Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
BMC Microbiol ; 24(1): 181, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38789935

RESUMO

BACKGROUND: Lignin is an intricate phenolic polymer found in plant cell walls that has tremendous potential for being converted into value-added products with the possibility of significantly increasing the economics of bio-refineries. Although lignin in nature is bio-degradable, its biocatalytic conversion is challenging due to its stable complex structure and recalcitrance. In this context, an understanding of strain's genomics, enzymes, and degradation pathways can provide a solution for breaking down lignin to unlock the full potential of lignin as a dominant valuable bioresource. A gammaproteobacterial strain AORB19 has been isolated previously from decomposed wood based on its high laccase production. This work then focused on the detailed genomic and functional characterization of this strain based on whole genome sequencing, the identification of lignin degradation products, and the strain's laccase production capabilities on various agro-industrial residues. RESULTS: Lignin degrading bacterial strain AORB19 was identified as Serratia quinivorans based on whole genome sequencing and core genome phylogeny. The strain comprised a total of 123 annotated CAZyme genes, including ten cellulases, four hemicellulases, five predicted carbohydrate esterase genes, and eight lignin-degrading enzyme genes. Strain AORB19 was also found to possess genes associated with metabolic pathways such as the ß-ketoadipate, gentisate, anthranilate, homogentisic, and phenylacetate CoA pathways. LC-UV analysis demonstrated the presence of p-hydroxybenzaldehyde and vanillin in the culture media which constitutes potent biosignatures indicating the strain's capability to degrade lignin. Finally, the study evaluated the laccase production of Serratia AORB19 grown with various industrial raw materials, with the highest activity detected on flax seed meal (257.71 U/L), followed by pea hull (230.11 U/L), canola meal (209.56 U/L), okara (187.67 U/L), and barley malt sprouts (169.27 U/L). CONCLUSIONS: The whole genome analysis of Serratia quinivorans AORB19, elucidated a repertoire of genes, pathways and enzymes vital for lignin degradation that widens the understanding of ligninolytic metabolism among bacterial lignin degraders. The LC-UV analysis of the lignin degradation products coupled with the ability of S. quinivorans AORB19 to produce laccase on diverse agro-industrial residues underscores its versatility and its potential to contribute to the economic viability of bio-refineries.


Assuntos
Lacase , Lignina , Serratia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genoma Bacteriano , Genômica , Lacase/metabolismo , Lacase/genética , Lignina/metabolismo , Filogenia , Serratia/genética , Serratia/metabolismo , Serratia/classificação , Sequenciamento Completo do Genoma
2.
Environ Sci Pollut Res Int ; 31(25): 36492-36531, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38748350

RESUMO

Adsorption is one of the most efficient methods for remediating industrial recalcitrant wastewater due to its simple design and low investment cost. However, the conventional adsorbents used in adsorption have several limitations, including high cost, low removal rates, secondary waste generation, and low regeneration ability. Hence, the focus of the research has shifted to developing alternative low-cost green adsorbents from renewable resources such as biomass. In this regard, the recent progress in the modification of biomass-derived adsorbents, which are rich in cellulosic content, through a variety of techniques, including chemical, physical, and thermal processes, has been critically reviewed in this paper. In addition, the practical applications of raw and modified biomass-based adsorbents for the treatment of industrial wastewater are discussed extensively. In a nutshell, the adsorption mechanism, particularly for real wastewater, and the effects of various modifications on biomass-based adsorbents have yet to be thoroughly studied, despite the extensive research efforts devoted to their innovation. Therefore, this review provides insight into future research needed in wastewater treatment utilizing biomass-based adsorbents, as well as the possibility of commercializing biomass-based adsorbents into viable products.


Assuntos
Biomassa , Águas Residuárias , Adsorção , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água , Purificação da Água/métodos
3.
Heliyon ; 10(3): e25610, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38356555

RESUMO

Objective: The present work aims to optimize fermentation parameters for the simultaneous production of eco-enzymes: proteases, amylases, and endoglucanases from the same fungus Stachybotrys microspora, and to evaluate their stability in free form and formulated in lye as detergent additives. Methods: Initially, enzyme cocktail production was assayed in a medium comprising inexpensive waste biomass. Using the best substrate, we investigated the effect of its different concentrations and the NaCl concentration on the three enzymes co-production. Next, we studied the effect of several additives on the storage stability of the lyophilized enzyme cocktail (powder in liquid forms) free and incorporated in commercial laundry detergent. Finally, the washing efficiency analysis of the newly formulated enzyme cocktail was evaluated on dirty tissue pieces with different stains. Results: The highest enzymatic cocktail production was achieved at 30 °C for 96 h after adding 0.1% NaCl and 1.5% wheat bran as waste biomass in the basal culture medium. The effect of adding maltodextrin, sucrose, or polyethylene glycol 4000 during freeze-drying showed that maltodextrin is the best additive to protect the activities of proteases, amylases, and cellulases of liquid and powder enzyme form. Additionally, the liquid formulation of these enzymes showed excellent stability and compatibility with 1% maltodextrin and 10% glycerol. Interestingly, we have developed a new formulation of an enzyme cocktail (liquid and powder) stable and highly compatible with detergents. Comparing the washing performance of different formulations containing our enzyme cocktail to commercial ones showed significantly better removal of different types of stains. Conclusions: This research shows a cost-effective approach to simultaneously produce proteases, amylases, and endoglucanases from Stachybotrys microspora that could be considered a compatible detergent additive in the green detergent industry.

4.
Biotechnol Biofuels Bioprod ; 17(1): 3, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173027

RESUMO

BACKGROUND: Valorizing waste residues is crucial to reaching sustainable development goals and shifting from a linear fossil-based economy to a circular economy. Fungal cell factories, due to their versatility and robustness, are instrumental in driving the bio-transformation of waste residues. The present work isolated a potent strain, i.e., Aspergillus fumigatus (ZS_AF), from an ancient Zloty Stok gold mine, which showcased distinctive capabilities for efficient hydrolytic enzyme production from lignocellulosic wastes. RESULTS: The present study optimized hydrolytic enzyme production (cellulases, xylanases, and ß-glucosidases) from pine sawdust (PSD) via solid-state fermentation using Aspergillus fumigatus (ZS_AF). The optimization, using response surface methodology (RSM), produced a twofold increase with maximal yields of 119.41 IU/gds for CMCase, 1232.23 IU/gds for xylanase, 63.19 IU/gds for ß-glucosidase, and 31.08 IU/gds for FPase. The secretome profiling validated the pivotal role of carbohydrate-active enzymes (CAZymes) and auxiliary enzymes in biomass valorization. A total of 77% of carbohydrate-active enzymes (CAZymes) were constituted by glycoside hydrolases (66%), carbohydrate esterases (9%), auxiliary activities (3%), and polysaccharide lyases (3%). The saccharification of pretreated wheat straw and PSD generated high reducing sugar yields of 675.36 mg/g and 410.15 mg/g, respectively. CONCLUSION: These findings highlight the significance of an efficient, synergistic, and cost-effective arsenal of fungal enzymes for lignocellulosic waste valorization and their potential to contribute to waste-to-wealth creation through solid-waste management. The utilization of Aspergillus fumigatus (ZS_AF) from an unconventional origin and optimization strategies embodies an innovative approach that holds the potential to propel current waste valorization methods forward, directing the paradigm toward improved efficiency and sustainability.

5.
J Gen Appl Microbiol ; 70(1)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38104982

RESUMO

Bacteria represent an attractive source for the isolation and identification of potentially useful microorganisms for lignin depolymerization, a process required for the use of agricultural waste. In this work, ten autochthonous bacteria isolated from straw, cow manure, and composts were characterized for potential use in the biodelignification of the waste. A comparison of the ability to degrade lignin and the efficiency of ligninolytic enzymes was performed in bacteria grown in media with lignin as a sole carbon source (LLM, 3.5g/L lignin-alkali) and in complex media supplemented with All-Ban fiber (FLM, 1.5g/L). Bacterial isolates showed different abilities to degrade lignin, they decreased the lignin concentration from 7.6 to 18.6% in LLM and from 11.1 to 44.8% in FLM. They also presented the activity of manganese peroxidase, lignin peroxidases, and laccases with different specific activities. However, strain 26 identified as Paenibacillus polymyxa by sequencing the 16S rRNA showed the highest activity of lignin peroxidase and the ability to degrade efficiently lignocellulose. In addition, P. polymyxa showed the highest potential (desirability ≥ 0.795) related to the best combination of properties to depolymerize lignin from biomass. The results suggest that P. polymyxa has a coordinated lignin degradation system constituted of lignin peroxidase, manganese peroxidase, and laccase enzymes.


Assuntos
Lignina , Paenibacillus polymyxa , Peroxidases , RNA Ribossômico 16S , Lignina/metabolismo , Paenibacillus polymyxa/metabolismo , Paenibacillus polymyxa/enzimologia , Paenibacillus polymyxa/genética , Peroxidases/metabolismo , RNA Ribossômico 16S/genética , Esterco/microbiologia , Lacase/metabolismo , Biodegradação Ambiental , Animais , Bovinos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Biomassa , Meios de Cultura/química , Compostagem , Oxigenases
6.
Heliyon ; 9(12): e22945, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38144354

RESUMO

This study explored the impact of incorporating coir pith, a byproduct of the coconut industry, into the vermicomposting substrate of Eudrilus eugeniae earthworms. The groups were compared based on their diets: cow manure only or cow manure mixed with varying amounts of coir pith. The aim was to assess the effects of coir pith on earthworm growth, mortality and the microbial community involved in vermicomposting. Earthworms fed with higher proportions of coir pith (70 % w/w) experienced reduced growth (0.81 g/worm) and increased mortality (24.67 %) after 5 weeks of vermicomposting. These effects were attributed to the high level of total phenolic content in the system. Coir pith required specific bacteria for digestion and detoxification, and excessive intake disrupted the earthworms' digestion, thus hindering nutrient absorption. The study also examined the microbial composition of the vermicast samples and identified variations based on the diet. Bacterial taxa involved in lignocellulose degradation, such as Bacteriodota, Azospirillum, Chitinophagaceae, Marinomonas and Pantoea, exhibited decreased abundances in treatments with coir pith. Conversely, the abundances of potentially harmful bacteria, such as Aeromonas, increased with higher coir pith inclusion levels. This pioneering investigation sheds light on the feasibility of coir pith use in vermicomposting and emphasises the importance of optimising earthworm diets to enhance microbial ecological functions and improve vermicompost quality.

7.
Waste Manag ; 171: 473-481, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37804735

RESUMO

Many central banks are reviewing their environmentally sustainable activities, including the disposal of end-of-life banknotes, within the scope of green finance policies aimed at reducing environmental impacts. The total amount of banknote production waste and end-of-life (non-reusable) banknotes is estimated to exceed 185.000 tons per year worldwide. End-of-life banknotes are commonly disposed of as combustion, incineration for energy recovery, and landfill. In this study, the characterization and gasification of end-of-life banknotes rich in cotton content, which are classified as lignocellulosic waste, were investigated to bring them into the economy more effectively. The proximate, calorific value, lignocellulosic, elemental, and metal analyses were performed as characterization tests. Thermogravimetric analysis was performed at six different heating rates from 5 to 30 °C. The gasification experiments were carried out in a laboratory-scale fluidized bed reactor. With the gas analyzer, CO, CO2, CH4, H2, and O2 compositions as the mole fraction were determined simultaneously. The effects of temperature, particle size, and H2O/O2 ratio at the inlet intake on the experimental mole fractions were examined. The gasification main reactions that could be effective in gas composition were examined. The cotton-based banknote sample presented high levels of calorific value, C, O, H, cellulose, and lignin concentrations. The sample contained various transition metals such as Fe, Cu, Co, and Cr, which can be used as catalysts in gasification. The activation energy was calculated as 171.13 kJ/mol according to Kissinger method. In gasification experiments, the production of CO (12.11 %) and H2 (8.77 %) in a high composition was carried out.

8.
Bioresour Technol ; 385: 129420, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37399953

RESUMO

Coconut coir waste is a rich lignocellulosic biomass. The coconut coir waste generated from temples is resistant to natural degradation, and its accumulation causes environmental pollution. Ferulic acid, a vanillin precursor, was extracted from the coconut coir waste by hydro-distillation extraction. The extracted ferulic acid was used for vanillin synthesis by Bacillus aryabhattai NCIM 5503 under submerged fermentation. In the present study, the Taguchi DOE (design of experiment) software was used to optimize the fermentation process, which resulted in a 1.3 fold increase in vanillin yield (640.96 ± 0.02 mg/L), as compared to the unoptimized yield of 495.96 ± 0.01 mg/L. The optimized media for enhanced vanillin production comprised; fructose 0.75 % (w/v), beef extract 1 % (w/v), pH 9, temperature 30℃, agitation speed 100 rpm, trace metal solution 1 % (v/v), and ferulic acid 2 % (v/v). The results show that the commercial production of vanillin can be envisioned using coconut coir waste.


Assuntos
Bacillus , Lignina , Lignina/metabolismo , Bacillus/metabolismo , Benzaldeídos/metabolismo
9.
Polymers (Basel) ; 15(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37050279

RESUMO

Neodymium (Nd) is a key rare earth element (REE) needed for the future of incoming technologies including road transport and power generation. Hereby, a sustainable adsorbent material for recovering Nd from the aqueous phase using a residue from the saccharification process is presented. Banana rachis (BR) was treated with cellulases and polyethylene glycol (PEG) to produce fermentable sugars prior to applying the final residue (BR-PEG) as an adsorbent material. BR-PEG was characterized by scanning electron microscopy (SEM), compositional analysis, pH of zero charge (pHpzc), Fourier transform infrared analysis (FTIR) and thermogravimetric analysis (TGA). A surface response experimental design was used for obtaining the optimized adsorption conditions in terms of the pH of the aqueous phase and the particle size. With the optimal conditions, equilibrium isotherms, kinetics and adsorption-desorption cycles were performed. The optimal pH and particle size were 4.5 and 209.19 µm, respectively. BR-PEG presented equilibrium kinetics after 20 min and maximum adsorption capacities of 44.11 mg/g. In terms of reusage, BR-PEG can be efficiently reused for five adsorption-desorption cycles. BR-PEG was demonstrated to be a low-cost bioresourced alternative for recovering Nd by adsorption.

10.
Int J Biol Macromol ; 237: 124033, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36918076

RESUMO

Cellulases are among the most in-demand bioprocess enzymes, and the high cost of production, combined with their low enzymatic activity, is the main constraint, particularly in the biofuels industry. As a result, low-cost enzyme production modes with high activity and stability have emerged as the primary focus of research. Here, a method for producing a graphene like carbon nanostructure (GLCNs) has been investigated utilizing paddy straw (Ps), and its physicochemical characteristics have been examined using a variety of techniques including XRD, FT-IR, SEM and TEM. Further, the pretreatment of Ps feedstock for cellulase production was done using diluted waste KOH liquid collected during the preparation of the GLCNs. To increase the production and stability of the enzyme, newly prepared GLCNs is utilized as a nanocatalyst. Using 15 mg of GLCNs, 35 IU/gds FP activity was seen after 72 h, followed by 158 IU/gds EG and 114 IU/gds BGL activity in 96 h. This nanocatalyst supported enzyme was thermally stable at 70 °C up to 15 h and exhibited stability at pH 7.0 for 10 h by holding 66 % of its half-life.


Assuntos
Celulase , Celulases , Grafite , Nanoestruturas , Carbono , Espectroscopia de Infravermelho com Transformada de Fourier , Celulases/química , Hidrólise
11.
J Biotechnol ; 365: 29-47, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36796453

RESUMO

It is well-known that enzymes are molecules particularly susceptible to pH and temperature variations. Immobilization techniques may overcome this weakness besides improving the reusability of the biocatalysts. Given the strong push toward a circular economy, the use of natural lignocellulosic wastes as supports for enzyme immobilization has been increasingly attractive in recent years. This fact is mainly due to their high availability, low costs, and the possibility of reducing the environmental impact that can occur when they are improperly stored. In addition, they have physical and chemical characteristics suitable for enzyme immobilization (large surface area, high rigidity, porosity, reactive functional groups, etc.). This review aims to guide readers and provide them with the tools necessary to select the most suitable methodology for lipase immobilization on lignocellulosic wastes. The importance and the characteristics of an increasingly interesting enzyme, such as lipase, and the advantages and disadvantages of the different immobilization methods will be discussed. The various kinds of lignocellulosic wastes and the processing required to make them suitable as carriers will be also reported.


Assuntos
Enzimas Imobilizadas , Lipase , Lipase/química , Enzimas Imobilizadas/química , Lignina
12.
Int J Biol Macromol ; 225: 416-429, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36375664

RESUMO

Despite the high demand for curdlan (Curd), its industrial implementation has not reached a mature stage due to the high cost of simple sugar feed stocks. Herein, Musa sapientum peels hydrolysate (MPH) was proposed for the first time as a sustainable medium for Curd generation and as an ameliorated functional biomaterial for quercetin (Quer) sustained release. In this study, banana peels have been hydrolysed by 3 % NaOH catalyst/ 60 °C, yielding high concentration of glucose 20.5 ± 0.04 and 24.3 ± 0.11 g/L and reducing sugar amount, respectively. Meanwhile, a novel local Rahnella variigena ICRI91 strain was isolated from soil, that was useful for Curd production and identified by 16S rRNA analysis. Furthermore, three-batch fermentation models were carried out using MPH for obtaining a sufficient yield of Curd. R. variigena ICRI91 accumulated a satisfactory Curd concentration; 10.3 ± 0.25 g/L; using 60 g/L MPH. On the other hand, the strain produced an impressive Curd yield; 21.5 ± 0.13 g/L with an attained productivity of 0.179 ± 0.01 g/L/h and a sugar consumption of 68 ± 0.25 % as the MPH content increased to 100 g/L. For the first time, Curd hydrogel was modified by different amount of Xylitol (Xyl), reaching good mechanical performance; 3.1 MPa and 75 % for tensile strength (TS) and elongation at break (EB), respectively. Curd/Xyl (3/5) hydrogel was then integrated with nanometer-sized quercetin nanocrystals (Quer NCs, 83 ± 0.12 nm) with high colloidal stability of -23 ± 0.05 mV. The interconnected H- bonding between Xyl and Curd was confirmed by FTIR and SEM. The generated biomaterial was tailored to exhibit a sustained Quer release over 72 h. It also has improved antibacterial efficacy against four bacterial pathogens compared to that of a free drug. In recognition of these merits, an edible polymeric nanomaterial has been proposed for the functional food and biomedicine sectors.


Assuntos
Musa , Quercetina , Hidrólise , Preparações de Ação Retardada , Hidrogéis , RNA Ribossômico 16S , Fermentação
13.
Bioresour Technol ; 367: 128305, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36370943

RESUMO

Earthworm-induced microbial enrichment is the key to success in vermitechnology, yet the influence of initial earthworm stocking density on microbial community profiles in vermibeds is unknown. Therefore, vermicomposting of lignocellulosic feedstock was performed with different stocking densities of two earthworms (Eisenia fetida and Eudrilus eugeniae) compared with composting. Eventually, earthworm growth, microbial (activity and community profiles), and physicochemical dynamics were assessed. The earthworm population significantly increased under low stocking, while denser stocking (15/kg) was stressful. The XRD-based crystallinity assessment revealed that comminuting efficiency of Eisenia and Eudrilus was prudent at 7 and 10 worm/kg stockings, respectively. Moreover, the 5 and 7 worm/kg stockings effectively mobilized microbial activity, promoting NPK-mineralization and C-humification balance. Correlation statistics indicated that earthworm stocking density-driven microbial community shift and fatty acid profiles strongly influenced metal removal in vermibeds. Hence, the findings implied that 5-7 worm/kg stockings of earthworms produced high-quality sanitized vermicompost.


Assuntos
Microbiota , Oligoquetos , Animais , Ácidos Graxos , Solo/química , Metais
14.
J Environ Manage ; 326(Pt A): 116724, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36372032

RESUMO

In this study, hydrogen harvesting from fermentation of sugarcane bagasse (SCB) was promoted by maintaining synergism between sulfonated graphene (SGR) catalyst and paper mill sludge (PMS). The sulfonic acid (-SO3H) groups in the catalyst played a major role in destructing the ß-1,4 glycosidic bonds of sugarcane bagasse, releasing readily biodegradable sugars into the fermentation medium. The cellulose, hemicellulose, and lignin conversion efficiency were improved by 127.5%, 495.0%, and 109.2%, respectively with 20 mgSGR/gVS catalyst addition, compared with the control samples. These values were also higher than those obtained by non-sulfonated graphene catalyst. The hydrogenation of sugarcane bagasse was maximized at a sulfonated graphene catalyst dosage of 60 mgSGR/gVS, providing the highest hydrogen harvesting of 4104 ± 321 mL. This was associated with an increase of the Proteobacteria phyla up to 52.0%, Firmicutes phyla to 13.9%, and Acinetobacter sp. to 39.8% compared with only 37.0%, 11.3% and 11.1% in the control assay respectively. Moreover, sulfonated graphene catalyst supplementation promoted the acetate fermentation reaction pathway by increasing the acetate/butyrate ratio up to 4.1. Nevertheless, elevating the catalyst dosage up to 120 mgSGR/gVS reduced the hydrogen harvesting (1190 ± 92 mL) due to the release of furfural (1.76 ± 0.02 g/L) in the fermentation cultures, deteriorating the microbes' internal composition and metabolism bioactivities. Finally maximizing the hydrogen productivity from sugarcane bagasse is feasible by incorporation of paper mill sludge and sulfonated graphene catalyst at dosage not exceeding 60 mgSGR/gVS. However, investigating the recyclability and disposal of digestate containing sulfonated graphene catalyst and the associated economic feasibility needs more attention in the future.


Assuntos
Grafite , Saccharum , Saccharum/química , Celulose/química , Esgotos , Hidrogênio , Polimerização , Hidrólise , Fermentação
15.
Polymers (Basel) ; 15(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38231921

RESUMO

This study aimed to analyze the production of poly(3-hydroxybutyrate) (PHB) from lignocellulosic biomass through a series of steps, including microwave irradiation, ammonia delignification, enzymatic hydrolysis, and fermentation, using the Bacillus megaterium ATCC 14581 strain. The lignocellulosic biomass was first pretreated using microwave irradiation at different temperatures (180, 200, and 220 °C) for 10, 20, and 30 min. The optimal pretreatment conditions were determined using the central composite design (CCD) and the response surface methodology (RSM). In the second step, the pretreated biomass was subjected to ammonia delignification, followed by enzymatic hydrolysis. The yield obtained for the pretreated and enzymatically hydrolyzed biomass was lower (70.2%) compared to the pretreated, delignified, and enzymatically hydrolyzed biomass (91.4%). These hydrolysates were used as carbon substrates for the synthesis of PHB using Bacillus megaterium ATCC 14581 in batch cultures. Various analytical methods were employed, namely nuclear magnetic resonance (1H-NMR and13C-NMR), electrospray ionization mass spectrometry (EI-MS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA), to identify and characterize the extracted PHB. The XRD analysis confirmed the partially crystalline nature of PHB.

16.
Waste Manag ; 154: 136-145, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36242815

RESUMO

Cover crops harvested at a low maturity stage generally have a high moisture content, which may generate energy losses during silage storage via effluent production and undesirable fermentations. This paper investigates the use of different waste types as absorbent co-substrates to be added before ensiling. The relation between the absorbent water holding capacity and silage effluent volume was first studied to find an effective parameter to prevent effluent production. Effluent retention was found to be proportional to the absorbent loading and water holding capacity (r2 = 0.98) and up to 90 % of effluent production was avoided when compared to control (295 l.t-1). The impact of different co-substrates (including bio-waste and manures) on overall ensiling performances was then investigated at an optimized absorbent loading. All co-substrates allowed a total effluent retention while a 76 l.t-1 effluent volume was reported for the control. The silage fermentation was modified or mostly unchanged depending on the co-substrate chemical and microbial properties and different metabolic pathways were observed (e.g. homolactic or butyric fermentation). In most conditions, the methane potential of the crop was efficiently preserved over a storage of 60 days. Co-ensiling was shown to be a relevant silage preparation method for biogas production.

17.
Heliyon ; 8(9): e10340, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36097472

RESUMO

Water hyacinth (Eichhornia crassipes) is a hydrophyte weed that causes havoc in the aquatic ecosystem as an invasive plant that can obstruct waterways and bring about nutrient imbalance. This study aims to address how this invasive hydrophyte can be physically harvested and biochemically transformed into a bioproduct that can enhance the restoration of damaged soil. Biocomposting, a low-cost biotechnological technique, was designed to degrade the lignocellulosic Eichhornia crassipes biomass and transform it into a valuable bioproduct. The process used response surface methodology (RSM) to investigate the aggregate effect of moisture content, turning frequency, and microbial isolate (Chitinophaga terrae) inoculum size on the breakdown of lignin over 21 days. The moisture content (A), (45, 55, 65) % v/w, inoculum size (B), (5, 7.5, 10)% v/v, and turning frequency (C), (1, 3, 5) days were considered independent variables, while percentage lignin degradation was considered a response variable. The optimal conditions for lignin breakdown were 65.7 percent (v/w) moisture, 7.5 percent (v/v) inoculum concentration, and 5-day interval turning. The R2 score of 0.9733 demonstrates the model's integrity and reliability. Thus, the RSM approach resulted in a fine grain dark brown Nutri-compost that proved effective in enhancing soil fertility. This procedure is recommended for a scale-up process where large quantities of the hydrophyte could be treated for conversion into Nutri compost.

18.
J Environ Manage ; 321: 115967, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35969973

RESUMO

Passive wastewater treatment systems are an alternative to costly and ineffective chemical wastewater treatment methods. Lignocellulosic waste materials (LWM) are often used in passive wastewater treatment systems as a cheap and accessible source of nutrients. LWM, such as spent mushroom compost and woodchips, have been implemented for the successful management of mildly alkaline effluents, which constitute a large fraction of industrial wastewater. The objective of the study was to provide an extensive study of the parameters in four types of commonly used LWM (raw and composted sawdust, spent mushroom compost and woodchips), which can be used in the planning of a passive wastewater treatment plant. LWM were shown to remove up to 90% Zn2+ and Pb2+ from a model solution and neutralize wastewater. Moreover, the LWM were inhabited by a physiologically diverse microbial consortium containing sulfate-reducing and cellulolytic microbes, which can influence the treatment process. Another purpose of this study was to construct a pilot wastewater treatment plant based on the use of LWM and gravel and to present its ability to effectively treat extremely alkaline flotation wastewater (pH = 12) originating from a lead and zinc mine located in Montenegro. The treated wastewater had a unique, but challenging chemical composition for passive treatment, as it was heavily contaminated with sulfates (∼1200 mg/L) and lead (∼1 g/L). The removal within the developed installation reached a rate of 66%, while the treated effluent, after initial neutralization, was maintained at a pH of approximately 7. Lead and zinc concentrations after treatment were also kept at levels required by Montenegrin law for wastewater disposal.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Lignina , Metais , Sulfatos/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Zinco
19.
Polymers (Basel) ; 14(14)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35890586

RESUMO

Bioplastics are contemplated as remarkable substitutes for conventional plastics to accommodate green technological advancements. However, their industrial production has not been fully implemented owing to the cost of carbon resources. From another perspective, valorizing different paper mill wastes has become a prominent research topic. These materials may serve as an affording sustainable feedstock for bioplastic production. Adjustment of cardboard waste hydrolysate as suitable fermentation media for production of bacterial polyhydroxyalkanoates (PHAs) has been investigated. Cardboard samples were defibered and dried before enzymatic hydrolysis. The enzymatic degradation of commercial cellulase was monitored over 15 days. Interestingly, 18.2 ± 0.2 g/L glucose yield was obtained from 50 g cardboard samples using a 1.5% (v/v) enzyme concentration. The samples exhibited maximum weight loss values of 69-73%. Meanwhile, five soil samples were collected from local sites in Lodz, Poland. A total of 31 bacterial isolates were screened and cultured on Nile blue plates. Analysis of the 16S rRNA gene sequence of the most potent producer revealed 100% similarity to Bacillus mycoides. Cardboard hydrolysates whole medium, modified MSM with cardboard hydrolysate and nitrogen depleted MSM with cardboard hydrolysate were utilized for PHA production, followed by PHA productivity and cell dry weight (CDW) estimation compared to glucose as a standard carbon source. An impressive PHA accumulation of 56% CDW was attained when the waste hydrolysate was used as a carbon source. FTIR and NMR analysis of the isolated PHA indicated that functional groups of the polymer were related to PHB (polyhydroxybutyrate). Thermal analysis demonstrates that PHB and PHB-CB (PHB produced from cardboard hydrolysate) have degradation temperatures of 380 and 369 °C, respectively, which reflect the high thermal stability and heat resistance compared to the same properties for a standard polymer. This is the first demonstration of full saccharification of corrugated cardboard paper waste for high-level production of PHA. In addition, the attained PHB productivity is one of the highest levels achieved from a real lignocellulosic waste.

20.
Molecules ; 27(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35566176

RESUMO

Resole resins have many applications, especially for foam production. However, the use of phenol, a key ingredient in resoles, has serious environmental and economic disadvantages. In this work, lignin extracted from pine wood using a "green" solvent, levulinic acid, was used to partially replace the non-sustainable phenol. The physicochemical properties of this novel resin were compared with resins composed of different types of commercial lignins. All resins were optimized to keep their free formaldehyde content below 1 wt%, by carefully adjusting the pH of the mixture. Substitution of phenol with lignin generally increases the viscosity of the resins, which is further increased with the lignin mass fraction. The addition of lignin decreases the kinetics of gelification of the resin. The type and amount of lignin also affect the thermal stability of the resins. It was possible to obtain resins with higher thermal stability than the standard phenol-formaldehyde resins without lignin. This work provides new insights regarding the development of lignin-based resoles as a very promising sustainable alternative to petrol-based resins.


Assuntos
Lignina , Pinus , Formaldeído/química , Ácidos Levulínicos , Lignina/química , Fenol/química , Fenóis/química , Polímeros , Solventes , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA