Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Toxicol Pharmacol ; : 104503, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025424

RESUMO

Nanoplastics (NPs) affect fertility. We evaluated the effects of NPs treatment on luteal and endothelial cells. We examined crucial markers of growth and redox status. NPs treatment did not induce changes in ATP levels in luteal cells, while it increased (p< 0.05) their proliferation. In endothelial cells, no change in proliferation was detected, while an increase (p<0.05) in ATP levels was observed. The increase of reactive oxygen species, superoxide anion (p<0.05) and nitric oxide (p<0.001) was detected in both cell types, which also showed changes in superoxide dismutase enzyme activity as well as an increase of non-enzymatic antioxidant power (p<0.05). A decrease (p<0.05) in progesterone production as well as an increase of vascular endothelial growth factor A levels were detected (p<0.05). In addition, a dose-dependent accumulation of NPs in endothelial cells was shown, that likely occurred through adhesion and internalization. Results underline potential risk of NPs for corpus luteum functionality.

2.
Sci Rep ; 14(1): 14625, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918475

RESUMO

Visfatin (VIS) is a hormone belonging to the adipokines' group secreted mainly by the adipose tissue. VIS plays a crucial role in the control of energy homeostasis, inflammation, cell differentiation, and angiogenesis. VIS expression was confirmed in the hypothalamic-pituitary-gonadal (HPG) axis structures, as well as in the uterus, placenta, and conceptuses. We hypothesised that VIS may affect the abundance of proteins involved in the regulation of key processes occurring in the corpus luteum (CL) during the implantation process in pigs. In the present study, we performed the high-throughput proteomic analysis (liquid chromatography with tandem mass spectrometry, LC-MS/MS) to examine the in vitro influence of VIS (100 ng/mL) on differentially regulated proteins (DRPs) in the porcine luteal cells (LCs) on days 15-16 of pregnancy (implantation period). We have identified 511 DRPs, 276 of them were up-regulated, and 235 down-regulated in the presence of VIS. Revealed DRPs were assigned to 162 gene ontology terms. Western blot analysis of five chosen DRPs, ADAM metallopeptidase with thrombospondin type 1 motif 1 (ADAMTS1), lanosterol 14-α demethylase (CYP51A1), inhibin subunit beta A (INHBA), notch receptor 3 (NOTCH3), and prostaglandin E synthase 2 (mPGES2) confirmed the veracity and accuracy of LC-MS/MS method. We indicated that VIS modulates the expression of proteins connected with the regulation of lipogenesis and cholesterologenesis, and, in consequence, may be involved in the synthesis of steroid hormones, as well as prostaglandins' metabolism. Moreover, we revealed that VIS affects the abundance of protein associated with ovarian cell proliferation, differentiation, and apoptosis, as well as CL new vessel formation and tissue remodelling. Our results suggest important roles for VIS in the regulation of ovarian functions during the peri-implantation period.


Assuntos
Implantação do Embrião , Células Lúteas , Nicotinamida Fosforribosiltransferase , Proteoma , Animais , Feminino , Suínos , Nicotinamida Fosforribosiltransferase/metabolismo , Proteoma/metabolismo , Células Lúteas/metabolismo , Gravidez , Proteômica/métodos , Espectrometria de Massas em Tandem , Cromatografia Líquida , Subunidades beta de Inibinas/metabolismo , Subunidades beta de Inibinas/genética
3.
Theriogenology ; 223: 98-107, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38697014

RESUMO

The ALDH1A1 gene encodes a cytoplasmic member of the aldehyde dehydrogenase 1 family, which plays an important role in regulating animal reproductive performance, including estrus cycle and embryonic development. The aim of this study was to characterize ALDH1A1 activity in ovaries of 3-5 year-old yaks and to determine its effects on cell proliferation, apoptosis, and progesterone secretion in luteal cells (LCs). The coding sequence (CDS) of the ALDH1A1 gene was cloned by reverse transcription-PCR and immunohistochemical analysis was used to confirm localization of the ALDH1A1 protein in the ovary. To assess the activity of ALDH1A1 in regulating progesterone secretion, si-ALDH1A1 was transfected into LCs in vitro and progesterone levels in LC supernatants were measured by ELISA. The interference efficiency was assessed by real-time quantitative PCR (RT-qPCR) and immunofluorescence staining, and cell proliferation and apoptosis were evaluated by EdU and TUNEL staining, respectively. The cloned ALDH1A1 sequence contained 1462 bp, encoding 487 amino acids. Immunohistochemical analysis showed that ALDH1A1 protein expression, which was significantly higher in LCs, was mainly found in antral follicles and the corpus luteum (CL). The expression of ALDH1A1 mRNA in LCs was effectively inhibited by si-ALDH1A1transfection, and progesterone secretion was markedly decreased along with the significant down-regulation of progesterone pathway-related genes, STAR, CYP11A1, CYP19A1, CYP17A1, 3ß-HSD, and HSD17B1. Knockdown of ALDH1A1 mRNA expression decreased cell proliferation and increased apoptosis in LCs. The mRNA expression of the proliferation-related genes, PCNA, CCND1, CCNB1 and CDC25A, was significantly down-regulated, while expression of the apoptosis-promoting CASP3 gene was significantly increased. In summary, we characterized the yak ALDH1A1 gene and revealed that ALDH1A1 knockdown promoted apoptosis, repressed cell proliferation, and decreased progesterone secretion by yak LCs, potentially by regulating the mRNA expression of genes related to proliferation, apoptosis, and progesterone synthesis and secretion.


Assuntos
Família Aldeído Desidrogenase 1 , Células Lúteas , Retinal Desidrogenase , Animais , Bovinos/genética , Feminino , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Família Aldeído Desidrogenase 1/genética , Família Aldeído Desidrogenase 1/metabolismo , Apoptose , Proliferação de Células , Regulação da Expressão Gênica/fisiologia , Células Lúteas/metabolismo , Progesterona/metabolismo , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo
4.
Gynecol Endocrinol ; 40(1): 2351525, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38726683

RESUMO

OBJECTIVE: Stable luteal cell function is an important prerequisite for reproductive ability and embryonic development. However, luteal insufficiency seriously harms couples who have the desire to have a pregnancy, and the most important thing is that there is no complete solution. In addition, Vaspin has been shown to have regulatory effects on luteal cells, but the complex mechanisms involved have not been fully elucidated. Therefore, this study aimed to explore the effect of Vaspin on rat luteal cells and its mechanism. METHODS: Granulosa lutein cells separated from the ovary of female rats were incubated for 24h with gradient concentrations of Vaspin, and granulosa lutein cells incubated with 0.5% bovine serum albumin were used as controls. The proliferation, apoptosis, angiogenesis, progesterone (P4) and estradiol (E2) were detected by CCK-8, Anneixn-FITC/PI staining, angiogenesis experiment and ELISA. Western blot was applied to observe the expression levels of proteins related to cell proliferation, apoptosis, angiogenesis and MEK/MAPK signaling pathway. RESULTS: Compared with the Control group, Vaspin could significantly up-regulate the proliferation of granulosa lutein cells and reduce the apoptosis. Moreover, Vaspin promoted the angiogenesis of granulosa lutein cells and the production of P4 and E2 in a concentration-dependent manner. Furthermore, Vaspin up-regulated the CyclinD1, CyclinB1, Bcl2, VEGFA and FGF-2 expression in granulosa lutein cells, and down-regulated the level of Bax. Also, Vaspin increased the p-MEK1 and p-p38 levels. CONCLUSION: Vaspin can up-regulate the proliferation and steroidogenesis of rat luteal cells and reduce apoptosis, which may be related to the influence of MEK/MAPK activity.


Assuntos
Apoptose , Proliferação de Células , Células Lúteas , Progesterona , Serpinas , Animais , Feminino , Proliferação de Células/efeitos dos fármacos , Serpinas/metabolismo , Serpinas/farmacologia , Ratos , Células Lúteas/efeitos dos fármacos , Células Lúteas/metabolismo , Apoptose/efeitos dos fármacos , Progesterona/farmacologia , Estradiol/farmacologia , Células Cultivadas , Ratos Sprague-Dawley , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos
5.
J Endocrinol Invest ; 47(7): 1719-1732, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38190029

RESUMO

PURPOSE: To evaluate the impact of high thyroid stimulating hormone (TSH) levels on human granulosa-luteal (hGL) cells. METHODS: hGL cells were isolated from follicular aspirates derived from patients undergoing IVF treatment without any thyroid disorder (serum TSH 0.5-2 mU/L). Cells were cultured at 37 °C in DMEM, supplemented with 5% FBS. The cells were treated with 1 nM LH and increasing concentrations of TSH. At the end of culture, conditioned medium and cells were collected to analyze progesterone production, cell viability, and mRNA levels of genes involved in the steroidogenesis process. Human ovarian tissues were analyzed for TSH receptor (TSHR) expression by IHC. RESULTS: The expression of TSHR was detected in human corpus luteum by IHC and in hGL by RT-PCR. In hGL cells, TSH treatment did not modulate progesterone production nor the expression of steroidogenic genes, such as p450scc and HSD3b 1/2. However, TSH induced a dose-dependent increase in cell death. Finally, TSH did not affect LH-induced p450scc and HSD3b1/2 expression while LH partially reverted TSH negative effect on cell death in hGL. CONCLUSIONS: Elevated TSH levels in hypothyroid women may be associated with impaired CL functioning and maintenance. These findings open a new line of research for the importance of the treatment of women with thyroid dysfunction that could contribute to the onset of infertility.


Assuntos
Corpo Lúteo , Tireotropina , Humanos , Feminino , Tireotropina/metabolismo , Corpo Lúteo/metabolismo , Corpo Lúteo/efeitos dos fármacos , Progesterona/metabolismo , Células Cultivadas , Receptores da Tireotropina/metabolismo , Receptores da Tireotropina/genética , Hormônio Luteinizante/metabolismo , Adulto , Células Lúteas/metabolismo , Células Lúteas/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
6.
Theriogenology ; 206: 40-48, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37178673

RESUMO

Evidence has shown that microRNA-665 (miR-665) is highly expressed in the mid-luteal phase compared with the early and end-luteal phase of the corpus luteum (CL) life cycle. However, whether miR-665 is a positive regulator of the life span of the CL is still unknown. The objective of this study is to explore the effect of miR-665 on the structural luteolysis in the ovarian CL. In this study, the targeting relationship between miR-665 and hematopoietic prostaglandin synthase (HPGDS) was firstly verified by dual luciferase reporter assay. Then, quantitative real-time PCR (qRT-PCR) was used to detect the expression of miR-665 and HPGDS in luteal cells. Following miR-665 overexpression, the apoptosis rate of the luteal cells was determined using flow cytometry; B-cell lymphoma-2 (BCL-2) and caspase-3 mRNA and protein were measured using qRT-PCR and Western blot (WB) analysis. Finally, the DP1 and CRTH2 receptors of PGD2, a synthetic product of HPGDS, were localized using immunofluorescence. Results confirmed that HPGDS was a direct target gene of miR-665, and miR-665 expression was negatively correlated with HPGDS mRNA expression in luteal cells. Meanwhile, after miR-665 was overexpressed, the apoptotic rate of the luteal cells showed a significant decrease (P < 0.05) and this was accompanied by elevated expression levels of anti-apoptotic factor BCL-2 mRNA and protein and decreased expression levels of apoptotic factor caspase-3 mRNA and protein (P < 0.01). Moreover, the immune fluorescence staining results showed that the DP1 receptor was also significantly decreased (P < 0.05), but the CRTH2 receptor was significantly increased (P < 0.05) in luteal cells. Overall, these results indicate that miR-665 reduces the apoptosis of luteal cells via inhibiting caspase-3 expression and promoting BCL-2 expression, and the biological function of miR-665 may be attributed to its target gene HPGDS which regulates the balance of DP1 and CRTH2 receptors expression in luteal cells. As a consequence, this study suggests that miR-665 might be a positive regulator of the life span of the CL rather than destroy the integrity of CL in small ruminants.


Assuntos
Células Lúteas , MicroRNAs , Feminino , Animais , Células Lúteas/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Corpo Lúteo/fisiologia , Apoptose/fisiologia , Ruminantes , RNA Mensageiro/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , MicroRNAs/metabolismo
7.
Differentiation ; 131: 38-48, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37079952

RESUMO

In the present study, granulosa cells (GCs) from domestic cats and Persian leopard were cultured and characterized from selected days. The culture period was divided into two phases: maintenance, which lasted for 7 days, and luteinization, which followed for up to 11 days. Luteinization was performed on ultra-low attachment plates, supporting the formation of spheroids in a medium supplemented with insulin, forskolin, and luteinizing hormone (LH). GCs of domestic cat produced estradiol (E2) and progesterone (P4) during the maintenance phase. The gene expressions of some proteins involved in steroidogenesis were stable (STAR, HSD3B1) or decreased over time (CYP11A1, HSD17B1, CYP17A1, and CYP19A1), which was similar to the expressions of gonatropin receptors (LHCGR and FSHR). During the luteinization phase, P4 concentration significantly increased (P < 0.05), and E2, in contrast to the proliferation phase, was below detection range. The expression of genes of proteins involved in steroidogenesis (STAR, CYP11A1, HSD3B1, HSD17B1, CYP17A1, and CYP19A1) and of gonadotropin receptors (LHCGR and FSHR) significantly increased during the luteinization period, but some expressions exhibited a decrease at the end of the phase (LHCGR, FSHR, HSD17B1, CYP19A1). The morphology of the luteinized GCs of domestic cat resembled large luteal cells and had numerous vacuole-like structures. Also, the GCs of Persian leopard underwent luteinization, shown by increasing P4 production and HSD3B1 expression. This study confirms that GCs from felids can be luteinized in a 3D spheroid system which can be a basis for further studies on luteal cell function of felids. Additionally, we could show that the domestic cat can serve as a model species for establishing cell culture methods which can be transferred to other felids.


Assuntos
Enzima de Clivagem da Cadeia Lateral do Colesterol , Panthera , Feminino , Gatos , Animais , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Células da Granulosa/metabolismo , Luteinização/fisiologia , Complexos Multienzimáticos/metabolismo , Panthera/metabolismo , Células Cultivadas
8.
Domest Anim Endocrinol ; 82: 106763, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36166950

RESUMO

Studies have shown that ghrelin played direct actions in ovarian function, but the direct role of ghrelin in corpus luteum (CL) of pregnant sows has remained obscure. The study aimed to examine the expressions of ghrelin and its functional receptor (GHSR-1a) in the CL of sows during pregnancy, and evaluate the role of ghrelin in CL function of pregnant sows. Immunohistochemistry analysis showed that ghrelin and GHSR-1a are both predominantly localized in the luteal cells of pregnant sows CL. Strong immunoreactivity for ghrelin and GHSR-1a is detected at days 20 (early) and 50 (middle), but weak immunoreactivity is observed at days 90 (late) post mating. Similarly, there is a significant effect of pregnant phase on the expression (mRNA and protein) of ghrelin and GHSR-1a in the CL, with higher levels at days 20 (early) and 50 (middle), and lower values at 90 (late) post mating. In vitro, treatments of luteal cells with ghrelin (from 0.01 to 10 ng/mL) are promoted cell viability and P4 secretion in a dose-dependent manner. Ghrelin is also accelerated the LH-induced P4 secretion in luteal cells. Moreover, ghrelin is induced the release and mRNA expression of LH, and increased the release of prostaglandin (PG)E2, but reduced the secretion of PGF2α in luteal cells. In conclusion, the presences of ghrelin and GHSR-1a in the porcine CL during pregnancy, and the stimulatory effect of ghrelin on luteal cells suggest positive regulation by ghrelin in CL function of pregnant sows.


Assuntos
Grelina , Células Lúteas , Gravidez , Suínos , Feminino , Animais , Grelina/farmacologia , Corpo Lúteo/fisiologia , Receptores de Grelina/genética , Células Lúteas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Dev Reprod ; 27(4): 185-193, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38292236

RESUMO

Although increasing evidence of cause-and-effect relationship between BPA exposure and female reproductive disorders have been suggested through many studies, the precise biochemical and molecular mechanism(s) by which BPA interferes with steroidogenesis in the ovarian cells still remain unclear. Therefore, the purpose of this study was to discover the steroidogenic biomarker(s) associated with BPA treatment in human granulosa cell line, KGN. In this study, our results obtained via the analysis of steroidogenesis-related protein expression in KGN cells using quantitative polymerase chain reaction (qPCR) and western blot analyses revealed that the expression levels of steroidogenic acute regulatory (StAR) and aromatase decreased considerably and gradually after BPA treatment in a dose-dependent manner under BPA treatment. Further, remarkable decreases in their expression levels at the cellular levels were also confirmed via immunocytochemistry, and subsequent StAR and aromatase mRNA expression levels showed profiles similar to those observed for their proteins, i.e., both StAR and aromatase mRNA expression levels were significantly decreased under BPA treatment at concentrations ≥0.1 µM. We observed that follicle stimulating hormone upregulated StAR and aromatase protein expression levels; however, this effect was suppressed in the presence of BPA. Regarding the steroidogenic effects of BPA on KGN cells, controversies remain regarding the ultimate outcomes. Nevertheless, we believe that the results here presented imply that KGN cells have a good cellular and steroidogenic machinery for evaluating endocrine disruption. Therefore, StAR and aromatase could be stable and sensitive biomarkers in KGN cells for the cellular screening of the potential risk posed by exogenous and environmental chemicals to female reproductive (endocrine) function.

10.
Dev Reprod ; 26(2): 71-77, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35950164

RESUMO

In response to luteinizing hormone (LH), a higher concentration of progesterone (P4) is produced in luteal cells of corpus luteum (CL). Mitochondria are an essential cellular organelle in steroidogenesis. The specific engagement of the concept regarding mitochondrial shaping with early stages of steroidogenesis was suggested in reproductive endocrine cells. Although the specific involvement of GTPase dynamin-related protein 1 (Drp1) with steroidogenesis has been demonstrated in luteal cells of bovine CL in vitro, its actual relationship with ovarian steroidogenesis during the estrous cycle remains unknown. In this study, while Fis1 and Opa1 protein levels did not show significant changes during the estrous cycle, Drp1, Mfn1, and Mfn2 proteins exhibited relatively lower levels at proestrus than at estrus or diestrus. 3ß-HSD showed higher levels at proestrus than at estrus or diestrus. In addition, Drp1 phosphorylation (s637) was higher in proestrus than in estrus or diestrus. Immune-positive cells for Drp1, pDrp1 (s637), and 3ß-HSD were all localized in the cytoplasm of luteal cells in the CL. The immune-positive cells for 3ß-HSD were more frequently seen in the CL at proestrus than at estrus or diestrus. Immunoreactivity for Drp1 in luteal cells at proestrus was weaker than that at estrus or diestrus. However, pDrp1 (s637) immune-positive cells were mostly detected in luteal cells at proestrus. These results imply that steroidogenesis (P4 production) in the CL is closely related to phosphorylation of Drp1 at serine 637. Taken together, this study presents evidence that Drp1 phosphorylation at serine 637 is an important step in steroidogenesis in the CL.

11.
Domest Anim Endocrinol ; 78: 106671, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34509740

RESUMO

The corpus luteum (CL) plays a vital role in regulating the reproductive cycle, fertility, and in maintaining pregnancy. Interferon-tau (IFNT) is the maternal recognition of a pregnancy signal in domestic ruminants; its uterine, paracrine actions, which extend the CL lifespan, are widely established. However, considerable evidence also suggests a direct, endocrine role for IFNT. The purpose of this review is to highlight the importance of IFNT in CL maintenance, acting directly and in a cell-specific manner. A transcriptomic study revealed a distinct molecular profile of IFNT-exposed day 18, pregnant bovine CL, compared to the non-pregnant gland. A substantial fraction of the differentially expressed genes was downregulated, many of which are known to be elevated by prostaglandin F2A (PGF2A). In vitro, IFNT was found to mimic changes observed in the luteal transcriptome of early pregnancy. Key luteolytic genes such as endothelin-1 (EDN1), transforming growth factor-B1 (TGFB1), thrombospondins (THBSs) 1&2 and serpine-1 (SERPINE1) were downregulated in luteal endothelial cells. Luteal steroidogenic large cells (LGCs) were also found to be a target for the antilutelotytic actions of IFNT. IFNT-treated LGCs showed a significant reduction in the expression of the proapoptotic, antiangiogenic THBS1&2, as well as TGFBR1 and 2. Furthermore, IFNT was shown to be a potent survival factor for luteal cells in vivo and in vitro, activating diverse pathways to promote cell survival while suppressing cell death signals. Pentraxin 3 (PTX3), robustly upregulated by IFNT in various luteal cell types, mediated many of the prosurvival effects of IFNT in LGCs. A novel reciprocal inhibitory crosstalk between PTX3 and THBS1 lends further support to their respective survival and apoptotic actions in the CL. Even though IFNT did not directly regulate progesterone synthesis, it could maintain its concentrations, by increasing luteal cell survival and by supporting vascular stabilization. The direct effects of IFNT in the CL, enhancing cell survival and vasculature stabilization while curbing luteolytic activities, may constitute an important complementary branch leading to the extension of the luteal lifespan during early pregnancy.


Assuntos
Células Endoteliais , Células Lúteas , Animais , Bovinos , Corpo Lúteo , Dinoprosta/metabolismo , Dinoprosta/farmacologia , Feminino , Células Lúteas/metabolismo , Luteólise , Gravidez
12.
Reprod Biol ; 21(3): 100511, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33991765

RESUMO

Ephrin receptors and ligands are membrane-bound molecules that modulate diverse cellular functions such as cell adhesion, epithelial-mesenchymal transition, motility, differentiation and proliferation. We recently reported the co-expression of ephrin-B1 and EphB4 in adult and foetal Leydig cells of the mouse testis, and thus speculated that their co-expression is a common property in gonadal steroidogenic cells. Therefore, in this study we examined the expression and localisation of ephrin-B1 and EphB4 in the naturally cycling mouse ovary, as their expression patterns in the ovary are virtually unknown. We found that ephrin-B1 and EphB4 were co-expressed in steroidogenic cells of all kinds, i.e. granulosa cells and CYP17A1-positive steroidogenic theca cells as well as in 3ß-HSD-positive luteal cells and the interstitial glands; their co-expression potentially serves as a good marker to identify sex steroid-producing cells even in extra-gonadal organs/tissues. We also found that ephrin-B1 and EphB4 expression in granulosa cells was faint and strong, respectively; ephrin-B1 expression in luteal cells was weak in developing and temporally mature corpora lutea (those of the current cycle) and likely strong in regressing corpora lutea (those of the previous cycle) and EphB4 expression in luteal cells was weak in corpora lutea of the current cycle and likely faint/negative in the corpora lutea of the previous cycle. These findings suggest that a luteinising hormone surge triggers the upregulation of ephrin-B1 and downregulation of EphB4, as this expression fluctuation occurs after the surge. Overall, ephrin-B1 and EphB4 expression patterns may represent benchmarks for steroidogenic cells in the ovary.


Assuntos
Efrina-B1/metabolismo , Regulação da Expressão Gênica/fisiologia , Ovário/metabolismo , Receptor EphB4/metabolismo , Animais , Efrina-B1/genética , Feminino , Camundongos , Ovário/citologia , Transporte Proteico , Receptor EphB4/genética
13.
Biol Reprod ; 105(1): 137-147, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33864060

RESUMO

In the present study, we investigated the effect of the synthetic analog of prostaglandin F2α (PGF2α)-cloprostenol-on cultured steroidogenic luteal cells of selected felid species over a 2-day culture period. The changes induced by cloprostenol were measured based on progesterone concentration and mRNA expression analysis of selected genes. Cloprostenol significantly reduced concentration of progesterone in cell culture medium of small luteal cells isolated from domestic cat corpora lutea (CL) at the development/maintenance stage (P < 0.05), but did not influence progesterone production in cultured cells from the regression stage. A decrease or complete silencing of progesterone production was also measured in cultured luteal cells of African lion (formation stage) and Javan leopard (development/maintenance stage). Gene-expression analysis by real-time PCR revealed that treatment with cloprostenol did not have an influence on expression of selected genes coding for enzymes of steroidogenesis (StAR, HSD3B, CYP11A1) or prostaglandin synthesis (PTGS2, PGES), nor did it effect hormone receptors (AR, ESR1, PGR, PTGER2), an anti-oxidative enzyme (SOD1) or factors of cell apoptosis (FAS, CASP3, TNFRSF1B, BCL2) over the studied period. Significant changes were measured only for expressions of luteinizing hormone (P < 0.05), prolactin (P < 0.05) and PGF2α receptors (P < 0.005) (LHCGR, PRLR, and PTGFR). The obtained results confirm that PGF2α/cloprostenol is a luteolytic agent in CL of felids and its impact on progesterone production depends on the developmental stage of the CL. Cloprostenol short-term treatment on luteal cells was associated only with functional but not structural changes related to luteal regression.


Assuntos
Gatos/fisiologia , Cloprostenol/farmacologia , Leões/fisiologia , Células Lúteas/efeitos dos fármacos , Luteólise/psicologia , Luteolíticos/farmacologia , Panthera/fisiologia , Animais , Células Cultivadas , Feminino
14.
Theriogenology ; 166: 124-134, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33735666

RESUMO

Oocyte maturation in culture is still the weakest part of in vitro fertilization (IVF) and coculture with somatic cells may be an alternative to improve suboptimal culture conditions, especially in the pig in which maturation takes more than 44 h. In the present study, we investigated the effect of a coculture system of porcine luteal cells (PLC) during in vitro maturation (IVM) on embryo development and gene expression. Cumulus-oocyte complexes were matured in vitro in TCM-199 with human menopausal gonadotrophin (control) and in coculture with PLC. IVF was performed with frozen-thawed boar semen in Tris-buffered medium. Presumptive zygotes were cultured in PZM for 7 days. The coculture with PLC significantly increased blastocysts rates. Gene expression changes were measured with a porcine embryo-specific microarray and confirmed by RT-qPCR. The global transcription pattern of embryos developing after PLC coculture exhibited overall downregulation of gene expression. Following global gene expression pattern analysis, genes associated with lipid metabolism, mitochondrial function, endoplasmic reticulum stress, and apoptosis were found downregulated, and genes associated with cell cycle and proliferation were found upregulated in the PLC coculture. Canonical pathway analysis by Ingenuity Pathway revealed that differential expression transcripts were associated with the sirtuin signaling pathway, oxidative phosphorylation pathway, cytokines and ephrin receptor signaling. To conclude, the coculture system of PLC during IVM has a lasting effect on the embryo until the blastocyst stage, modifying gene expression, with a positive effect on embryo development. Our model could be an alternative to replace the conventional maturation medium with gonadotrophins with higher rates of embryo development, a key issue in porcine in vitro embryo production.


Assuntos
Células Lúteas , Animais , Blastocisto , Técnicas de Cocultura/veterinária , Desenvolvimento Embrionário , Feminino , Fertilização in vitro/veterinária , Expressão Gênica , Técnicas de Maturação in Vitro de Oócitos/veterinária , Masculino , Oócitos , Suínos
15.
Animals (Basel) ; 11(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466590

RESUMO

The objective of this study was to investigate the effect of luteinizing hormone (LH) on steroidogenic luteal cells obtained from corpora lutea (CL) of the domestic cat and selected wild felids. Luteal cells were isolated enzymatically from CL at different developmental stages and cultured for two days in the presence and absence of 100 ng/mL LH, respectively. Functionality was assessed by progesterone (P4) accumulation in cell culture media determined by ELISA. In addition, steroidogenic function was confirmed using immunohistochemistry for 3ß-hydroxysteroid dehydrogenase (HSD3B). The enzymatic method allowed for the isolation of mostly small luteal cells in all investigated felids. Treatment with LH resulted in an increase in P4 secretion of cultured luteal cells obtained from CL in the formation stage (African lion) and development/maintenance stage (domestic cat (p < 0.05), Javan leopard), whereas luteal cells from more advanced stages of luteal development (regression) responded moderately or not at all to LH stimulation (domestic cat, Asiatic golden cat, Asiatic lion). The protein signal for HSD3B on CL was visible until development/maintenance. In conclusion, this study shows that LH promotes P4 production in luteal cells only until the onset of regression, when morphological signs are visible on the CL of felids and HSD3B is no longer detectable.

16.
Hum Reprod ; 35(12): 2793-2807, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33326997

RESUMO

STUDY QUESTION: Can human theca cells (TCs) be differentiated in vitro? SUMMARY ANSWER: It is possible to differentiate human TCs in vitro using a medium supplemented with growth factors and hormones. WHAT IS KNOWN ALREADY: There are very few studies on the origin of TCs in mammalian ovaries. Precursor TCs have been described in neonatal mice ovaries, which can differentiate into TCs under the influence of factors from oocytes and granulosa cells (GCs). On the other hand, studies in large animal models have reported that stromal cells (SCs) isolated from the cortical ovarian layer can also differentiate into TCs. STUDY DESIGN, SIZE, DURATION: After obtaining informed consent, ovarian biopsies were taken from eight menopausal women (53-74 years of age) undergoing laparoscopic surgery for gynecologic disease not related to the ovaries. SCs were isolated from the ovarian cortex and in vitro cultured for 8 days in basic medium (BM) (G1), enriched with growth factors, FSH and LH in plastic (G2) or collagen substrate without (G3) or with (G4) a GC line. PARTICIPANTS/MATERIALS, SETTING, METHODS: To confirm TC differentiation, relative mRNA levels for LH receptor (Lhr), steroidogenic acute regulatory protein (Star), cholesterol side-chain cleavage enzyme (Cyp11a1), cytochrome P450 17A1 (Cyp17a1), hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 (Hsd3b1) and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 2 (Hsd3b2) were assessed. Immunohistochemistry was also performed for their protein detection and a specific marker was identified for TCs (aminopeptidase-N, CD13), as were markers for theca and small luteal cells (dipeptidyl peptidase IV (CD26) and Notch homolog 1, translocation-associated (NOTCH1)). Finally, we analyzed cell ultrastructure before (Day 0) and after in vitro culture (Day 8), and dehydroepiandrosterone (DHEA) and progesterone levels in the medium using transmission electron microscopy (TEM) and ELISA, respectively. MAIN RESULTS AND THE ROLE OF CHANCE: Results obtained from qPCR showed a significant increase (P < 0.05) in mRNA levels of Lhr in F2 (floating cells in G2) and G4, Cyp17a1 in G1 and F1 (floating cells in G1) and Hsd3b2 in G1, G2, G3 and G4. Immunohistochemistry confirmed expression of each enzyme involved in the steroidogenic pathway at the protein stage. However, apart from G1, all other groups exhibited a significant (P < 0.05) rise in the number of CD13-positive cells. There was also a significant increase (P < 0.05) in NOTCH1-positive cells in G3 and G4. Ultrastructure analyses by TEM showed a distinct difference between groups and also versus Day 0. A linear trend with time revealed a significant gain (q < 0.001) in DHEA concentrations in the medium during the culture period in G1, G2, G3 and G4. It also demonstrated a statistical increase (q < 0.001) in G2, G3 and G4 groups, but G1 remained the same throughout culture in terms of progesterone levels. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Shorter periods of in vitro culture (e.g. 2, 4 and 6 days) could have led to increased concentrations of differentiated TCs in G2, G3 and G4. In addition, a group of cells cultured in BM and accompanied by COV434 cells would be necessary to understand their role in the differentiation process. Finally, while our results demonstrate that TCs can be differentiated in vitro from cells isolated from the cortical layer of postmenopausal ovaries, we do not know if these cells are differentiated from a subpopulation of precursor TCs present in ovarian cortex or ovarian SCs in general. It is therefore necessary to identify specific markers for precursor TCs in human ovaries to understand the origin of these cells. WIDER IMPLICATIONS OF THE FINDINGS: This is a promising step toward understanding TC ontogenesis in the human ovary. Moreover, in vitro-generated human TCs can be used for studies on drug screening, as well as to understand TC-associated pathologies, such as androgen-secreting tumors and polycystic ovary syndrome. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (FNRS) (C.A.A. is an FRS-FNRS Research Associate; grant MIS #F4535 16 awarded to C.A.A.; grant 5/4/150/5 awarded to M.M.D.; grant ASP-RE314 awarded to P.A.) and Foundation Against Cancer (grant 2018-042 awarded to A.C.). The authors declare no competing interests.


Assuntos
Ovário , Células Tecais , Animais , Diferenciação Celular , Feminino , Células da Granulosa , Humanos , Pós-Menopausa
17.
Theriogenology ; 158: 188-195, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32961354

RESUMO

Our objectives were to investigate potential changes in the size of steroidogenic large luteal cells (LLC) during partial luteolysis induced by a sub-dose of cloprostenol in early diestrus and to determine transcriptional variations in genes involved in corpus luteum (CL) functions. Cows were subjected to an Ovsynch protocol, with the time of the second GnRH treatment defined as Day 0 (D0). On D6, cows were randomly allocated into three treatments: Control (2 mL saline, im; n = 10), 2XPGF (two doses of 500 µg of cloprostenol, im, 2 h apart; n = 8) or 1/6PGF (single dose of 83.3 µg of cloprostenol, im; n = 10). Before treatments and every 8 h during the 48-h experimental period, blood samples were collected and CL volumes measured. Furthermore, two CL biopsies were obtained at 24 and 40 h post-treatment. The 1/6PGF treatment caused partial luteolysis, characterized by sudden decreases in plasma progesterone (P4) concentrations, luteal volume and LLC size, followed by increases (to pretreatment values) in P4 and luteal volume at 24 and 40 h post-treatment, respectively. However, at the end of the study, P4, luteal volume and LLC size were all significantly smaller than in Control cows. Temporally associated with these phenotypes, there was a lower mRNA abundance of VEGFA at 24 and 40 h, and ABCA1 at 24 h (P < 0.05). In conclusion, a sudden reduction in CL size during partial luteolysis induced by a sub-dose of PGF2α analog on day 6 of the estrous cycle was attributed to a reduction in LLC size, although these changes did not account for the entire phenomenon. In addition to its involvement in reducing CL size, decreased VEGFA mRNA abundance impaired CL development, resulting in a smaller luteal gland and lower plasma P4 concentrations compared to Control cows.


Assuntos
Células Lúteas , Luteólise , Animais , Bovinos , Corpo Lúteo , Diestro , Dinoprosta , Feminino , Progesterona
19.
Reprod Domest Anim ; 55(6): 683-690, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32125030

RESUMO

Bisphenol A (BPA), diethylhexyl phthalate (DEHP) and pentabrominated diphenyl ether 99 (PBDE 99) are environmental toxicants belonging to the endocrine disrupting compounds (EDCs). They exert adverse effects on the various physiological systems, especially the reproductive system of humans and animals. The aim of this study was to investigate the effects of BPA, DEHP and PBDE 99 on progesterone (P4) synthesis in cultured bovine luteal cells. The bovine luteal cells isolated from the mid-luteal corpora lutea were exposed to different concentrations of BPA (1, 3, 10 and 30 µM), DEHP (1, 3, 10 and 30 µM) and PBDE 99 (0.1, 0.3, 1 and 3 µM) in a serum-free culture media for 48 and 96 hr. At 48 hr, the P4 level in the luteal cells decreased after treatment with all concentrations of BPA; 3, 10 and 30 µM of DEHP; and 3 µM of PBDE 99 compared to the control (p < .05). Treatment of cells with 3-30 µM of BPA, 1-30 µM of DEHP and 1-3 µM of PBDE 99 for 96 hr resulted in reduction in P4 synthesis (p < .05). However, lower concentrations of PBDE 99 (0.1 and 0.3 µM) increased P4 levels at 48 and 96 hr. Synthesis of P4 was lower at 96 hr compared to the 48 hr in the groups treated with BPA (30 µM), DEHP (1-30 µM), PBDE 99 (0.3-3 µM) and control group. Our results showed that BPA, DEHP and PBDE 99 are able to alter luteal steroidogenesis in bovine cells and can disrupt hormonal balance in the ovary. However, it is necessary to evaluate the exact mechanism underlying these effects in future studies.


Assuntos
Disruptores Endócrinos/toxicidade , Células Lúteas/efeitos dos fármacos , Progesterona/metabolismo , Animais , Compostos Benzidrílicos/toxicidade , Bovinos , Células Cultivadas , Dietilexilftalato/toxicidade , Feminino , Éteres Difenil Halogenados/toxicidade , Células Lúteas/metabolismo , Fenóis/toxicidade
20.
J Endocrinol Invest ; 43(6): 821-831, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31894536

RESUMO

PURPOSE: Fine and balanced regulation of cell proliferation and apoptosis are key to achieve ovarian follicle development from the primordial to the preovulatory stage and therefore assure female reproductive function. While gonadotropins are the major and most recognized regulators of follicle cell growth and function, other factors, both systemic and local, play equally important roles. This work is aimed at evaluating the effects of thyroid hormones (THs) on human granulosa luteinized (hGL) viability. METHODS: Human GL cells derived from assisted reproduction treatments were exposed to T3 or T4. Cell viability was evaluated by MTT assay. Apoptosis was evaluated by the TUNEL assay and active caspase-3 staining. StAR, CYP19A1,Caspase-3, P53 and BAX mRNA were evaluated by real-time PCR. LC3-I/-II, AKT and pAKT were evaluated by western blot. RESULTS: T3 and T4 promoted cell viability in a dose-dependent modality and modulate StAR and CYP19A1 expression. T3 and to a lesser extent T4 mitigated cell death induced by serum starvation by inhibition of caspase-3 activity and expression of P53 and BAX; and attenuate cell death experimentally induced by C2-ceramide. Cell death derived from starvation appeared to be involved in autophagic processes, as the levels of autophagic markers (LC3-II/LC3-I ratio) decreased when starved cells were exposed to T3 and T4. This effect was associated with an increase in pAkt levels. CONCLUSION: From the present study, THs emerge as potent anti-apoptotic agents in hGL cells. This effect is achieved by inhibiting the apoptosis signalling pathway of BAX and caspase-3, while maintaining active the PI3K/AKT pathway.


Assuntos
Apoptose/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Células Lúteas/efeitos dos fármacos , Tiroxina/farmacologia , Tri-Iodotironina/farmacologia , Apoptose/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Células da Granulosa/fisiologia , Humanos , Células Lúteas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA