Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39189968

RESUMO

Lithiated Cu current collectors with a lean Li supply have been extensively explored as prospective composite anodes for constructing lithium metal batteries (LMBs) but suffer from low Coulombic efficiencies (CE) and uncontrollable dendrite growth. Herein, two hexaazanonaphthalene (HATN)-based compounds comprising rich conjugated aromatic rings and redox-active C═N groups are synthesized and exploited to modify the Cu surface for mediating smooth Li plating/stripping. Compared to the HATN compound interlinked through flexible sigma bonds, the one conjugated through dual sp2-carbon manifests a more rigid backbone, improved electric conductivity, and enhanced mesoporosity. As a result, Cu electrodes modified with the latter demonstrate enhanced CE and suppressed dendrites in both half and symmetric cells, apart from a stable operation over 250 cycles in the LiFePO4 full cells with a capacity retention of 94.9% at 1 C. This study signifies the tailoring of intramolecular conjugation and chain configuration of lithiophilic macromolecules to facilitate reversible Li deposition on Cu for achieving high-performance LMBs.

2.
ACS Appl Mater Interfaces ; 16(29): 38134-38146, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38989704

RESUMO

Lithium (Li) metal batteries (LMBs) have garnered significant research attention due to their high energy density. However, uncontrolled Li dendrite growth and the continuous accumulation of "dead Li" directly lead to poor electrochemical performance in LMBs, along with serious safety hazards. These issues have severely hindered their commercialization. In this study, a lithiophilic layer of Sn-Cu2O is constructed on the surface of copper foam (CF) grown with Cu nanowire arrays (SCCF) through a combination of electrodeposition and plasma reduction. Sn-Cu2O, with excellent lithiophilicity, reduces the Li nucleation barrier and promotes uniform Li deposition. Simultaneously, the high surface area of the nanowires reduces the local current density, further suppressing the Li dendrite growth. Therefore, at 1 mA cm-2, the half cells and symmetric cells achieve high Coulombic efficiency (CE) and stable operation for over 410 cycles and run smoothly for more than 1350 h. The full cells using an LFP cathode demonstrate a capacity retention rate of 90.6% after 1000 cycles at 5 C, with a CE as high as 99.79%, suggesting excellent prospects for rapid charging and discharging and long-term cyclability. This study provides a strategy for modifying three-dimensional current collectors for Li metal anodes, offering insights into the construction of stable, safe, and fast-charging LMBs.

3.
J Colloid Interface Sci ; 675: 226-235, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38968639

RESUMO

Although Li metal is considered the most potential anode for Li based batteries, the repeatedly large volume variation and low Coulombic efficiency (CE) are still serious challenges for commercial application. Herein, the interconnect closed hollow graphene spheres with electronic-ionic bi-functional conduction network containing Li4.4Sn nanoparticles loaded internally and ß-Li3PS4 solid electrolyte layer coated externally (ß-LPS/SG/Li4.4Sn) is proposed to achieve uniform and dense Li deposition. Density functional theory (DFT) calculation and experimental results show that Li4.4Sn owns larger Li binding energy and lower nucleation overpotential than spherical graphene (SG), thus being able to guide Li traversing and depositing inside the hollow spheres. The Tafel curves, Li+ diffusion activation energy and experimental results reveal that the ß-Li3PS4 coating layer significantly improves the ionic conductivity of the negative skeleton, covers the defect sites on the SG surface, provides continuous ion transmission channels and accelerates Li+ migration rate. The synergy of both can inhibit the formation of dendritic Li and reduce side reaction between freshly deposited lithium and the organic electrolyte. It's found that Li is preferentially deposited within the SG, evenly deposited on the spherical shell surface until it's completely filled to obtain a dense lithium layer without tip effect. As a result, the ß-LPS/SG/Li4.4Sn anode exhibits a long life of up to 2800 h, an extremely low overpotential (∼13 mV) and a high CE of 99.8 % after 470 cycles. The LiFePO4-based full cell runs stably with a high capacity retention of 86.93 % after 800 cycles at 1C. It is considered that the novel structure design of Li anode skeleton with electron-ionic bi-functional conduction is a promising direction to construct long-term stable lithium metal anodes.

4.
ACS Appl Mater Interfaces ; 16(20): 26288-26298, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38725121

RESUMO

Sulfide-based all-solid-state lithium batteries (ASSLBs) have attracted unprecedented attention in the past decade due to their excellent safety performance and high energy storage density. However, the sulfide solid-state electrolytes (SSEs) as the core component of ASSLBs have a certain stiffness, which inevitably leads to the formation of pores and cracks during the production process. In addition, although sulfide SSEs have high ionic conductivity, the electrolytes are unstable to lithium metal and have non-negligible electronic conductivity, which severely limits their practical applications. Herein, a grain boundary electronic insulation strategy through in situ polymer encapsulation is proposed for this purpose. A polymer layer with insulating properties is applied to the surface of the Li5.5PS4.5Cl1.5 (LPSC) electrolyte particles by simple ball milling. In this way, we can not only achieve a dense electrolyte pellet but also improve the stability of the Li metal anode and reduce the electronic conductivity of LPSC. This strategy of electronic isolation of the grain boundaries enables stable deposition/stripping of the modified electrolyte for more than 2000 h at a current density of 0.5 mA cm-1 in a symmetrical Li/Li cell. With this strategy, a full cell with Li(Ni0.8Co0.1Mn0.1)O2 (NCM811) as the cathode shows high performance including high specific capacity, improved high-rate capability, and long-term stability. Therefore, this study presents a new strategy to achieve high-performance sulfide SSEs.

5.
Small ; 20(34): e2402108, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38586916

RESUMO

Lithium metal is a highly promising anode for next-generation high-energy-density rechargeable batteries. Nevertheless, its practical application faces challenges due to the uncontrolled lithium dendrites growth and infinite volumetric expansion during repetitive cycling. Herein, a composite lithium anode is designed by mechanically rolling and pressing a cerium oxide-coated carbon textile with lithium foil (Li@CeO2/CT). The in situ generated cerium dioxide (CeO2) and cerium trioxide (Ce2O3) form a heterojunction with a reduced lithium-ion migration barrier, facilitating the rapid lithium ions migration. Additionally, both CeO2 and Ce2O3 exhibit higher adsorbed energy with lithium, enabling faster and more distributed interfacial transport of lithium ions. Furthermore, the high specific surface area of 3D skeleton can effectively reduce local current density, and alleviate the lithium volumetric changes upon plating/stripping. Benefiting from this unique structure, the highly compact and uniform lithium deposition is constructed, allowing the Li@CeO2/CT symmetric cells to maintain a stable cycling for over 500 cycles at an exceptional high current density of 100 mA cm-2. When paired with LiNi0.91Co0.06Mn0.03O2 (NCM91) cathode, the cell achieves 74.3% capacity retention after 800 cycles at 1 C, and a remarkable capacity retention of 81.1% after 500 cycles even at a high rate of 4  C.

6.
Small ; 20(34): e2312129, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38593332

RESUMO

Lithium (Li) metal is widely recognized as a viable candidate for anode material in future battery technologies due to its exceptional energy density. Nevertheless, the commercial Li foils in common use are too thick (≈100 µm), resulting in a waste of Li resources. Herein, by applying the vacuum evaporation plating technology, the ultra-thin Li foils (VELi) with high purity, strong adhesion, and thickness of less than 10 µm are successfully prepared. The manipulation of evaporation temperature allows for convenient regulation of the thickness of the fabricated Li film. This physical thinning method allows for fast, continuous, and highly accurate mass production. With a current density of 0.5 mA cm-2 for a plating amount of 0.5 mAh cm-2, VELi||VELi cells can stably cycle for 200 h. The maximum utilization of Li is already more than 25%. Furthermore, LiFePO4||VELi full cells present excellent cycling performance at 1 C (1 C = 155 mAh g-1) with a capacity retention rate of 90.56% after 240 cycles. VELi increases the utilization of active Li and significantly reduces the cost of Li usage while ensuring anode cycling and multiplication performance. Vacuum evaporation plating technology provides a feasible strategy for the practical application of ultra-thin Li anodes.

7.
ChemistryOpen ; : e202400041, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619325

RESUMO

Lithium-ion secondary batteries (LIB) with high energy density have attracted much attention for electric vehicle (EV) applications. However, LIBs have a safety problem because these batteries contain a flammable organic electrolyte. As such, all-solid secondary batteries that are not flammable have been extensively reported recently. In this study, we have focused on polymer electrolytes, which is flexible and is expected to address the safety problem. However, the conventional polymer electrolytes have low electrial conductivity at room temperature. Various attempts have been made to solve this problem, such as the addition of inorganic fillers and ionic liquids; however, these composite polymer electrolytes have not yet reached a practical level of lithium-ion conductivity. In this study, high electrical conductivity and lithium dendrite formation-free PEO based composite electrolytes are developed with both a filler of Li6,4La3Zr1.4Ta0.6O12 and liquid plasticizers of tetraethylene glycol dimethyl ether and 1,2 dimethoxyethane. The proposed flexible polymer electrolyte shows a high electrical conduciviy of 6.01×10-4 S cm-1 at 25 °C.

8.
ACS Appl Mater Interfaces ; 16(13): 16351-16362, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38515323

RESUMO

Poly(ethylene oxide) (PEO)-based electrolytes have been extensively studied for all-solid-state lithium-metal batteries due to their excellent film-forming capabilities and low cost. However, the limited ionic conductivity and poor mechanical strength of the PEO-based electrolytes cannot prevent the growth of undesirable lithium dendrites, leading to the failure of batteries. Metal-organic frameworks (MOFs) are functional materials with a periodic porous structure that can improve the electrochemical performance of PEO-based electrolytes. However, the enhancement effect of MOFs with different metal centers and the interaction mechanism with PEO remain unclear. Herein, MOF-74s with Cu or Ni centers are prepared and used as fillers of PEO-based electrolytes. Adding 15 wt % of Cu-MOF-74 to the PEO-based electrolyte (15%Cu-MOF/P-Li) effectively improves the ionic conductivity, lithium transference number, and mechanical strength of the PEO-based electrolyte simultaneously. Furthermore, the ordered pore channels of Cu-MOF-74 provide uniform Li-ion transport pathways, facilitating homogeneous Li+ deposition. As a result, the lithium symmetric cell with 15%Cu-MOF/P-Li shows stable cycles for 1080 h at 0.1 mA cm-2 and 0.1 mAh cm-2, and the Li | 15% Cu-MOF/P-Li | LFP full cell exhibits a long cycle life up to 200 cycles at 60 °C and 0.5 C, with a capacity retention rate of 89.7%.

9.
Small ; 20(32): e2311961, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38461546

RESUMO

Optimizing the electrode/electrolyte interface structure is the key to realizing high-voltage Li-metal batteries (LMBs). Herein, a functional electrolyte is introduced to synergetically regulate the interface layer structures on the high-voltage cathode and the Li-metal anode. Saccharin sodium (NaSH) as a multifunctional electrolyte additive is employed in fluorinated solvent-based electrolyte (FBE) for robust interphase layer construction. On the one hand, combining the results of ex-situ techniques and in-situ electrochemical dissipative quartz crystal microbalance (EQCM-D) technique, it can be seen that the solid electrolyte interface (SEI) layer constructed by NaSH-coupled fluoroethylene carbonate (FEC) on Li-metal anode significantly inhibits the growth of lithium dendrites and improves the cyclic stability of the anode. On the other hand, the experimental results also confirm that the cathode-electrolyte interface (CEI) layer induced by NaSH-coupled FEC effectively protects the active materials of LiCoO2 and improves their structural stability under high-voltage cycling, thus avoiding the material rupture. Moreover, theoretical calculation results show that the addition of NaSH alters the desolvation behavior of Li+ and enhances the transport kinetics of Li+ at the electrode/electrolyte interface. In this contribution, the LiCoO2ǁLi full cell containing FBE+NaSH results in a high capacity retention of 80% after 530 cycles with a coulombic efficiency of 99.8%.

10.
ACS Nano ; 18(6): 5068-5078, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38289162

RESUMO

Solid-state batteries based on lithium metal anodes are expected to meet safety challenges while maintaining a high energy density. One major challenge lies in the fast interface degradation between the electrolyte and the lithium metal. Herein, we propose a quasi-3D interphase on a garnet solid-state electrolyte (SSE) by introducing lithiophilic nanotrenches. The nanotrenches created by the lithiophilic nanowire array can induce the superfilling of lithium metal into the nanotrenches, resulting in a low interfacial resistance (4 Ω cm2). Moreover, the embedded lithium metal anode optimizes the lithium deposition/stripping behavior not limited at the Li-SSE interface (∼1-10 nm) but extended into the bulk lithium anode (∼10 µm), realizing a high critical current density of 1.8-2.0 mA cm-2 at room temperature (RT). The embedded lithium metal anode is further applied in Li||LiFePO4 solid-state batteries, demonstrating a high reversible areal capacity of ∼3.0 mAh cm-2 at RT.

11.
Adv Mater ; 36(13): e2311553, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38124361

RESUMO

Direct regeneration of spent lithium-ion batteries has received wide attention owing to its potential for resource reuse and environmental benefits. The repair effect of direct regeneration methods undergoing heterogeneous repair process is usually inferior, while homogenous repair process plays a vital role to achieve satisfactory repair results. However, the practical applications of current homogeneous repair methods are challenged by the complex operations and relatively high costs owing to the requirement of additional heating or pressurization. Herein, this work proposes a simple strategy to achieve homogeneous repair of spent cathode materials under relatively mild conditions by uniformly precoating lithium source at room temperature and atmospheric pressure. Followed by annealing, highly degraded LiNi0.83Co0.12Mn0.05O2 with severe Li deficiency and irreversible phase transition is repaired to have an initial capacity of 181.6 mAh g-1 and capacity retention of 80.7% after 150 cycles at 0.5 C. The lithium source used in this strategy is from the spent lithium anode. Moreover, this strategy is suitable for the direct regeneration of various layer oxide cathode materials with different failure degrees. This work provides both theoretical guidance and practical examples for the straightforward, effective, and universally applicable direct regeneration methods.

12.
Adv Mater ; 35(49): e2308134, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37823718

RESUMO

Nonaqueous Li-O2 battery (LOB) represents one of the promising next-gen energy storage solutions owing to its ultrahigh energy density but suffers from problems such as high charging overpotential, slow redox kinetics, Li anode corrosion, etc., calling for a systemic optimization of the battery configuration and structural components. Herein, an ingenious "trinity" design of LOB is initiated by implementing a hollowed cobalt metal organic framework (MOF) impregnating iodized polypyrrole simultaneously as the cathode catalyst, anode protection layer, and slow-release capsule of redox mediators, so as to systemically address issues of impeded mass transport and redox kinetics on the cathode, dendrite growth, and surface corrosion on the anode, as well as limited intermediate solubility in the low donor-number (DN) solvent. As a result of the systemic effort, the LOB constructed demonstrates an ultralow discharge/charge polarization of 0.2 V, prolonged cycle life of 1244 h and total discharge capacity of 28.41 mAh cm-2 . Mechanistic investigations attribute the superb LOB performance to the redox-mediated solution growth mechanism of crystalline Li2 O2 with both enhanced reaction kinetics and reversibility. This study offers a paradigm in designing smart materials to raise the performance bar of Li-O2 battery toward realistic applications.

13.
Nanomaterials (Basel) ; 13(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37887933

RESUMO

Dendrite growth has been the main trouble preventing the practical application of Li metal anodes. Herein, we present how an Fe3O4-PVDF composite network prepared by using electrospinning has been designed to protect lithium metal anodes effectively. In the symmetrical cells test, the cell with the Fe3O4-PVDF composite network maintains good cycle performance after 600 h (500 cycles) at a current density of 1 mA cm-2 and a plating/stripping capacity of 1 mAh cm-2. The bulky Li dendrite is suppressed and a uniform Li deposition remains after long cycling. The characteristics of this engineered separator are further demonstrated in Li-S full cells with a good cycle performance (capacity of 419 mAh g-1 after 300 cycles at 0.5 C). This work provides a new idea for the protection of lithium metal anodes.

14.
Molecules ; 28(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37375134

RESUMO

Solid-state lithium metal batteries offer superior energy density, longer lifespan, and enhanced safety compared to traditional liquid-electrolyte batteries. Their development has the potential to revolutionize battery technology, including the creation of electric vehicles with extended ranges and smaller more efficient portable devices. The employment of metallic lithium as the negative electrode allows the use of Li-free positive electrode materials, expanding the range of cathode choices and increasing the diversity of solid-state battery design options. In this review, we present recent developments in the configuration of solid-state lithium batteries with conversion-type cathodes, which cannot be paired with conventional graphite or advanced silicon anodes due to the lack of active lithium. Recent advancements in electrode and cell configuration have resulted in significant improvements in solid-state batteries with chalcogen, chalcogenide, and halide cathodes, including improved energy density, better rate capability, longer cycle life, and other notable benefits. To fully leverage the benefits of lithium metal anodes in solid-state batteries, high-capacity conversion-type cathodes are necessary. While challenges remain in optimizing the interface between solid-state electrolytes and conversion-type cathodes, this area of research presents significant opportunities for the development of improved battery systems and will require continued efforts to overcome these challenges.

15.
Molecules ; 28(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37241847

RESUMO

High-energy-density lithium metal batteries with high safety and stability are urgently needed. Designing the novel nonflammable electrolytes possessing superior interface compatibility and stability is critical to achieve the stable cycling of battery. Herein, the functional additive dimethyl allyl-phosphate and fluoroethylene carbonate were introduced to triethyl phosphate electrolytes to stabilize the deposition of metallic lithium and accommodate the electrode-electrolyte interface. In comparison with traditional carbonate electrolyte, the designed electrolyte shows high thermostability and inflaming retarding characteristics. Meanwhile, the Li||Li symmetrical batteries with designed phosphonic-based electrolytes exhibit a superior cycling stability of 700 h at the condition of 0.2 mA cm-2, 0.2 mAh cm-2. Additionally, the smooth- and dense-deposited morphology was observed on an cycled Li anode surface, demonstrating that the designed electrolytes show better interface compatibility with metallic lithium anodes. The Li||LiNi0.8Co0.1Mn0.1O2 and Li||LiNi0.6Co0.2Mn0.2O2 batteries paired with phosphonic-based electrolytes show better cycling stability after 200 and 450 cycles at the rate of 0.2 C, respectively. Our work provides a new way to ameliorate nonflammable electrolytes in advanced energy storage systems.

16.
Adv Sci (Weinh) ; 10(22): e2301386, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37199701

RESUMO

The market demand for energy pushes researchers to pay a lot of attention to Li-S batteries. However, the 'shuttle effect', the corrosion of lithium anodes, and the formation of lithium dendrites make the poor cycling performances (especially under high current densities and high sulfur loading) of Li-S batteries, which limit their commercial applications. Here, a separator is prepared and modified with Super P and LTO (abbreviation SPLTOPD) through a simple coating method. The LTO can improve the transport ability of Li+ cations, and the Super P can reduce the charge transfer resistance. The prepared SPLTOPD can effectively barrier the pass-through of polysulfides, catalyze the reactions of polysulfides into S2- , and increase the ionic conductivity of the Li-S batteries. The SPLTOPD can also prevent the aggregation of insulating sulfur species on the surface of the cathode. The assembled Li-S batteries with the SPLTOPD can cycle 870 cycles at 5 C with the capacity attenuation of 0.066% per cycle. When the sulfur loading is up to 7.6 mg cm-2 , the specific discharge capacity at 0.2 C can reach 839 mAh g-1 , and the surface of lithium anode after 100 cycles does not show the existence lithium dendrites or a corrosion layer. This work provides an effective way for the preparation of commercial separators for Li-S batteries.

17.
Adv Mater ; 35(25): e2301312, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36999377

RESUMO

In lithium-metal batteries (LMBs), the compatibility of Li anode and conventional lithium hexafluorophosphate-(LiPF6 ) carbonate electrolyte is poor owing to the severe parasitic reactions. Herein, to resolve this issue, a delicately designed additive of potassium perfluoropinacolatoborate (KFPB) is unprecedentedly synthesized. On the one hand, KFPB additive can regulate the solvation structure of the carbonate electrolyte, promoting the formation of Li+ FPB- and K+ PF6 - ion pairs with lower lowest unoccupied molecular orbital (LUMO) energy levels. On the other hand, FPB- anion possesses strong adsorption ability on Li anode. Thus, anions can preferentially adsorb and decompose on the Li-anode surface to form a conductive and robust solid-electrolyte interphase (SEI) layer. Only with a trace amount of KFPB additive (0.03 m) in the carbonate electrolyte, Li dendrites' growth can be totally suppressed, and Li||Cu and Li||Li half cells exhibit excellent Li-plating/stripping stability upon cycling. Encouragingly, KFPB-assisted carbonate electrolyte enables high areal capacity LiCoO2 ||Li, LiNi0.8 Co0.1 Mn0.1 O2 (NCM811)||Li, and LiNi0.8 Co0.05 Al0.15 O2 (NCA)||Li LMBs with superior cycling stability, showing its excellent universality. This work reveals the importance of designing novel additives to regulate the solvation structure of carbonate electrolytes in improving its interface compatibility with the Li anode.

18.
ACS Appl Mater Interfaces ; 15(14): 18333-18342, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36976832

RESUMO

The free transport of anions through commercial polyolefin separators used in lithium metal batteries (LMBs) gives rise to concentration polarization and rapid growth of lithium dendrites, leading to poor performance and short circuits. Here, a new poly(ethylene-co-acrylic acid) (EAA) separator with functional active sites (i.e., carboxyl groups) distributing along the pore surface was fabricated, forming bioinspired ion-conducting nanochannels within the separator. As the carboxyl groups effectively desolvated Li+ and immobilized anion, the as-prepared EAA separator selectively accelerated the transport of Li+ with transference number of Li+ (tLi+) up to 0.67, which was further confirmed by molecular dynamics simulations. The battery with the EAA separator can be stably cycled over 500 h at 5 mA cm-2. The LMBs with the EAA separator have exceptional electrochemical performance of 107 mAh g-1 at 5 C and a capacity retention of 69% after 200 cycles. This work provides new commercializable separators toward dendrite-free LMBs.

19.
Sci Bull (Beijing) ; 67(2): 141-150, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36546007

RESUMO

Electrolytes are widely considered as a key component in Li-O2 batteries (LOBs) because they greatly affect the discharge-charge reaction kinetics and reversibility. Herein, we report that 1,3-dimethyl-2-imidazolidinone (DMI) is an excellent electrolyte solvent for LOBs. Comparing with conventional ether and sulfone based electrolytes, it has higher Li2O2 and Li2CO3 solubility, which on the one hand depresses cathode passivation during discharge, and on the other hand promotes the liquid-phase redox shuttling during charge, and consequently lowers the overpotential and improves the cyclability of the battery. However, despite the many advantages at the cathode side, DMI is not stable with bare Li anode. Thus, we have developed a pretreatment method to grow a protective artificial solid-state electrolyte interface (SEI) to prevent the unfavorable side-reactions on Li. The SEI film was formed via the reaction between fluorine-rich organic reagents and Li metal. It is composed of highly Li+-conducting LixBOy, LiF, LixNOy, Li3N particles and some organic compounds, in which LixBOy serves as a binder to enhance its mechanical strength. With the protective SEI, the coulombic efficiency of Li plating/stripping in DMI electrolyte increased from 20% to 98.5% and the fixed capacity cycle life of the assembled LOB was elongated to 205 rounds, which was almost fivefold of the cycle life in dimethyl sulfoxide (DMSO) or tetraglyme (TEGDME) based electrolytes. Our work demonstrates that molecular polarity and ionic solvation structure are the primary issues to be considered when designing high performance Li-O2 battery electrolytes, and cross-linked artificial SEI is effective in improving the anodic stability.

20.
ACS Nano ; 16(11): 17891-17910, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36356218

RESUMO

Lithium metal is regarded as the most potential anode material for improving the energy density of batteries due to its high specific capacity and low electrode potential. However, the practical application of lithium-metal anodes (LMAs) still faces severe challenges such as uncontrollable dendrites growth and large volume expansion. The development of functional nanomaterials has brought opportunities for the revival of LMAs. Among them, nanofibrous materials show great application potential for LMAs protection due to their distinct functional and structural features. Here, the latest research progress in nanofibrous materials for LMAs is systematically outlined. First, the problems existing in the practical application of LMAs are analyzed. Then, prospective strategies and recent research progress toward stable LMAs based on nanofibrous materials are summarized from the aspects of artificial protective layers, three-dimensional frameworks, separators, and solid-state electrolytes. Finally, the future development of nanofibrous materials for the protection of lithium-metal batteries is summarized and prospected. This review establishes a close connection between nanofibrous materials and LMA modification and provides insight for the development of high-safety lithium-metal batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA