imaging using only a fiber bundle. Conclusions: Our work offers a solution toward volumetric fluorescence imaging of brain tissue with a compact size and high contrast. The proof-of-concept demonstrations herein illustrate the operating principles and methods of the imaging approach, providing a foundation for future investigations of photonic neural probe enabled microendoscopes for deep-brain fluorescence imaging in vivo.

11.
Methods Mol Biol ; 2772: 323-335, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38411826

RESUMO

The recent significant progress in developmental bio-imaging of live multicellular organisms has been greatly facilitated by the development of light sheet fluorescence microscopy (LSFM). Both commercial and custom LSFM systems offer the best means for long-term rapid data collection over a wide field of view at single-cell resolution. This is thanks to the low light exposure required for imaging and consequent limited photodamage to the biological sample, and the development of custom holders and mounting techniques that allow for specimens to be imaged in near-normal physiological conditions. This method has been successfully applied to plant cell biology and is currently seen as one of the most efficient techniques for 3D time-lapse imaging for quantitative studies. LSFM allows one to capture and quantify dynamic processes across various levels, from plant subcellular compartments to whole cells, tissues, and entire plant organs. Here we present a method to carry out LSFM on Arabidopsis leaves expressing fluorescent markers targeted to the ER. We will focus on a protocol to mount the sample, test the phototoxicity of the LSFM system, set up a LSFM experiment, and monitor the dynamics of the ER during heat shock.


Assuntos
Arabidopsis , Microscopia de Fluorescência , Corantes , Coleta de Dados , Resposta ao Choque Térmico
12.
Islets ; 16(1): 2298518, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38267218

RESUMO

Pancreatic islet transplantation is a promising treatment for type 1 diabetes, but the survival and function of transplanted islets are hindered by the loss of extracellular matrix (ECM) during islet isolation and by low oxygenation upon implantation. This study aimed to evaluate the impact of hypoxia on ECM using a cutting-edge imaging approach based on tissue clearing and 3D microscopy. Human and rat islets were cultured under normoxic (O2 21%) or hypoxic (O2 1%) conditions. Immunofluorescence staining targeting insulin, glucagon, CA9 (a hypoxia marker), ECM proteins (collagen 4, fibronectin, laminin), and E-cadherin (intercellular adhesion protein) was performed on fixed whole islets. The cleared islets were imaged using Light Sheet Fluorescence Microscopy (LSFM) and digitally analyzed. The volumetric analysis of target proteins did not show significant differences in abundance between the experimental groups. However, 3D projections revealed distinct morphological features that differentiated normoxic and hypoxic islets. Under normoxic conditions, ECM could be found throughout the islets. Hypoxic islets exhibited areas of scattered nuclei and central clusters of ECM proteins, indicating central necrosis. E-cadherin was absent in these areas. Our results, demonstrating a diminution of islets' functional mass in hypoxia, align with the functional decline observed in transplanted islets experiencing low oxygenation after grafting. This study provides a methodology combining tissue clearing, multiplex immunofluorescence, Light Sheet Fluorescence Microscopy, and digital image analysis to investigate pancreatic islet morphology. This 3D approach allowed us to highlight ECM organizational changes during hypoxia from a morphological perspective.


Assuntos
Ilhotas Pancreáticas , Humanos , Animais , Ratos , Microscopia de Fluorescência , Matriz Extracelular , Hipóxia , Proteínas da Matriz Extracelular , Caderinas
13.
Microbiol Spectr ; 12(1): e0246923, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38009950

RESUMO

IMPORTANCE: We present the first study of the 3D kinetics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the early host response in a large lung volume using a combination of tissue imaging and transcriptomics. This approach allowed us to make a number of important findings: Spatially restricted antiviral response is shown, including the formation of monocytic macrophage clusters and upregulation of the major histocompatibility complex II in infected epithelial cells. The monocyte-derived macrophages are linked to SARS-CoV-2 clearance, and the appearance of these cells is associated with post-infection endothelial damage; thus, we shed light on the role of these cells in infected tissue. An early onset of tissue repair occurring simultaneously with inflammatory and necrotizing processes provides the basis for longer-term alterations in the lungs.


Assuntos
COVID-19 , Animais , Cricetinae , Humanos , SARS-CoV-2 , Pulmão , Macrófagos , Análise Espaço-Temporal
14.
Adv Mater ; 36(8): e2306258, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37822216

RESUMO

Tissue engineering holds great promise for biomedical research and healthcare, offering alternatives to animal models and enabling tissue regeneration and organ transplantation. 3D bioprinting stands out for its design flexibility and reproducibility. Here, an integrated fluorescent light sheet bioprinting and imaging system is presented that combines high printing speed (0.66 mm3 /s) and resolution (9 µm) with light sheet-based imaging. This approach employs direct laser patterning and a static light sheet for confined voxel crosslinking in photocrosslinkable materials. The developed bioprinter enables real-time monitoring of hydrogel crosslinking using fluorescent recovery after photobleaching (FRAP) and brightfield imaging as well as in situ light sheet imaging of cells. Human fibroblasts encapsulated in a thiol-ene click chemistry-based hydrogel exhibited high viability (83% ± 4.34%) and functionality. Furthermore, full-thickness skin constructs displayed characteristics of both epidermal and dermal layers and remained viable for 41 days. The integrated approach demonstrates the capabilities of light sheet bioprinting, offering high speed, resolution, and real-time characterization. Future enhancements involving solid-state laser scanning devices such as acousto-optic deflectors and modulators will further enhance resolution and speed, opening new opportunities in light-based bioprinting and advancing tissue engineering.


Assuntos
Bioimpressão , Animais , Humanos , Bioimpressão/métodos , Reprodutibilidade dos Testes , Impressão Tridimensional , Engenharia Tecidual/métodos , Hidrogéis , Alicerces Teciduais
15.
Methods Protoc ; 6(6)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37987355

RESUMO

Whole-brain imaging is important for understanding brain functions through deciphering tissue structures, neuronal circuits, and single-neuron tracing. Thus, many clearing methods have been developed to acquire whole-brain images or images of three-dimensional thick tissues. However, there are several limitations to imaging whole-brain volumes, including long image acquisition times, large volumes of data, and a long post-image process. Based on these limitations, many researchers are unsure about which light microscopy is most suitable for imaging thick tissues. Here, we compared fast-confocal microscopy with light-sheet fluorescence microscopy for whole-brain three-dimensional imaging, which can acquire images the fastest. To compare the two types of microscopies for large-volume imaging, we performed tissue clearing of a whole mouse brain, and changed the sample chamber and low- magnification objective lens and modified the sample holder of a light-sheet fluorescence microscope. We found out that light-sheet fluorescence microscopy using a 2.5× objective lens possesses several advantages, including saving time, large-volume image acquisitions, and high Z-resolution, over fast-confocal microscopy, which uses a 4× objective lens. Therefore, we suggest that light-sheet fluorescence microscopy is suitable for whole mouse brain imaging and for obtaining high-resolution three-dimensional images.

16.
Curr Protoc ; 3(11): e925, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37934124

RESUMO

The MHC II-EGFP knock-in mouse model enables us to visualize and track MHC-II-expressing cells in vivo by expressing enhanced green fluorescent protein (EGFP) fused to the MHC class II molecule under the MHC II beta chain promoter. Using this model, we can easily identify MHC-II-expressing cells, including dendritic cells, B cells, macrophages, and ILC3s, which play a key role as antigen-presenting cells (APCs) for CD4+ T cells. In addition, we can also precisely identify and analyze APC-containing tissues and organs. Even after fixation, EGFP retains its fluorescence, so this model is suitable for immunofluorescence studies, facilitating an unbiased characterization of the histological context, especially with techniques such as light-sheet fluorescence microscopy. Furthermore, the MHC II-EGFP knock-in mouse model is valuable for studying the molecular mechanisms of MHC II gene regulation and expression by making it possible to correlate MHC II expression (MHC II-EGFP) with surface fraction through antibody detection, thereby shedding light on the intricate regulation of MHC II expression. Overall, this model is an essential asset for quantitative and systems immunological research, providing insights into immune cell dynamics and localization, with a tool for precise cell identification and with the ability to study MHC II gene regulation, thus furthering the understanding of immune responses and underlying mechanisms © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Characterization of antigen-specific MHC II loading compartment tubulation toward the immunological synapse Basic Protocol 2: Characterization of overall versus surface MHC II expression Basic Protocol 3: Identification and preparation of the lymphoid organs Basic Protocol 4: Quantification of APC content in lymphoid organs by fluorescence stereomicroscopy Basic Protocol 5: Quantification and measurement of intestinal lymphoid tissue by light-sheet fluorescence stereomicroscopy Basic Protocol 6: Visualization of corneal APCs Basic Protocol 7: Quantification of MHC II+ cells in maternal milk by flow cytometry Support Protocol 1: Cell surface staining and flow cytometry analysis of spleen mononuclear cells.


Assuntos
Células Apresentadoras de Antígenos , Linfócitos B , Animais , Camundongos , Proteínas de Fluorescência Verde , Membrana Celular , Modelos Animais de Doenças
17.
Biol Open ; 12(10)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37855381

RESUMO

For diploid model organisms, the actual transgenesis processes require subsequent periods of transgene management, which are challenging in emerging model organisms due to the lack of suitable methodology. We used the red flour beetle Tribolium castaneum, a stored-grain pest, to perform a comprehensive functional evaluation of our AClashOfStrings (ACOS) and the combined AGameOfClones/AClashOfStrings (AGOC/ACOS) vector concepts, which use four clearly distinguishable markers to provide full visual control over up to two independent transgenes. We achieved comprehensive statistical validation of our approach by systematically creating seventeen novel single and double homozygous sublines intended for fluorescence live imaging, including several sublines in which the microtubule cytoskeleton is labeled. During the mating procedures, we genotyped more than 20,000 individuals in less than 80 working hours, which corresponds to about 10 to 15 s per individual. We also confirm the functionality of our combined concept in two double transgene special cases, i.e. integration of both transgenes in close proximity on the same chromosome and integration of one transgene on the X allosome. Finally, we discuss our vector concepts regarding performance, genotyping accuracy, throughput, resource saving potential, fluorescent protein choice, modularity, adaptation to other diploid model organisms and expansion capability.


Assuntos
Tribolium , Animais , Animais Geneticamente Modificados , Homozigoto , Organismos Geneticamente Modificados , Genótipo , Tribolium/genética , Tribolium/metabolismo
18.
Exp Eye Res ; 237: 109674, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37838300

RESUMO

Eye development and function rely on precise establishment, regression and maintenance of its many sub-vasculatures. These crucial vascular properties have been extensively investigated in eye development and disease utilizing genetic and experimental mouse models. However, due to technical limitations, individual studies have often restricted their focus to one specific sub-vasculature. Here, we apply a workflow that allows for visualization of complete vasculatures of mouse eyes of various developmental stages. Through tissue depigmentation, immunostaining, clearing and light-sheet fluorescence microscopy (LSFM) entire vasculatures of the retina, vitreous (hyaloids) and uvea were simultaneously imaged at high resolution. In silico dissection provided detailed information on their 3D architecture and interconnections. By this method we describe successive remodeling of the postnatal iris vasculature, involving sprouting and pruning, following its disconnection from the embryonic feeding hyaloid vasculature. In addition, we demonstrate examples of conventional and LSFM-mediated analysis of choroidal neovascularization after laser-induced wounding, showing added value of the presented workflow in analysis of modelled eye disease. These advancements in visualization and analysis of the respective eye vasculatures in development and complex eye disease open for novel observations of their functional interplay at a whole-organ level.


Assuntos
Oftalmopatias , Retina , Camundongos , Animais , Microscopia de Fluorescência/métodos
19.
Sci Total Environ ; 902: 165947, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543337

RESUMO

Ambient air pollutants, including PM2.5 (aerodynamic diameter d ~2.5 µm), PM10 (d ~10 µm), and ultrafine particles (UFP: d < 0.1 µm) impart both short- and long-term toxicity to various organs, including cardiopulmonary, central nervous, and gastrointestinal systems. While rodents have been the principal animal model to elucidate air pollution-mediated organ dysfunction, zebrafish (Danio rerio) is genetically tractable for its short husbandry and life cycle to study ambient pollutants. Its electrocardiogram (ECG) resembles that of humans, and the fluorescent reporter-labeled tissues in the zebrafish system allow for screening a host of ambient pollutants that impair cardiovascular development, organ regeneration, and gut-vascular barriers. In parallel, the high spatiotemporal resolution of light-sheet fluorescence microscopy (LSFM) enables investigators to take advantage of the transparent zebrafish embryos and genetically labeled fluorescent reporters for imaging the dynamic cardiac structure and function at a single-cell resolution. In this context, our review highlights the integrated strengths of the genetic zebrafish system and LSFM for high-resolution and high-throughput investigation of ambient pollutants-mediated cardiac and intestinal toxicity.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Humanos , Animais , Peixe-Zebra , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Microscopia de Fluorescência/métodos , Material Particulado/toxicidade
20.
Adv Virus Res ; 116: 89-121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37524483

RESUMO

Imaging pathogens within 3D environment of biological tissues provides spatial information about their localization and interactions with the host. Technological advances in fluorescence microscopy and 3D image analysis now permit visualization and quantification of pathogens directly in large tissue volumes and in great detail. In recent years large volume imaging became an important tool in virology research helping to understand the properties of viruses and the host response to infection. In this chapter we give a review of fluorescence microscopy modalities and tissue optical clearing methods used for large volume tissue imaging. A summary of recent applications for virus research is provided with particular emphasis on studies using light sheet fluorescence microscopy. We describe the challenges and approaches for volumetric image analysis. Practical examples of volumetric imaging implemented in virology laboratories and addressing specialized research questions, such as virus tropism and immune host response are described. We conclude with an overview of the emerging technologies and their potential for virus research.


Assuntos
Imageamento Tridimensional , Viroses , Humanos , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Viroses/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA