RESUMO
PURPOSE: To investigate the long- and short-T1D components correlation with myelin content using inhomogeneous magnetization transfer (ihMT) high-pass and band-pass T1D -filters and to compare ihMT, R1 , and the macromolecular proton fraction (MPF) for myelin specific imaging. METHODS: The 3D ihMT rapid gradient echo (ihMTRAGE) sequences with increasing switching times (Δt) were used to derive ihMT high-pass T1D -filters with increasing T1D cutoff values and an ihMT band-pass T1D -filter for components in the 100 µs to 1 ms range. 3D spoiled gradient echo quantitative MT (SPGR-qMT) protocols were used to derive R1 and MPF maps. The specificity of R1 , MPF, and ihMT T1D -filters was evaluated by comparison with two histological reference techniques for myelin imaging. RESULTS: The higher contribution of long-T1D s as compared to the short components as Δt got longer led to an increase in the specificity to myelination. In contrast, focusing on the signal originating from a narrow range of short-T1D s (< 1 ms) as isolated by the band-pass T1D -filter led to lower specificity. In addition, the significantly lower r2 correlation coefficient of the band-pass T1D -filter suggests that the origin of short-T1D components is mostly associated with non-myelin protons. Also, the important contribution of short-T1D s to the estimated MPF, explains its low specificity to myelination as compared to the ihMT high-pass T1D -filters. CONCLUSION: Long-T1D components imaging by means of ihMT high-pass T1D -filters is proposed as an MRI biomarker for myelin content. Future studies should enable the investigation of the sensitivity of ihMT T1D -filters for demyelinating processes.
Assuntos
Bainha de Mielina , Substância Branca , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , PrótonsRESUMO
We demonstrate the possibility to use UDEFT (Uniform Driven Equilibrium Fourier Transform) technique in order to improve the sensitivity and the quantification of one-dimensional 29Si NMR experiments under magic-angle spinning (MAS). We derive an analytical expression of the signal-to-noise ratios of UDEFT and single-pulse (SP) experiments subsuming the contributions of transient and steady-state regimes. Using numerical spin dynamics simulations and experiments on 29Si-enriched amorphous silica and borosilicate glass, we show that 59180298059180 refocusing composite π-pulse and the adiabatic inversion using tanh/tan modulation improve the robustness of UDEFT technique to rf-inhomogeneity, offset, and chemical shift anisotropy. These pulses combined with a two-step phase cycle limit the pulse imperfections and the artifacts produced by stimulated echoes. The sensitivity of SP, UDEFT and CPMG (Carr-Purcell-Meiboom-Gill) techniques are experimentally compared on functionalized and non-functionalized mesoporous silica. Furthermore, experiments on a flame retardant material prove that UDEFT technique provides a better quantification of 29Si sites with higher sensitivity than SP method.
RESUMO
Many pharmaceutical samples have notably long 1H T1 (proton spin-lattice relaxation time), leading to lengthy experiments lasting several days in solid-state NMR studies. In this work, we propose the use of ball milling on the pharmaceutical samples to reduce the 1H T1, which also leads to enhanced sensitivity in {1H}-13C Cross-Polarization (CP) experiments due to reduced particle sizes and increased surface areas of the samples. Experimentally, we determined that depending on the substrates and milling time, the signal-to-noise ratio (S/N) of a 1D 13C CP spectrum can be increased by a factor of 3-6, which means that the experimental time can be shortened by a factor of 9-36. Furthermore, the application of simple ball-milling within a short time avoids the amorphization of the studied samples such that no signal due to amorphous state is observed in the 13C CP spectrum. This simple ball milling method used for sensitivity enhancement can be further applied in the SS-NMR studies of pharmaceutical samples.