Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ChemSusChem ; : e202400649, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39229901

RESUMO

The development of electrocatalysts with low cost, high efficiency, and long-term durability is crucial for advancing green hydrogen production. Transition metal phosphides (TMPs) have been proved to be efficient electrocatalyst, while the improvement in the performance and durability of the TMPs remains a big challenge. Employing atmospheric pressure chemical vapor deposition (APCVD) and phosphorization, FeP/Ti electrodes are fabricated featuring controllable oxygen ingredients (O-FeP/Ti). This manipulation of oxygen content fine-tunes the electronic structure of the catalyst, resulting in improved surface reaction kinetics and catalytic activity. The optimized O-FeP-400/Ti exhibits outstanding HER activity with overpotentials of 142 and 159 mV at -10 mA cm-2 in 0.5 M H2SO4 and 1 M KOH, respectively. Notably, the obtained O-FeP/Ti cathode also displays remarkable durability of up to 200 h in acidic electrolyte with surface topography remaining intact. For the first time, the low-valence titanium oxide (Ti3O) interlayer is identified in the composite electrode and ascribed for the superior connection between Ti substrate and the surface O-FeP catalyst, as supported by experimental results and density functional theory (DFT) analysis. This work has expanded the potential applications of transition metal phosphides (TMPs) as a cost-effective, highly efficient and durable catalyst for water splitting.

2.
Natl Sci Rev ; 11(4): nwad327, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38487495

RESUMO

Iron-metal clusters are crucial in a variety of critical biological and material systems, including metalloenzymes, catalysts, and magnetic storage devices. However, a synthetic high-nuclear iron cluster has been absent due to the extreme difficulty in stabilizing species with direct iron-iron bonding. In this work, we have synthesized, crystallized, and characterized a (Tp*)4W4S12(Fe@Fe12) cluster (Tp* = tris(3,5-dimethyl-1-pyrazolyl)borate(1-)), which features a rare trideca-nuclear, icosahedral [Fe@Fe12] cluster core with direct multicenter iron-iron bonding between the interstitial iron (Fei) and peripheral irons (Fep), as well as Fep···Fep ferromagnetic coupling. Quantum chemistry studies reveal that the stability of the cluster arises from the 18-electron shell-closing of the [Fe@Fe12]16+ core, assisted by its bonding interactions with the peripheral tridentate [(Tp*)WS3]4- ligands which possess both S→Fe donation and spin-polarized Fe-W σ bonds. The ground-state electron spin is theoretically predicted to be S = 32/2 for the cluster. The existence of low oxidation-state (OS ∼ +1.23) iron in this compound may find interesting applications in magnetic storage, spintronics, redox chemistry, and cluster catalysis.

3.
Adv Sci (Weinh) ; 10(34): e2304088, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37840391

RESUMO

A zinc (Zn)-based single-atom catalyst (SAC) is recently reported as an active Fenton-like catalyst; however, the low Zn loading greatly restricts its catalytic activity. Herein, a molecule-confined pyrolysis method is demonstrated to evidently increase the Zn loading to 11.54 wt.% for a Zn SAC (ZnSA -N-C) containing a mixture of Zn-N4 and Zn-N3 coordination structures. The latter unsaturated Zn-N3 sites promote electron delocalization to lower the average valence state of Zn in the mix-coordinated Zn-Nx moiety conducive to interaction of ZnSA -N-C with peroxydisulfate (PDS). A speedy Fenton-like catalysis is thus realized by the high-loading and low-valence ZnSA -N-C for PDS activation with a specific activity up to 0.11 min L-1 m-2 , outstripping most Fenton-like SACs. Experimental results reveal that the formation of ZnSA -N-C-PDS* complex owing to the strong affinity of ZnSA -N-C to PDS empowers intense direct electron transfer from the electron-rich pollutant toward this complex, dominating the rapid bisphenol A (BPA) elimination. The electron transfer pathway benefits the desirable environmental robustness of the ZnSA -N-C/PDS system for actual water decontamination. This work represents a new class of efficient and durable Fenton-like SACs for potential practical environmental applications.

4.
Angew Chem Int Ed Engl ; 62(42): e202311937, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37658707

RESUMO

Designing novel single-atom catalysts (SACs) supports to modulate the electronic structure is crucial to optimize the catalytic activity, but rather challenging. Herein, a general strategy is proposed to utilize the metalloid properties of supports to trap and stabilize single-atoms with low-valence states. A series of single-atoms supported on the surface of tungsten carbide (M-WCx , M=Ru, Ir, Pd) are rationally developed through a facile pyrolysis method. Benefiting from the metalloid properties of WCx , the single-atoms exhibit weak coordination with surface W and C atoms, resulting in the formation of low-valence active centers similar to metals. The unique metal-metal interaction effectively stabilizes the low-valence single atoms on the WCx surface and improves the electronic orbital energy level distribution of the active sites. As expected, the representative Ru-WCx exhibits superior mass activities of 7.84 and 62.52 A mgRu -1 for the hydrogen oxidation and evolution reactions (HOR/HER), respectively. In-depth mechanistic analysis demonstrates that an ideal dual-sites cooperative mechanism achieves a suitable adsorption balance of Had and OHad , resulting in an energetically favorable Volmer step. This work offers new guidance for the precise construction of highly active SACs.

5.
Chemphyschem ; 23(24): e202200459, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36074347

RESUMO

The sodium superionic conductor (NASICON)-Na3 V2 (PO4 )3 (NVP) is an attractive cathode for sodium-ion batteries, which is still confronted with limited rate performance due to its low electronic conductivity. In this paper, a chemical strategy is adopted to partially replace V3+ of the NVP framework by low-valence Mn2+ and high-valence Mo6+ substitution. The crystal structure, sodium-ion diffusion coefficient and electrochemical performance of Mn-Mo-doped [Na3.94 V0.98 Mo0.02 Mn(PO4 )3 @C] cathode were investigated. X-ray diffraction confirmed the NASICON-type structure and XPS analysis confirmed the oxidation state of Mn and Mo in doped NVP cathode. The Na ion diffusion processes were inferred from Cyclic Voltammetry (CV), Galvanostatic intermittent titration technique (GITT) and Electrochemical Impedance Spectroscopy (EIS) measurement, which clearly show rapid Na-ion diffusion in NASICON-type cathode materials. The Mn-Mo-substituted NVP shows smoother charge-discharge profiles, improved rate performance (64.80 mAh/g at 1 C rate), better energy density (308.61 mWh/g) and superior Na-ion kinetics than that of unsubstituted NVP@C cathode. Their enhanced performance is attributed to large interstitial volume mainly created by high valence Mo6+ and enhanced capacity is attributed to the low valence Mn2+ doping. These results demonstrate that Mn-Mo-doped NVP cathode is strongly promising cathode material for sodium-ion batteries.

6.
ACS Appl Mater Interfaces ; 14(37): 42113-42122, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36074742

RESUMO

Low-valence titanium sulfides (LVTS) have metal-like electrical conductivities and a strong polysulfide binding abilities, which are promising anodes for sodium ion batteries with high capacities and long cycle lifes. However, it is difficult for traditional synthesis methods to synthesize LVTS without impurities. The electric field regulation method possesses the advantages of flexibility and high efficiency, achieving accurate control of the metal reduction process by adjusting the electrolysis potential and reaction time. In this work, we synthesized a series of LVTS (TiS and Ti2S) using electric field control methods and investigated their electrochemical behaviors as sodium storage anodes for the first time. Compared with traditional TiS2, LVTS display remarkable Na storage properties under the condition of complete electrochemical conversion at 0.005-3 V. Especially for TiS, it demonstrates a high capacity of 409 mAh g-1 at 1 A g-1 and inspiring cyclic stability over 6000 cycles. The large number of vacancies in the crystal structure can chemically anchor polysulfides and alleviate their dissolution in the electrolyte, resulting in superior long-term cyclic stability. The high intrinsic conductivity of LVTS is in favor of rapid transfer of electrons and promotes the fast conversion of polysulfides to sodium sulfides, thus realizing high reversible capacities. Moreover, with its fast Na+ transport kinetics, the as-prepared TiS demonstrates an impressive rate performance of 321 mAh g-1 at 15 A g-1. Overall, the electric field regulation method is flexible and efficient, which provides a new route for the preparation of high-performance electrode materials. Moreover, nonstoichiometric metal compounds possess abundant active sites and rapid electron transport kinetics, which provide a new choice for promising sodium storage materials in large-scale energy storage applications.

7.
Angew Chem Int Ed Engl ; 60(42): 22826-22832, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34396665

RESUMO

A nitrogen-stabilized single-atom catalyst containing low-valence zinc atoms (Znδ+ -NC) is reported. It contains saturated four-coordinate (Zn-N4 ) and unsaturated three-coordinate (Zn-N3 ) sites. The latter makes Zn a low-valence state, as deduced from X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, electron paramagnetic resonance, and density functional theory. Znδ+ -NC catalyzes electrochemical reduction of CO2 to CO with near-unity selectivity in water at an overpotential as low as 310 mV. A current density up to 1 A cm-2 can be achieved together with high CO selectivity of >95 % using Znδ+ -NC in a flow cell. Calculations suggest that the unsaturated Zn-N3 could dramatically reduce the energy barrier by stabilizing the COOH* intermediate owing to the electron-rich environment of Zn. This work sheds light on the relationship among coordination number, valence state, and catalytic performance and achieves high current densities relevant for industrial applications.

8.
J Colloid Interface Sci ; 577: 512-522, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32526540

RESUMO

It still remains challenge for expanding the photo-response range of TiO2 with dominant {0 0 1} facets due to the hardly achieving modification of the electronic structure without destroying the formation of TiO2 high energy facets. Herein, we report the construction of carboxylate species modified TiO2 nanosheets with dominant {0 0 1} facets by employing ethanol as a carbon source through a low-temperature (300 °C) carbonization method. The as-obtained samples were investigated in detail by using various characterization techniques. The results indicate that the carboxylate species derived from the oxidation and carbonization of ethanol are coordinated to the {0 0 1} facets in a bidentate bridging mode. The electron-withdrawing carboxylate species induce TiO2 to form a lower valence band edge and a narrower bandgap, which enhances the oxidation ability of photogenerated holes and expands the photo-response range. The partially carbonized carboxylate species can also act as a photosensitizer to induce visible-light photocatalytic activity of TiO2 nanosheets. In addition, the carboxylate species can further promote the separation of photogenerated charge carriers. The findings of this work may provide a new perspective for tuning the band structure of TiO2 with dominant {0 0 1} facets and improving its photocatalytic performance.

9.
Natl Sci Rev ; 7(11): 1656-1666, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34691501

RESUMO

Hierarchically porous monoliths based on copper (Cu), cobalt (Co) and manganese (Mn) oxides with three-dimensionally (3D) interconnected macropores and open nanopores were prepared using metal bromides as precursors via a sol-gel process accompanied by phase separation. The difficulty of gelation for low-valence metal cation was overcome by introducing a highly electronegative Br atom near to the metal atom to control the rates of hydrolysis and polycondensation. The 3D interconnected macropores were obtained using appropriate polymers to induce phase separation. The domain sizes of macropores and skeletons can be controlled by reaction parameters such as concentration and/or average molecular weight of polymers, and the amount of hydrochloric acid. The crystalline metal oxide monoliths with their 3D interconnected macroporous structure preserved were obtained after heat treatment in air.

10.
ACS Appl Mater Interfaces ; 11(30): 26781-26788, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31274282

RESUMO

Utilization of photocatalytic reactions to trigger persistent large-scale reactions could be an alternative path for practical solar energy conversion to relieve environmental pressure nowadays. We took the view that the photoinduction of transition states was critical for improving the activity of catalytic reactions. On the basis of theoretical predictions, the reaction Gibbs free energy of permonosulfate (PMS) activation can be rapidly reduced by molybdenum with low valence. We therefore constructed a multiphasic molybdenum dichalcogenide (MoS2) heterostructure-based photosystem that enabled generation of Mo transition states by visible light excitation. According to combination results of electron paramagnetic resonance, photoelectrochemical analysis, and X-ray photoelectron spectroscopy, we confirmed that the optimized 2H/1T heterojunction permitted the transport of excited interfacial electrons from the semiconductive 2H phase to the metallic 1T phase, and synchronously partially reduced Mo(IV) to Mo(III) at the interface. This intensified the charge transfer between the MoS2 and PMS-containing solution, thereby efficiently splitting the PMS molecules into •OH and SO4•- radicals. In this system, a type of refractory herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), can be degraded within 60 min at a rate constant of 6.20 × 10-2 min-1 using multiphasic MoS2 with a 1T/2H ratio of 1:1.

11.
Angew Chem Int Ed Engl ; 58(2): 607-611, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30422354

RESUMO

The steric bulk of the well-known DIPP BDI ligand (CH[C(CH3 )N-DIPP]2 , DIPP=2,6-diisopropylphenyl) was increased by replacing isopropyl for isopentyl groups. This very bulky DIPeP BDI ligand could not stabilize the radical species (DIPeP BDI)Mg. : reduction of (DIPeP BDI)MgI with Na gave (DIPeP BDI)2 Mg2 with a rather long Mg-Mg bond of 3.0513(8) Å. Addition of TMEDA prior to reduction gave complex (DIPeP BDI)2 Mg2 (C6 H6 ), which could also be obtained as its THF adduct. It is speculated that combination of a bulky spectator ligand and TMEDA prevents dimerization of the intermediate MgI radical, which then reacts with the benzene solvent. Complex (DIPeP BDI)2 Mg2 (C6 H6 ), which formally contains the anti-aromatic anion C6 H6 2- , reacted with tBuOH as a Brønsted base to 1,3- and 1,4-cyclohexadiene and with H2 as a two electron donor to (DIPeP BDI)2 Mg2 H2 and C6 H6 . It also reductively cleaved the C-F bond in fluorobenzene and gave (DIPeP BDI)MgPh, (DIPeP BDI)MgF, and C6 H6 .

12.
Proc Natl Acad Sci U S A ; 112(18): 5602-6, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25902517

RESUMO

It was recently demonstrated that in ferric myoglobins (Mb) the fluorescence quenching of the photoexcited tryptophan 14 (*Trp(14)) residue is in part due to an electron transfer to the heme porphyrin (porph), turning it to the ferrous state. However, the invariance of *Trp decay times in ferric and ferrous Mbs raises the question as to whether electron transfer may also be operative in the latter. Using UV pump/visible probe transient absorption, we show that this is indeed the case for deoxy-Mb. We observe that the reduction generates (with a yield of about 30%) a low-valence Fe-porphyrin π [Fe(II)(porph(●-))] -anion radical, which we observe for the first time to our knowledge under physiological conditions. We suggest that the pathway for the electron transfer proceeds via the leucine 69 (Leu(69)) and valine 68 (Val(68)) residues. The results on ferric Mbs and the present ones highlight the generality of Trp-porphyrin electron transfer in heme proteins.


Assuntos
Compostos Ferrosos/química , Heme/química , Mioglobina/química , Triptofano/química , Algoritmos , Transporte de Elétrons , Compostos Férricos/química , Cinética , Leucina/química , Modelos Químicos , Modelos Moleculares , Porfirinas/química , Estrutura Terciária de Proteína , Espectrofotometria , Valina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA