RESUMO
Maternal nutrition is pivotal for proper fetal development, with one-carbon metabolites (OCM) playing a key role in fetal epigenetic programming through DNA and histone methylation. The study aimed to investigate the effects of nutrient restriction and OCM supplementation on fetal liver metabolomics in pregnant beef-heifers, focusing on metabolites and pathways associated with amino acid, vitamin and cofactor, carbohydrate, and energy metabolism at day 63 of gestation. Thirty-one crossbred Angus heifers were artificially inseminated and allocated to 4 nutritional treatments in a 2â ×â 2 factorial arrangement of treatments, with the 2 factors being dietary intake/rate of gain (control-diet [CON]; 0.60 kg/d ADG, vs. restricted-diet [RES]; -0.23 kg/d ADG) and OCM supplementation (supplemented [+OCM] vs. not supplemented [-OCM]). The resulting treatment groups-CONâ -â OCM, CONâ +â OCM, RESâ -â OCM, and RESâ +â OCM were maintained for 63 day post-breeding. Following this period, fetal liver tissues were collected and subjected to metabolomic analysis using UPLC-tandem mass-spectrometry. We identified 288 metabolites, with the majority (nâ =â 54) being significantly influenced by the main effect of gain (Pâ ≤â 0.05). Moreover, RES showed decreased abundances of most metabolites in pathways such as lysine metabolism; leucine, isoleucine, and valine metabolism; and tryptophan metabolism, compared to CON. Supplementation with OCM vs. no OCM supplementation, resulted in greater abundance of metabolites (Pâ ≤â 0.05) affecting pathways associated with methionine, cysteine, S-adenosylmethionine and taurine metabolism; guanidino and acetamido metabolism; and nicotinate and nicotinamide metabolism. Notably, OCM supplementation with a moderate rate of gain increased the concentrations of ophthalmate, N-acetylglucosamine, and ascorbic-acid 3-sulfate, which are important for proper fetal development (Pâ ≤â 0.05). Nutrient restriction reduced the majority of liver metabolites, while OCM supplementation increased a smaller number of metabolites. Thus, OCM supplementation may be protective of metabolite concentrations in key developmental pathways, which could potentially enhance fetal development under nutrient-restricted conditions.
Maternal nutrition is crucial for pregnancy outcomes, influencing offspring health and productivity. Poor nutrition during pregnancy can lead to fetal growth restrictions, impacting liver development. Such changes can increase the risk of metabolic syndromes and predispose them to impaired immune function. In cattle, optimal nutrition during early pregnancy is essential for reproductive efficiency and herd health. This period is critical for developmental programming through epigenetic changes triggered by environmental or genetic factors. These modifications are heritable which are influenced by maternal diet and play a critical role in determining health outcomes post-birth, relying significantly on the availability of one-carbon metabolites (OCM) like methionine, choline, folate, and vitamin B12. Supplementing these nutrients during early gestation may counteract the negative effects of poor nutrition. This study explores the impact of OCM supplementation and dietary restrictions on the fetal liver metabolism in beef heifers during early gestation. Our findings showed that dietary restrictions decrease fetal liver metabolites, whereas OCM supplementation increases certain metabolites, indicating a compensatory effect to support fetal development under nutrient-restricted conditions. Highlighting the importance of maternal nutrition, our findings provide valuable insights for developing nutritional strategies to enhance livestock efficiency and inform dietary guidelines during pregnancy for better health outcomes.
Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Dieta , Suplementos Nutricionais , Fígado , Animais , Bovinos/fisiologia , Feminino , Fígado/metabolismo , Gravidez , Ração Animal/análise , Dieta/veterinária , Feto/metabolismo , Metabolômica , Metaboloma , Fenômenos Fisiológicos da Nutrição MaternaRESUMO
This study aims to reveal the effect of acteoside on gouty arthritis(GA) in rats based on liver metabolomics. The ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was employed to search for the potential biomarkers and metabolic pathways. SD rats were randomly assigned into blank, model, colchicine(0.3 mg·kg~(-1)), and high-, medium-, low-dose(200, 100, and 50 mg·kg~(-1), respectively) acteoside groups(n=7). The rats were administrated once a day for 7 continuous days. Monosodium urate(MSU) was used to induce GA model in rats during administration. The degree of joint swelling and pathological changes of synovial tissue in rats were observed, and the levels of interleukin(IL)-1ß, IL-18 and tumor necrosis factor(TNF)-α in the synovial tissue of rats were measured. UPLC-Q-TOF-MS was employed to collect rat liver data, and Progenesis QI and EZ info were used for data analysis. Human Metabolomics Database(HMDB) and Kyoto Encyclopedia of Genes and Genomes(KEGG) were employed to predict the potential biomarkers and metabolic pathways. The results showed that acteoside alleviated joint swelling, reduced synovial tissue damage, and lowered the levels of inflammatory cytokines in GA rats. A total of 19 common biomarkers were identified, 17 of which can be regulated by acteoside. Seven metabolic pathways were enriched, such as glycerophospholipid metabolism, linoleic acid metabolism, and taurine and hypotaurine metabolism, among which glycerophospholipid metabolism was strongly disturbed. The metabolomics analysis suggested that acteoside may down-regulate the expression of inflammatory cytokines and alleviate the symptoms of GA rats by regulating glycerophospholipid metabolism, linoleic acid metabolism, and taurine and hypotaurine metabolism. The findings provide a reference for future research and development of acteoside.
Assuntos
Artrite Gotosa , Glucosídeos , Polifenóis , Taurina/análogos & derivados , Humanos , Ratos , Animais , Artrite Gotosa/induzido quimicamente , Artrite Gotosa/tratamento farmacológico , Ácido Linoleico , Ratos Sprague-Dawley , Metabolômica , Fígado/metabolismo , Citocinas , Biomarcadores/metabolismo , Glicerofosfolipídeos , Cromatografia Líquida de Alta PressãoRESUMO
Microplastic (MP) toxicity has attracted widespread attention, whereas before triggering hepatotoxicity, ingested MPs first undergo transportation and digestion processes in the gastrointestinal tract, possibly interacting with the gastrointestinal contents (GIC). More alarming is the need for more understanding of how this process may impact the liver health of aged animals. This study selected old mice. Firstly, we incubated polystyrene microplastics (PS-MPs, 1 µm) with GIC extract. The results of SEM/EDS indicated a structural alteration in PS-MPs. Additionally, impurities resembling corona, rich in heteroatoms (O, N, and S), were observed. This resulted in an enhanced aggregating phenomenon of MPs. We conducted a 10-day experiment exposing aged mice to four concentrations of PS-MPs, ranging from 1 × 103 to 1 × 1012 particles/L. Subsequent measurements of tissue pathology and body and organ weights were conducted, revealing alterations in liver structure. In the liver, 12 crucial metabolites were found by LC-MS technology, including purines, lipids, and amino acids. The AMPK/FoxO pathway was enriched, activated, and validated in western blotting results. We also comprehensively examined the innate immune system, inflammatory factors, and oxidative stress indicators. The results indicated decreased C3 levels, stable C4 levels, inflammatory factors (IL-6 and IL-8), and antioxidant enzymes were increased to varying degrees. PS-MPs also caused DNA oxidative damage. These toxic effects exhibited a specific dose dependence. Overall, after the formation of the gastrointestinal corona, PS-MPs subsequently impact various cellular processes, such as cycle arrest (p21), leading to hepatic and health crises in the elderly. The presence of gastrointestinal coronas also underscores the MPs' morphology and characteristics, which should be distinguished after ingestion.
Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Microplásticos , Humanos , Idoso , Animais , Camundongos , Microplásticos/toxicidade , Plásticos , Proteínas Quinases Ativadas por AMP , Poliestirenos/toxicidade , Trato GastrointestinalRESUMO
Duck hepatitis A virus type 1 (DHAV-1) can cause severe liver damage in infected ducklings and is a fatal and contagious pathogen that endangers the Chinese duck industry. The objective of this study was to explore the correlation mechanism of liver metabolism-gut microbiota in DHAV-1 infection. Briefly, liquid chromatography-mass spectrometry and 16S rDNA sequencing combined with multivariate statistical analysis were used to evaluate the effects of DHAV-1 infection on liver metabolism, gut microbiota regulation, and other potential mechanisms in ducklings. In DHAV-1-infected ducklings at 72 h postinfection, changes were found in metabolites associated with key metabolic pathways such as lipid metabolism, sugar metabolism, and nucleotide metabolism, which participated in signaling networks and ultimately affecting the function of the liver. The abundance and composition of gut microbiota were also changed, and gut microbiota is significantly involved in lipid metabolism in the liver. The evident correlation between gut microbiota and liver metabolites indicates that DHAV-host gut microbiome interactions play important roles in the development of duck viral hepatitis (DVH).
Assuntos
Microbioma Gastrointestinal , Vírus da Hepatite do Pato , Hepatite Viral Animal , Infecções por Picornaviridae , Doenças das Aves Domésticas , Animais , Vírus da Hepatite do Pato/fisiologia , Patos , Infecções por Picornaviridae/veterinária , GalinhasRESUMO
Background: Penthorum chinense Pursh (PCP) is widely utilized in China to treat a variety of liver diseases. It has been shown that flavonoids inhibit inflammation and have the potential to attenuate tissue damage and fibrosis. However, the mechanisms underlying how total flavonoids isolated from PCP (TFPCP) exert their anti-fibrotic effects remain unclear. Methods: The chemical composition of TFPCP was determined using UHPLC-Q-Orbitrap HRMS. Subsequently, rats were randomly assigned to a control group (Control), a carbon tetrachloride (CCl4)-induced hepatic fibrosis model group (Model), a positive control group [0.2 mg/(kgâday)] of Colchicine), and three TFPCP treatment groups [50, 100, and 150 mg/(kgâday)]. All substances were administered by gavage and treatments lasted for 9 weeks. Simultaneously, rats were intraperitoneally injected with 10%-20% CCl4 for 9 weeks to induce liver fibrosis. At the end of the experiment, the liver ultrasound, liver histomorphological, biochemical indicators, and inflammatory cytokine levels were tested respectively. The underlying mechanisms were assessed using Western blot, immunohistochemistry, immunofluorescence, RT-qPCR, and metabolomics. Results: Fourteen flavonoids were identified in TFPCP. Compared with control animals, CCl4-treated rats demonstrated obvious liver injury and fibrosis, manifested as increases in gray values, distal diameter of portal vein (DDPV) and a decrease in blood flow velocity (VPV) in the ultrasound analysis; increased biochemical index values (serum levels of ALT, AST, TBIL, and ALP); marked increases in the contents of fibrotic markers (PC III, COL4, LN, HA) and inflammatory factors (serum TNF-α, IL-6, and IL-1ß); and significant pathological changes. However, compared with the Model group, the ultrasound parameters were significantly improved and the serum levels of inflammatory cytokines were reduced in the TFPCP group. In contrast, the expression of TGF-ß1, TLR4, and MyD88, as well as the p-P65/P65 and p-IκBα/IκBα ratios, were considerably reduced following TFPCP treatment. In addition, we identified 32 metabolites exhibiting differential abundance in the Model group. Interestingly, TFPCP treatment resulted in the restoration of the levels of 20 of these metabolites. Conclusion: Our findings indicated that TFPCP can ameliorate hepatic fibrosis by improving liver function and morphology via the inactivation of the TLR4/MyD88-mediated NF-κB pathway and the regulation of liver metabolism.
RESUMO
In wild animals, diet and gut microbiota interactions are critical moderators of metabolic functions and are highly contingent on habitat conditions. Challenged by the extreme conditions of high-altitude environments, the strategies implemented by highland animals to adjust their diet and gut microbial composition and modulate their metabolic substrates remain largely unexplored. By employing a typical human commensal species, the Eurasian tree sparrow (Passer montanus, ETS), as a model species, we studied the differences in diet, digestive tract morphology and enzyme activity, gut microbiota, and metabolic energy profiling between highland (the Qinghai-Tibet Plateau, QTP; 3230 m) and lowland (Shijiazhuang, Hebei; 80 m) populations. Our results showed that highland ETSs had enlarged digestive organs and longer small intestinal villi, while no differences in key digestive enzyme activities were observed between the two populations. The 18S rRNA sequencing results revealed that the dietary composition of highland ETSs were more animal-based and less plant-based than those of the lowland ones. Furthermore, 16S rRNA sequencing results suggested that the intestinal microbial communities were structurally segregated between populations. PICRUSt metagenome predictions further indicated that the expression patterns of microbial genes involved in material and energy metabolism, immune system and infection, and xenobiotic biodegradation were strikingly different between the two populations. Analysis of liver metabolomics revealed significant metabolic differences between highland and lowland ETSs in terms of substrate utilization, as well as distinct sex-specific alterations in glycerophospholipids. Furthermore, the interplay between diet, liver metabolism, and gut microbiota suggests a dietary shift resulting in corresponding changes in gut microbiota and metabolic functions. Our findings indicate that highland ETSs have evolved to optimize digestion and absorption, rely on more protein-rich foods, and possess gut microbiota tailored to their dietary composition, likely adaptive physiological and ecological strategies adopted to cope with extreme highland environments.
Assuntos
Microbioma Gastrointestinal , Microbiota , Passeriformes , Animais , Masculino , Feminino , Humanos , Microbioma Gastrointestinal/fisiologia , RNA Ribossômico 16S/genética , Dieta/veterinária , Adaptação PsicológicaRESUMO
BACKGROUND: Bifidobacterium pseudolongum is widely exists in mammal gut and its abundance is associated with human and animal health. The present study aimed to investigate the potential mechanisms of B. pseudolongum CCFM1253 on protecting against lipopolysaccharide (LPS)-induced acute liver injury (ALI) by metagenomic analysis and liver metabolomic profiles. RESULTS: Bifidobacterium pseudolongum CCFM1253 preintervention remarkably attenuated the influence of LPS on serum alanine transaminase and aspartate amino transferase activities. B. pseudolongum CCFM1253 preintervention remarkably attenuated the inflammation responses (tumor necrosis factor-α, interleukin-1ß, and interleukin-6) and elevated antioxidative enzymes activities [total antioxidant capacity, superoxide dismutase, catalase, and glutathione peroxidase] in ALI mice by intervening in the Nf-kß and Nrf2 pathways, respectively. Bifidobacterium pseudolongum CCFM1253 treatment elevated the proportion of Alistipes and Bifidobacterium, and decreased the proportion of uncultured Bacteroidales bacterium, Muribaculum, Parasutterella and Ruminococcaceae UCG-010 in ALI mice, which were strongly correlated with the inhibition of inflammation responses and oxidative stress. Untargeted liver metabolomics exhibited that the hepatoprotective efficacy of B. pseudolongum CCFM1253 might be achieved by altering liver metabolites-related riboflavin metabolism, phenylalanine metabolism, alanine, citrate cycle (tricarboxylic acid cycle), and so on. Furthermore, riboflavin exposure could control the contents of malondialdehyde, superoxide dismutase, and catalase in hydrogen peroxide-treated HepG2 cells. CONCLUSION: Bifidobacterium pseudolongum CCFM1253 can effectively alleviate inflammatory response and oxidative stress, and regulate the intestinal microbiota composition and liver metabolism, and elevate the liver riboflavin content in LPS-treated mice. Therefore, B. pseudolongum CCFM1253 could serves as a potential probiotic to ameliorate the host health. © 2023 Society of Chemical Industry.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Probióticos , Humanos , Animais , Camundongos , Catalase/metabolismo , Lipopolissacarídeos , Bifidobacterium/metabolismo , Antioxidantes/metabolismo , Fígado/metabolismo , Metabolômica , Superóxido Dismutase/metabolismo , Inflamação/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Mamíferos/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Yinzhihuang granule (YZHG) has liver protective effect and can be used for clinical treatment of non-alcoholic fatty liver disease (NAFLD), but its material basis and mechanism need to be further clarified. AIM OF THE STUDY: This study aims to reveal the material basis and mechanism of YZHG treating NAFLD. MATERIALS AND METHODS: Serum pharmacochemistry were employed to identify the components from YZHG. The potential targets of YZHG against NAFLD were predicted by system biology and then preliminarily verified by molecular docking. Furthermore, the functional mechanism of YZHG in NAFLD mice was elucidated by 16S rRNA sequencing and untargeted metabolomics. RESULTS: From YZHG, 52 compounds were identified, of which 42 were absorbed into the blood. Network pharmacology and molecular docking showed that YZHG treats NAFLD with multi-components and multi-targets. YZHG can improve the levels of blood lipids, liver enzymes, lipopolysaccharide (LPS), and inflammatory factors in NAFLD mice. YZHG can also significantly improve the diversity and richness of intestinal flora and regulate glycerophospholipid and sphingolipid metabolism. Moreover, Western Blot experiment showed that YZHG can regulate liver lipid metabolism and enhance intestinal barrier function. CONCLUSIONS: YZHG may treat NAFLD by improving the disruption of intestinal flora and enhancing the intestinal barrier. This will reduce the invasion of LPS into the liver subsequently regulate liver lipid metabolism and reduce liver inflammation.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , FígadoRESUMO
Acute liver failure (ALF) refers to the occurrence of massive hepatocyte necrosis in a short time, with multiple complications, including inflammatory response, hepatic encephalopathy, and multiple organ failure. Additionally, effective therapies for ALF are lacking. There exists a relationship between the human intestinal microbiota and liver, so intestinal microbiota modulation may be a strategy for therapy of hepatic diseases. In previous studies, fecal microbiota transplantation (FMT) from fit donors has been used to modulate intestinal microbiota widely. Here, we established a mouse model of lipopolysaccharide (LPS)/D-galactosamine (D-gal) induced ALF to explore the preventive and therapeutic effects of FMT, and its mechanism of action. We found that FMT decreased hepatic aminotransferase activity and serum total bilirubin levels, and decreased hepatic pro-inflammatory cytokines in LPS/D-gal challenged mice (p < 0.05). Moreover, FMT gavage ameliorated LPS/D-gal induced liver apoptosis and markedly reduced cleaved caspase-3 levels, and improved histopathological features of the liver. FMT gavage also restored LPS/D-gal-evoked gut microbiota dysbiosis by modifying the colonic microbial composition, improving the abundance of unclassified_o_Bacteroidales (p < 0.001), norank_f_Muribaculaceae (p < 0.001), and Prevotellaceae_UCG-001 (p < 0.001), while reducing that of Lactobacillus (p < 0.05) and unclassified_f_Lachnospiraceae (p < 0.05). Metabolomics analysis revealed that FMT significantly altered LPS/D-gal induced disordered liver metabolites. Pearson's correlation revealed strong correlations between microbiota composition and liver metabolites. Our findings suggest that FMT ameliorate ALF by modulating gut microbiota and liver metabolism, and can used as a potential preventive and therapeutic strategy for ALF.
Assuntos
Microbioma Gastrointestinal , Falência Hepática Aguda , Camundongos , Humanos , Animais , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiologia , Lipopolissacarídeos , Galactosamina , Falência Hepática Aguda/patologia , MetabolomaRESUMO
BACKGROUND: Rice-fish symbiosis, as an ecological and green aquaculture model, is an effective measure to relieve the environmental stress from intensive aquaculture. Compared with traditional aquaculture, the altered rearing pattern and environment will make differences in muscle nutrient and quality, intestinal microbiota, body metabolism, and even disease resistance in fish. RESULTS: To investigate this, we explored the differences between rice-tilapia (aRT and bRT) and tank-tilapia (aTT and bTT) models at the periods before and after rice flowering using 16S rRNA sequencing and untargeted metabolomics. The results showed that compared with tilapia reared in the tank model, the fish body length and weight, the muscle total umami amino acid, and monounsaturated fatty acid content were obviously higher in the rice-fish model, especially after rice flowering. Compared with other groups, the intestinal microbiota diversity of fish in the bRT group was significantly higher; the dominant microbiota was Bacteroidetes and Firmicutes at the phylum level, Bacteroides and Turicibacter at the genus level, and the relative abundances of Gram-negative, potentially pathogenic, and stress-tolerant bacteria were the highest, lowest, and highest, respectively. Besides, the differential metabolite analysis indicated that rice-fish symbiosis improved the metabolic profiles and modulated the metabolic pathways in tilapia. Moreover, the correlation analysis of 16S sequencing and metabolomics showed that Bacteroides showed a positive correlation with many metabolites related to amino acid, fatty acid, and lipid metabolism. Video Abstract CONCLUSIONS: In summary, rice flowering improves the tilapia muscle nutrient, intestinal microbiota diversity, and disease resistance and modulates the host metabolism to acclimatize the comprehensive environment in rice-fish symbiosis. Specifically, rice flowering alters the microbiota abundance involved in amino acid, fatty acid, and lipid metabolism, resulting in improving the muscle nutrient and quality through the crosstalk of gut microbial and host metabolism. Our study will provide not only new insight into the gut microbiota-metabolism-phenotype axis, but also strong support for the promotion and application of rice-fish symbiosis in aquaculture.
Assuntos
Ciclídeos , Microbioma Gastrointestinal , Oryza , Tilápia , Animais , Ciclídeos/microbiologia , Tilápia/metabolismo , Resistência à Doença , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Simbiose , Nutrientes , Músculos , Fígado , Aminoácidos/metabolismo , Ácidos Graxos/metabolismoRESUMO
Monascus-fermented red mold rice (RMR) has excellent physiological efficacy on lipid metabolism and liver function. This study investigated the ameliorative effects of monascuspiloin (MP) from RMR on alcoholic liver injury in mice, and further clarified its mechanism of action. Results showed that MP intervention obviously ameliorated lipid metabolism and liver function in mice with over-drinking. In addition, dietary MP intervention reduced liver MDA levels and increased liver CAT, SOD, and GSH levels, thus alleviating liver oxidative stress induced by excessive drinking. 16S rRNA amplicon sequencing showed that MP intervention was beneficial to ameliorate intestinal microbiota dysbiosis by elevating the proportion of norank_f_Lachnospiraceae, Lachnoclostridium, Alistipes, Roseburia, Vagococcus, etc., but decreasing the proportion of Staphylococcus, norank_f_Desulfovibrionaceae, Lachnospiraceae_UCG-001, Helicobacter, norank_f_Muribaculaceae, unclassified_f_Ruminococcaceae, etc. Additionally, correlation network analysis indicated that the key intestinal bacterial taxa intervened by MP were closely related to some biochemical parameters of lipid metabolism, liver function, and oxidative stress. Moreover, liver metabolomics analysis revealed that dietary MP supplementation significantly regulated the levels of 75 metabolites in the liver, which were involved in the synthesis and degradation of ketone bodies, taurine, and hypotaurine metabolism, and other metabolic pathways. Furthermore, dietary MP intervention regulated gene transcription and protein expression associated with hepatic lipid metabolism and oxidative stress. In short, these findings suggest that MP mitigates alcohol-induced liver injury by regulating the intestinal microbiome and liver metabolic pathway, and thus can serve as a functional component to prevent liver disease.
RESUMO
The present study investigated the mechanism underlying the impact of hesperidin (HES) on nonalcoholic fatty liver (NAFLD). C57BL/6J male mice were administered a low-fat diet, high-fat diet (HFD), or HFD plus 0.2% (wt/wt) HES (HFD + HES) diet. After 16 weeks of intervention, the mice in the HFD+HES group showed a lower final body weight and liver weight and improved serum lipid profiles when compared with the HFD group. Alleviation of liver dysfunction induced by HFD was observed in HES-fed mice, and the expression of genes involved in lipid metabolism was also altered. Moreover, HES changed the composition of the intestinal microbiota and enriched specific genera such as Bacteroidota. Liver metabolomics analysis indicated that HES enhanced the abundance of metabolites in arginine-related as well as mitochondrial oxidation-related pathways, and these metabolites were predicted to be positively correlated with the gut genera enriched by HES. Together, these results indicate that HFD-fed mice supplemented with HES showed a markedly regulated hepatic metabolism concurrent with shifts in specific gut bacteria.
Assuntos
Microbioma Gastrointestinal , Hesperidina , Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Modelos Animais de Doenças , Hesperidina/metabolismo , Hesperidina/farmacologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismoRESUMO
In recent years, organic chromium (III) supplements have received increasing attentions for their low toxicity, high bioavailability and wide range of health-promoting benefits. This study aimed to investigate the preventive effects of chromium (III)-enriched yeast (YCr) on high-fat and high-fructose diet (HFHFD)-induced hyperlipidemia and hyperglycemia in mice, and further clarify its mechanism of action from the perspective of intestinal microbiomics and liver metabolomics. The results indicated that oral administration of YCr remarkably inhibited the aberrant elevations of body weight, blood glucose and lipid levels, hepatic cholesterol (TC) and triglyceride (TG) levels caused by HFHFD. Liver histological examination showed that oral YCr intervention inhibited HFHFD induced liver lipid accumulation. Besides, 16S rDNA amplicon sequencing showed that YCr intervention was beneficial to ameliorating intestinal microbiota dysbiosis by altering the proportion of some intestinal microbial phylotypes. Correlation-based network analysis indicated that the key intestinal microbial phylotypes intervened by YCr were closely related to some biochemical parameters associated with glucose and lipid metabolism. Liver metabolomics analysis revealed that dietary YCr intervention significantly regulated the levels of some biomarkers involved in purine metabolism, glycerophospholipid metabolism, citrate cycle, pyrimidine metabolism, glycerophospholipid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and so on. Moreover, dietary YCr intervention regulated the mRNA levels of key genes associated with glucose, cholesterol, fatty acids and bile acids metabolism in liver. These findings suggest that dietary YCr intervention has beneficial effects on glucose and lipid metabolism by regulating intestinal microbiota and liver metabolic pathway, and thus can be served as a functional component to prevent hyperlipidemia and hyperglycemia.
RESUMO
The liver-protective activity of phenolics has been consistently reported, but the underlying protective mechanism of phenolic extract from noni fruit (NFE) against high-fat-diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) remains unclear. Mice were fed with HFD or combination of HFD and NFE for 10 weeks, and then the gut microbiota and liver metabolites were compared. In this study, NFE supplementation alleviated HFD-induced liver injury and metabolic comorbidities, as evidenced by reduced liver function markers, decreased lipid profile levels, and improved obesity and insulin resistance. NFE supplementation restored the composition of gut microbiota with a remarkable elevation in the relative abundance of Parabacteroides, Lactobacillus, Roseburia, Akkermansia and a significant reduction in Helicobacter, norank_f_Desulfovibrionaceae, Desulfovibrio, Mucispirillum at the genus level. Liver metabolomics demonstrated that NFE supplementation favorably regulated the metabolic pathways involved in oxidative stress and inflammation, including purine metabolism, glutathione metabolism, primary bile acid biosynthesis, glycerophospholipid metabolism, pentose phosphate pathway, ascorbate and aldarate metabolism, galactose metabolism etc. Furthermore, NFE supplementation inhibited the HFD-induced activation of the liver endotoxin - TLR4 - NF-κB pathway, and alleviated liver inflammation. In conclusion, the findings of this study provide new evidences supporting that NFE can be used as a therapeutic approach for HFD-induced NAFLD via modulating the gut microbiota composition, liver metabolite profile and suppressing inflammatory reaction.
Assuntos
Microbioma Gastrointestinal , Resistência à Insulina , Morinda , Hepatopatia Gordurosa não Alcoólica , Animais , Suplementos Nutricionais , Frutas/metabolismo , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Estresse OxidativoRESUMO
Organic chromium is of great interest and has become an important chromium supplement resource in recent years because of its low toxicity and easy absorption. In our previous study, we synthesized a novel organic chromium [GLP-Cr] through the chelation of Ganoderma lucidum polysaccharide and chromium (III). The purpose of this study was to investigate the beneficial effects of GLP-Cr on the improvement of metabolic syndromes (MetS) in mice fed with a high-fat and high-fructose diet (HFHFD) and its mechanism of action. The results indicated that oral administration of GLP-Cr inhibited the excessive exaltation of body weight, glucose tolerance, fasting blood glucose and lipid levels, hepatic total cholesterol (TC), triglyceride (TG) levels caused by HFHFD. Besides, 16S rRNA amplicon sequencing showed that GLP-Cr intervention evidently ameliorated intestinal microbiota dysbiosis by changing the proportions of some intestinal microbial phylotypes. In addition, correlation network-based analysis indicated that the key intestinal microbial phylotypes were closely related to biochemical parameters associated with MetS under GLP-Cr intervention. Liver metabolomics analysis suggested that GLP-Cr intervention significantly regulated the levels of some biomarkers involved in alpha-linolenic acid metabolism, fatty acid biosynthesis, steroid hormone biosynthesis, glycerophospholipid metabolism, glycerolipid metabolism, steroid hormone biosynthesis, primary bile acid biosynthesis, and so on. Moreover, GLP-Cr intervention regulated liver mRNA levels of key genes associated with glucose and lipid metabolism. The mRNA level of glucose transporter type 4 (Glut4) was markedly increased by GLP-Cr intervention, and the mRNA levels of phosphoenolpyruvate carboxykinase (Pepck) and glucose-6-phosphatase (G6Pase) in the liver were significantly decreased. Meanwhile, GLP-Cr intervention significantly decreased hepatic mRNA levels of cluster of differentiation 36 (Cd36), acetyl-CoA carboxylase 1 (Acc1) and sterol regulatory element binding protein-1c (Srebp-1c), indicating that GLP-Cr intervention inhibited the excessive accumulation of free fatty acids in the liver. These findings suggest that the prevention of hyperglycemia and dyslipidemia by GLP-Cr may be closely related to the regulation of gut microbial composition and hepatic metabolic pathways, thus GLP-Cr can be serving as a functional component in the prevention of MetS.
Assuntos
Microbioma Gastrointestinal , Síndrome Metabólica , Reishi , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Acetil-CoA Carboxilase/farmacologia , Animais , Ácidos e Sais Biliares/farmacologia , Biomarcadores , Glicemia/metabolismo , Colesterol , Cromo/química , Dieta , Dieta Hiperlipídica/efeitos adversos , Disbiose/tratamento farmacológico , Ácidos Graxos não Esterificados , Frutose/efeitos adversos , Glucose/metabolismo , Transportador de Glucose Tipo 4 , Glucose-6-Fosfatase/metabolismo , Glucose-6-Fosfatase/farmacologia , Glicerofosfolipídeos , Hormônios , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/etiologia , Camundongos , Fosfoenolpiruvato/farmacologia , Polissacarídeos/farmacologia , RNA Mensageiro/metabolismo , RNA Ribossômico 16S , Reishi/genética , Esteroides/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos , Ácido alfa-Linolênico/farmacologiaRESUMO
Background: Obesity has become a global epidemic recognized by the World Health Organization. Probiotics supplementation has been shown to contribute to improve lipid metabolism. However, mechanisms of action of probiotics against obesity are still not clear. Lactobacillus plantarum FRT4, a probiotic previously isolated from a kind of local yogurt, had good acid and bile salt tolerance and lowered cholesterol in vitro. Objective: This study aimed to evaluate the effect of L. plantarum FRT4 on serum and liver lipid profile, liver metabolomics, and gut microbiota in mice fed with a high-fat diet (HFD). Design: Mice were fed with either normal diet or HFD for 16 weeks and administered 0.2 mL of 1 × 109 or 1 × 1010 CFU/mL dosage of L. plantarum FRT4 during the last 8 weeks of the diet. Cecal contents were analyzed by 16S rRNA sequencing. Hepatic gene expression and metabolites were detected by real-time quantitative polymerase chain reaction (PCR) and metabolomics, respectively. Results: L. plantarum FRT4 intervention significantly reduced the HFD-induced body weight gain, liver weight, fat weight, serum cholesterol, triglyceride, and alanine aminotransferase (ALT) levels in the liver (P < 0.05). Liver metabolomics demonstrated that the HFD increased choline, glycerophosphocholine, and phosphorylcholine involved in the glycerophospholipid metabolism pathway. All these changes were reversed by FRT4 treatment, bringing the levels close to those in the control group. Further mechanisms showed that FRT4 favorably regulated gut barrier function and pro-inflammatory biomediators. Furthermore, FRT4 intervention altered the gut microbiota profiles and increased microbial diversity. The relative abundances of Bacteroides, Parabateroides, Anaerotruncus, Alistipes, Intestinimonas, Butyicicoccus, and Butyricimonas were significantly upregulated. Finally, Spearman's correlation analysis revealed that several specific genera were strongly correlated with glycerophospholipid metabolites (P < 0.05). Conclusions: These findings suggested that L. plantarum FRT4 had beneficial effects against obesity in HFD-induced obese mice and can be used as a potential functional food for the prevention of obesity.
RESUMO
Microplastics are emergent contaminants threatening aquatic organisms including aquacultured fish. This study investigated the effects of high-density polyethylene (HDPE, 100 to 125 µm) on yellow perch (Perca flavescens) based on integrative evaluation including growth performance, nutritional status, nutrient metabolism, fish health, and gut microbial community. Five test diets (0, 1, 2, 4, or 8 g HDPE/100 g diet) containing 41% protein and 10.5% lipid were fed to juvenile perch (average body weight, 25.9 ± 0.2 g; n = 15) at a feeding rate of 1.5% to 2.0% body weight daily. The feeding trial was conducted in a flow-through water system for 9 wk with 3 tanks per treatment and 15 yellow perch per tank. No mortality or HDPE accumulation in the fish was found in any treatments. Weight gain and condition factor of fish were not significantly impacted by HDPE (P > 0.05). Compared to the control group, fish fed the 8% HDPE diet had significantly decreased levels of protein and ash (P < 0.05). In response to the increasing levels of HDPE exposure, the hepatosomatic index value, hepatocyte size, and liver glycogen level were increased, but lipid content was reduced in the liver tissues. Compared to the control treatment, fish fed the 8% HDPE diet had significant accumulations of total bile acids and different metabolism pathways such as bile acid biosynthesis, pyruvate metabolism, and carnitine synthesis. Significant enterocyte necrosis was documented in the foregut of fish fed the 2% or 8% HDPE diet; and significant cell sloughing was observed in the midgut and hindgut of fish fed the 8% HDPE diet. Fish fed the 2% HDPE diet harbored different microbiota communities compared to the control fish. This study demonstrates that HDPE ranging from 100 to 125 µm in feed can be evacuated by yellow perch with no impact on growth. However, dietary exposure to HDPE decreased whole fish nutrition quality, altered nutrient metabolism and the intestinal histopathology as well as microbiota community of yellow perch. The results indicate that extended exposure may pose a risk to fish health and jeopardize the nutrition quality of aquacultured end product. This hypothesis remains to be investigated further.
RESUMO
Alcoholic liver injury is mainly caused by excessive alcohol consumption and has become a global public health problem threatening human health. It is well known that Ganoderma lucidum possesses various excellent beneficial effects on liver function and lipid metabolism. The purpose of this study was to evaluate the underlying protective effect and action mechanism of ganoderic acids-rich G. lucidum ethanol extract (GLE) on alcohol-induced liver injury in mice with excessive alcohol intake. Results showed that oral administration of GLE could obviously inhibit the abnormal increases of serum triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and also significantly protect the liver against alcohol-induced excessive hepatic lipid accumulation and pathological changes. In addition, alcohol-induced oxidative stress in liver was significantly ameliorated by the dietary intervention of GLE through reducing the hepatic levels of maleic dialdehyde (MDA) and lactate dehydrogenase (LDH), and increasing the hepatic levels of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) and alcohol dehydrogenase (ADH). Compared with the model group, GLE intervention significantly ameliorated the intestinal microbial disorder by elevating the relative abundance of Ruminiclostridium_9, Prevotellaceae_UCG-001, Oscillibacter, [Eubacterium]_xylanophilum_group, norank_f_Clostridiates_vadinBB60_group, GCA-900066225, Bilophila, Ruminococcaceae_UCG-009, norank_f_Desulfovibrionaceae and Hydrogenoanaerobacterium, but decreasing the proportion of Clostridium_sensu_stricto_1. Furthermore, liver metabolomic profiling suggested that GLE intervention had a significant regulatory effect on the composition of liver metabolites in mice with excessive alcohol intake, especially the levels of some biomarkers involved in primary bile acid biosynthesis, riboflavin metabolism, tryptophan metabolism, biosynthesis of unsaturated fatty acids, fructose and mannose metabolism, glycolysis/gluconeogenesis. Additionally, dietary supplementation with GLE significantly regulated the mRNA levels of key genes related to fatty acids metabolism, ethanol catabolism and inflammatory response in liver. Conclusively, these findings indicate that GLE has a potentially beneficial effect on alleviating alcohol-induced liver injury and may be developed as a promising functional food ingredient.
RESUMO
Though the relationship between dietary fiber and physical health has been investigated widely, the use of dietary fiber from marine plants has been investigated relatively rarely. The Saccharina japonica byproducts after the production of algin contain a large amount of insoluble polysaccharide, which will cause a waste of resources if ignored. Soluble dietary fiber (SDF)prepared from waste byproducts of Saccharina japonica by alkaline hydrolysis method for the first time had a wrinkled microscopic surface and low crystallinity, which not only significantly reduced liver index, serum levels of aspartate aminotransferase (AST) and alanine amiotransferase (ALT), and liver fat accumulation damage to the livers of obese diabetic mice, but also activated the PI3K/AKT signaling pathway to increase liver glycogen synthesis and glycolysis. By LC-MS/MS employing a Nexera UPLC tandem QE high-resolution mass spectrometer, the 6 potential biomarker metabolites were screened, namely glycerophosphocholine (GPC), phosphocholine (PCho), pantothenic acid, glutathione (GSH), oxidized glutathione (GSSG), and betaine; several pathways of these metabolites were associated with lipid metabolism, glycogen metabolism, and amino acid metabolism in the liver were observed. This study further provided a detailed insight into the mechanisms of SDF from Saccharina japonica byproducts in regulating the livers of obese mice with type 2 diabetes and laid a reliable foundation for the further development and utilization of Saccharina japonica.
Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Fibras na Dieta/farmacologia , Laminaria/metabolismo , Fígado/efeitos dos fármacos , Animais , Cromatografia Líquida de Alta Pressão , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Feminino , Fígado/metabolismo , Camundongos , Camundongos Obesos , Espectrometria de Massas em TandemRESUMO
Mefentrifluconazole, a new type of chiral triazole fungicide, is widely applied to control a variety of fungal diseases in crops. However, the toxicological effects of mefentrifluconazole on aquatic organisms are unknown, especially at the enantiomer level. In the present study, zebrafish were selected as a typical model for mefentrifluconazole enantiomer exposure. Metabolomic and transcription analyses were performed with 0.01 and 0.10 mg/L mefentrifluconazole and its enantiomers (i.e., rac-mfz/(-)-mfz/(+)-mfz) at 28 days. The 1H nuclear magnetic resonance (NMR)-based metabolomics analysis showed that 9, 10 and 4 metabolites were changed significantly in the rac-mfz, (+)-mfz and (-)-mfz treatment groups compared with the control group, respectively. The differential metabolites were related to energy metabolism, lipid metabolism and amino acid metabolism. The qRT-PCR analysis revealed that the expression of lipid metabolism-, apoptosis- and CYP-related genes in the livers of female zebrafish in rac-mfz and (+)-mfz was 1.61-108.92 times and 2.37-551.34 times higher than that in (-)-mfz, respectively. The results above indicate that exposure to mefentrifluconazole induced enantioselective liver toxicity in zebrafish. Our study underlined the importance of distinguishing different enantiomers, which will contribute to environmental protection.