Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 40(10): 318, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39261393

RESUMO

Two strains of Yarrowia lipolytica (CBS 2075 and DSM 8218) were first studied in bioreactor batch cultures, under different controlled dissolved oxygen concentrations (DOC), to assess their ability to assimilate aliphatic hydrocarbons (HC) as a carbon source in a mixture containing 2 g·L-1 of each alkane (dodecane and hexadecane), and 2 g·L-1 hexadecene. Both strains grew in the HC mixture without a lag phase, and for both strains, 30 % DOC was sufficient to reach the maximum values of biomass and lipids. To enhance lipid-rich biomass and enzyme production, a pulse fed-batch strategy was tested, for the first time, with the addition of one or three pulses of concentrated HC medium. The addition of three pulses of the HC mixture (total of 24 g·L-1 HC) did not hinder cell proliferation, and high protease (> 3000 U·L-1) and lipids concentrations of 3.4 g·L-1 and 4.3 g·L-1 were achieved in Y. lipolytica CBS 2075 and DSM 8218 cultures, respectively. Lipids from the CBS 2075 strain are rich in C16:0 and C18:1, resembling the composition of palm oil, considered suitable for the biodiesel industry. Lipids from the DSM 8218 strain were predominantly composed of C16:0 and C16:1, the latter being a valuable monounsaturated fatty acid used in the pharmaceutical industry. Y. lipolytica cells exhibited high intrinsic surface hydrophobicity (> 69 %), which increased in the presence of HC. A reduction in surface tension was observed in both Y. lipolytica cultures, suggesting the production of extracellular biosurfactants, even at low amounts. This study marks a significant advancement in the valorization of HC for producing high-value products by exploring the hydrophobic compounds metabolism of Y. lipolytica.


Assuntos
Alcanos , Alcenos , Técnicas de Cultura Celular por Lotes , Biomassa , Reatores Biológicos , Meios de Cultura , Yarrowia , Yarrowia/crescimento & desenvolvimento , Yarrowia/metabolismo , Alcanos/metabolismo , Reatores Biológicos/microbiologia , Meios de Cultura/química , Alcenos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/análise , Lipídeos/biossíntese , Lipídeos/análise , Oxigênio/metabolismo , Metabolismo dos Lipídeos
2.
Sci Rep ; 14(1): 6857, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514668

RESUMO

Concerns over environmental issues exists and desire to decrease of their extent, have directed efforts toward green energy production. Growth behavior of Anabaena vaginicola was determined in a photobioreator which illuminated internally (IIPBR) using LED bar light. Excessive heat generated in the IIPBR was taken care of by applying a novel air-cooled system. Further note in experimentation was to find favorable cultivation conditions in the IIPBR for A. vaginicola growth and its lipids production capacity. The following results are expressed: 80 µmol photons m-2 s-1 as light intensity, 0.5 g/l as NaNO3, and 120 ml/min as CO2 amount being expressed in terms of aeration rate. The findings were interpreted in terms of a two-component system where the genes encoded to the relevant proteins are present in cyanobacteria and their expressiveness depends on environmental stress. By determining growth rate constant as 0.11 d-1, the productivity in terms of biomass formation was calculated as 202.6 mg L-1 d-1. While rate of lipids production by the test cyanobacterium is 15.65 mg L-1 d-1. Based on total energy used for IIPBR performance, biomass productivity per unit power input equals to 0.74 g W-1 d-1 and this is in favorable position compared with other photobioreactors.


Assuntos
Cianobactérias , Microalgas , Fotobiorreatores , Luz , Biomassa , Lipídeos , Microalgas/metabolismo
3.
Chemosphere ; 352: 141515, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387659

RESUMO

Anaerobically digested swine wastewater (ASW) purification by microalgae provides a promising strategy for nutrients recovery, biomass production and CO2 capture. However, the characteristics of ASW from different cleaning processes vary greatly. At present, the cultivation of microalgae in ASW from different manure cleaning processes is rarely investigated and compared. That may bring uncertainty for microalgae growth using different ASW in large-scale application. Thus, the ASW from three cleaning processes were tested for cultivating microalgae, including manure dry collection (I), water flushing (II) and water submerging processes (III). The characteristics of ASW from three manure cleaning processes varied greatly such as nutrient and heavy metals levels. High concentration of ammonia and copper in ASW significantly inhibited microalgae growth. Fortunately, the supply of high CO2 (10%) effectively alleviated negative influences, ensuring microalgal growth at low dilution ratio. The characteristics of three ASW resulted in significant differences in microalgae growth and biomass components. The maximal biomass production in optimal diluted ASW-I, II and III reached 1.46 g L-1, 2.19 g L-1 and 2.47 g L-1, respectively. The removal of organic compounds, ammonia and phosphorus by optimal microalgae growth in diluted ASW-I, II and III was 50.6%/94.2%/64.7%, 63.7%/82.3%/57.6% and 83.2%/91.7%/59.7%, respectively. The culture in diluted ASW-I, II and III obtained the highest lipids production of 12.1 mg L-1·d-1, 16.5 mg L-1·d-1 and 19.4 mg L-1·d-1, respectively. The analysis of lipids compositions revealed that the proportion of saturated fatty acids accounted for 36.4%, 32.4% and 27.9 % in optimal diluted ASW-I, II and III, as ideal raw materials for biodiesel production.


Assuntos
Clorofíceas , Poluentes Ambientais , Microalgas , Scenedesmus , Animais , Suínos , Águas Residuárias , Biomassa , Esterco , Amônia , Dióxido de Carbono , Nitrogênio , Ácidos Graxos , Biocombustíveis , Água
4.
Environ Pollut ; 316(Pt 1): 120530, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36341826

RESUMO

A waste-based circular economy approach is proposed for the phycoremediation of an X-ray developer (XD) solution. The present study emphasizes the utilization of food waste (FW) and agri-compost media (ACM) as growth media for D. armatus for the subsequent bioremediation potential of XD solution-coupled lipid production. A 3:1 dilution (FW/ACM: XD.) was found to be suitable for the phycoremediation study of XD solution towards the % removal of biological oxygen demand (BOD), chemical oxygen demand (COD) and silver. The phycoremediation studies of diluted XD solution in FW demonstrated a 74.50% BOD removal, 81.69% COD removal, and 54.70% removal of silver. The growth of D. armatus in diluted XD solution in food waste was 1.37% lipid content. The phycoremediation of diluted XD solution with ACM resulted in 83.05% BOD removal, 88.88% COD removal and 56.30% silver removal with the concomitant lipid production of 1.42%. The optimal bioremediation coupled lipid production of D. armatus was observed on the 19th day of D. armatus cultivation in the developer effluent, along with food waste and agri-compost media, for 31 days. The study suggests a sustainable utilization of waste (FW and ACM) as a nutritive medium to scrutinize the phycoremediation of XD solution with a concomitant lipid production that can open up new avenues in phycoremediation coupled energy commodities production.


Assuntos
Microalgas , Eliminação de Resíduos , Águas Residuárias/química , Raios X , Prata , Alimentos , Lipídeos , Biomassa
5.
Bioresour Technol ; 339: 125502, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34304097

RESUMO

Septic tank effluent from rural areas was an ideal medium for cultivating oleaginous microalgae. However, the characteristics of septic tank effluents varied greatly due to the different incoming wastewater, and bring uncertain risks for algal growth. In this study, an oleaginous microalgae was cultivated in septic effluents from different mixed wastewater. The results showed that the effluent from pure toilet wastewater was the best medium to achieve the highest biomass yield (1.68 g·L-1) and productivity (154.6 mg·L-1·d-1). In contrast, the discharge of kitchen or laundry wastewater reduced the biomass production by 50.5-79.1%. That caused much lower lipids production in effluents from mixed wastewater regardless of its high lipids content and saturation degree. The results suggest that the discharge of kitchen or laundry wastewater bring risks for biomass and lipids production, and should be separated from the toilet wastewater before entering into septic tank.


Assuntos
Chlorella , Poluentes Ambientais , Microalgas , Lipídeos , Águas Residuárias
6.
Chemosphere ; 270: 129459, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33388504

RESUMO

Microalgae cultivation in anaerobic food wastewater was a feasible way for high biomass production and nutrients recycling. In this study, Chlorella pyrenoidosa culture on anaerobic food wastewater was processed outdoors using a pilot-scale tubular photobioreactor. The microalgae showed rapid growth in different seasons, achieving high biomass production of 1.83-2.10 g L-1 and specific growth rate of 0.73-1.59 d-1. The biological contamination and dissolved oxygen were controlled at suitable levels for algal growth in the tubular photobioreactor. Lipids content in harvested biomass was 8.1-15.3% of dried weight, and the analysis in fatty acids revealed high quality with long carbon chain length and high saturation. Additionally, algal growth achieved effective pollutants purification from wastewater, removing 42.3-53.8% of CODCr, 82.6-88.7% of TN and 59.7-67.6% of TP. This study gave a successful application for scaled-up microalgae culture in anaerobic food processing wastewater for biodiesel production and wastewater purification.


Assuntos
Chlorella , Microalgas , Anaerobiose , Biomassa , Manipulação de Alimentos , Nutrientes , Fotobiorreatores , Águas Residuárias
7.
Mar Pollut Bull ; 153: 111007, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32275554

RESUMO

Food waste constitutes the largest component of municipal solid waste in many urbanized societies. The current practice of disposing of biodegradable food waste mixed with other solid wastes to landfills is not sustainable and is environmentally undesirable. Moreover, the leakage of nutrient-rich food waste leachate (FWL) impacts the environment by eutrophication of the water body. Two robust microalgal species, Dunaliella tertiolecta (D. tertiolecta) and Cyanobacterium aponinum (C. aponinum), have been selected previously for the treatment of FWL because they can tolerate diluted FWL. However, growth suppression by some inhibiting factors, such as total suspended solids and organic nitrogen, limited biomass productivity, and substantial dilution (5-10% v/v FWL) was required. To alleviate this suppression, anaerobic bacterial digestion was proposed to pretreat FWL and convert certain nutrients such as organic nitrogen to ammonium. The pretreatment was optimized in neutral to slightly alkaline media, where a byproduct of biomethane up to 4.67 L methane/kg COD was produced. In addition, digestate after anaerobic ammonification can provide sufficient inorganic nutrients for subsequent microalgal biofuel production. Through batch cultivation, 50% (v/v) of anaerobic bacterial pretreated FWL digestate can be fed to D. tertiolecta, with biomass productivity of up to 0.88 g/L/day, and biomass productivity can be increased to 0.34 g/L/day for C. aponinum at 30% FWL digestate. Regarding the nutrient removal efficiency, 98.99% of total nitrogen and 65% of total phosphorus can be removed by D. tertiolecta, whereas more than 80% of total nitrogen and 65% of total phosphorus can be removed by C. aponinum. The use of anaerobic bacterial ammonification pretreatment can significantly improve the performance of subsequent microalgal treatments and has been shown to be a sustainable green technology for biofuel production and FWL recycling.


Assuntos
Biocombustíveis , Microalgas , Eliminação de Resíduos , Anaerobiose , Biomassa , Alimentos , Águas Residuárias
8.
Bioresour Technol ; 297: 122379, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31735698

RESUMO

Insufficient organics in anaerobic digestate of sludge limited algal mixotrophic culture and caused low lipids production. In this study, enhancing lipids production and pollutants removal by adding acidified starch wastewater was tested for Chlorella pyrenoidosa mixotrophic culture. The results showed that an optimal addition of acidified starch wastewater into anaerobic digestate of sludge (1:1, v/v) improved biomass and lipids production by 0.5-fold (to 2.59 g·L-1) and 3.2-fold (87.3 mg·L-1·d-1), respectively. The acidified starch wastewater addition also improved the quality of algal biodiesel with higher saturation (typically in C16:0 and C18:0). In addition, 62% of total organic carbon, 99% of ammonium and 95% of orthophosphate in mixed wastewater were effectively removed by microalgae. This study provides a promising way to improve biodiesel production and nutrients recovery from anaerobic digestate of sludge using waste carbon source.


Assuntos
Chlorella , Microalgas , Anaerobiose , Biomassa , Carbono , Lipídeos , Nutrientes , Esgotos , Águas Residuárias
9.
Chemosphere ; 244: 125509, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31812770

RESUMO

Anaerobically digested waste sludge contains very high concentrations of ammonium and phosphate that are difficult to be purified using traditional processes. Mixotrophic culture of microalgae is a potential way to achieve ammonium and phosphate removal, while harvesting considerable biomass for biodiesel production. In this study, four typical volatile organic acids that could be potentially produced from sludge fermentation were tested for algal mixotrophic culture in anaerobically digested waste sludge. The results showed that the addition of propionate and isovaleric acid had no significant improvement on biomass production, and even inhibited algal growth at low concentration. Fortunately, the addition of acetic and n-butyric acid (initial C/N = 10) increased biomass production by1.9-2.4 times compared to the blank culture. Higher biomass production increased ammonium and orthophosphate removal to 88.3-97.1% and 80.4-93.0%, respectively. Moreover, the optimal addition of volatile organic acids enhanced lipids production by 3.9-6.3 times, while achieving higher saturation degree in biodiesels. The results suggest that adding these optimal volatile organic acids is suitable to enhance nutrients recycling and algal biodiesel production from anaerobically digested waste sludge.


Assuntos
Eliminação de Resíduos Líquidos , Compostos de Amônio , Biocombustíveis , Biomassa , Chlorella/crescimento & desenvolvimento , Fermentação , Lipídeos/biossíntese , Microalgas/fisiologia , Nutrientes , Compostos Orgânicos , Reciclagem , Esgotos
10.
Water Res ; 147: 33-42, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30296607

RESUMO

Produced water (PW) is the largest waste stream generated by oil and gas industry. It is commonly treated by physical-chemical processes due to high salt content and poor biodegradability of water insoluble compounds, such as n-alkanes. N-alkanes can represent a major fraction of organic contaminants within PW. In this study the possibility of simultaneous n - alkane biodegradation and production of neutral lipids in a concentrated PW stream with A. borkumenis SK2 as the sole reactor inoculum was investigated. N-alkane removal efficiency up to 99.6%, with influent alkane COD of 7.4 g/L, was achieved in a continuously operated reactor system. Gas chromatography results also showed that the majority of other non-polar compounds present in the PW were biodegraded. Biodegradation of n-alkanes was accompanied by simultaneous production of neutral lipids, mostly wax ester (WE)-alike compounds. We demonstrate, that under nutrient limited conditions and 108.9 ±â€¯3.3 mg/L residual n-alkane concentration the accumulation of extracellular WE-alike compounds can be up to 12 times higher compared to intracellular, reaching 3.08 grams per litre of reactor volume (g/Lreactor) extracellularly and 0.28 g/Lreactor intracellularly. With residual n-alkane concentration of 311.5 ±â€¯34.2 mg/L accumulation of extracellular and intracellular WE-alike compounds can reach up to 6.15 and 0.91 g/Lreactor, respectively. To the best of our knowledge simultaneous PW treatment coupled with production of neutral lipids has never been demonstrated before.


Assuntos
Lipídeos , Água , Alcanos , Biodegradação Ambiental
11.
Bioresour Technol ; 198: 340-50, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26407348

RESUMO

A freshwater green algae Chlorella pyrenoidosa (C. pyrenoidosa) was cultured in outdoors using the diluted anaerobically digested activated sludge (ADAS). The outdoors batch culture in every season showed that C. pyrenoidosa can grow normally under natural conditions in the diluted ADAS (STE/ADAS=1.5/1, 3/1 and 5/1, v/v). Seasonal changes of environmental conditions significantly affected biomass growth and nutrient removal. Optimal biomass growth and nutrient removal was achieved at STE/ADAS=1.5/1 during summer culture, harvesting a maximum biomass concentration of 1.97 ± 0.21 g/L, average biomass productivity of 291.52 ± 33.74 g/m(3)/day (maximum value of 573.10 ± 41.82) and average lipids productivity of 37.49 ± 5.26 g/m(3)/day (maximum value of 73.70 ± 9.75); simultaneously, the microalgae growth effectively removed nutrients from the wastewater, including 105.6 ± 17.1 mg CODCr/L/day, 36.8 ± 6.1mg N/L/day and 6.1 ± 1.1 mg P/L/day.


Assuntos
Anaerobiose/fisiologia , Biomassa , Chlorella/crescimento & desenvolvimento , Esgotos/microbiologia , Técnicas de Cultura Celular por Lotes , Lipídeos , Águas Residuárias/análise
12.
Bioresour Technol ; 185: 40-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25746477

RESUMO

Microalgae cultivation using wastewater might be a suitable approach to support sustainable large-scale biomass production. Its compelling characteristics included the recycling of nutrients and water resources, reducing carbon emissions and harvesting available biomass. In outdoor batch and continuous cultures, Chlorella pyrenoidosa completely adapted to anaerobic digested starch processing wastewater and was the dominant microorganism in the photobioreactor. However, seasonal changes of environmental conditions significantly influenced biomass growth and lipid production. The long-term outdoor operation demonstrated that the biomass concentration and productivity in continuous operations at different hydraulic retention times (HRTs) can be successfully predicted using the kinetic growth parameters obtained from the batch culture. A moderate HRT (4days) in the summer provided the best microalgae and lipid production and achieved relatively high biomass concentrations of 1.29-1.62g/L, biomass productivities of 342.6±12.8mg/L/d and lipids productivities of 43.37±7.43mg/L/d.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Reatores Biológicos/microbiologia , Chlorella/fisiologia , Amido/metabolismo , Águas Residuárias/microbiologia , Anaerobiose/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Projetos Piloto
13.
Bioresour Technol ; 181: 54-61, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25638404

RESUMO

The cultivation of microalgae Chlorella pyrenoidosa (C. pyrenoidosa) using anaerobic digested starch wastewater (ADSW) and alcohol wastewater (AW) was evaluated in this study. Different proportions of mixed wastewater (AW/ADSW=0.176:1, 0.053:1, 0.026:1, v/v) and pure ADSW, AW were used for C. pyrenoidosa cultivation. The different proportions between ADSW and AW significantly influenced biomass growth, lipids production and pollutants removal. The best performance was achieved using mixed wastewater (AW/ADSW=0.053:1, v/v), leading to a maximal total biomass of 3.01±0.15 g/L (dry weight), lipids productivity of 127.71±6.31 mg/L/d and pollutants removal of COD=75.78±3.76%, TN=91.64±4.58% and TP=90.74±4.62%.


Assuntos
Álcoois/química , Chlorella/crescimento & desenvolvimento , Lipídeos/biossíntese , Nitrogênio/isolamento & purificação , Fósforo/isolamento & purificação , Amido/química , Águas Residuárias/química , Anaerobiose , Técnicas de Cultura Celular por Lotes , Análise da Demanda Biológica de Oxigênio , Biomassa , Chlorella/metabolismo , Ésteres/análise , Ácidos Graxos Voláteis/análise , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Compostos Orgânicos/isolamento & purificação
14.
Bioresour Technol ; 147: 130-134, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23994695

RESUMO

In the present study, ten microalgal strains found in fresh and saline waters were cultured, and used to conduct batch experiments in order to evaluate their potential contribution to nutrient removal and biofuel production. The growth rate of microalgae was inversely analogous to their initial concentration. Three freshwater strains were selected, based on their growth rate, and their behavior with synthetic wastewater was further investigated. The strains studied were the Scenedesmus rubescens (SAG 5.95), the Neochloris vigensis (SAG 80.80), and the Chlorococcum spec. (SAG 22.83), and higher growth rate was observed with S. rubescens. Total phosphorus removal at an initial phosphate concentration of 6-7 mg P/L in the synthetic wastewater, was 53%, 25% and 11% for N. vigensis, Chlorococcum spec., and S. rubescens, respectively. Finally, the lipid content was determined at 20th and 30th day of cultivation, and the highest amount was observed at the 20th day.


Assuntos
Lipídeos/biossíntese , Microalgas/metabolismo , Águas Residuárias , Purificação da Água , Microalgas/classificação , Microalgas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA