Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Aging (Albany NY) ; 16(9): 7870-7888, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38709288

RESUMO

BMP9 has demonstrated significant osteogenic potential. In this study, we investigated the effect of Leptin on BMP9-induced osteogenic differentiation. Firstly, we found Leptin was decreased during BMP9-induced osteogenic differentiation and serum Leptin concentrations were increased in the ovariectomized (OVX) rats. Both in vitro and in vivo, exogenous expression of Leptin inhibited the process of osteogenic differentiation, whereas silencing Leptin enhanced. Exogenous Leptin could increase the malonylation of ß-catenin. However, BMP9 could increase the level of Sirt5 and subsequently decrease the malonylation of ß-catenin; the BMP9-induced osteogenic differentiation was inhibited by silencing Sirt5. These data suggested that Leptin can inhibit the BMP9-induced osteogenic differentiation, which may be mediated through reducing the activity of Wnt/ß-catenin signalling via down-regulating Sirt5 to increase the malonylation level of ß-catenin partly.


Assuntos
Regulação para Baixo , Fator 2 de Diferenciação de Crescimento , Leptina , Osteogênese , Sirtuínas , Via de Sinalização Wnt , beta Catenina , Animais , beta Catenina/metabolismo , beta Catenina/genética , Sirtuínas/metabolismo , Sirtuínas/genética , Feminino , Ratos , Osteogênese/efeitos dos fármacos , Leptina/metabolismo , Leptina/farmacologia , Fator 2 de Diferenciação de Crescimento/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Ovariectomia , Diferenciação Celular/efeitos dos fármacos , Ratos Sprague-Dawley
2.
Int J Biol Sci ; 20(2): 585-605, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169591

RESUMO

Sirtuin 5 (SIRT5), localized in the mitochondria, has been identified as a protein desuccinylase and demalonylase in the mitochondria since the depletion of SIRT5 boosted the global succinylation and malonylation of mitochondrial proteins. We investigated the role of SIRT5 in diabetic cardiomyopathy (DCM) and identified the mechanism regarding lysine demalonylation in this process. Wild-type and SIRT5 knockout mice were induced with DCM, and primary cardiomyocytes and cardiac fibroblasts extracted from wild-type and SIRT5 knockout mice were subjected to high glucose (HG). SIRT5 deficiency exacerbated myocardial injury in DCM mice, aggravated HG-induced oxidative stress and mitochondrial dysfunction in cardiomyocytes, and intensified cardiomyocyte senescence, pyroptosis, and DNA damage. DCM-induced SIRT5 loss diminished glutathione S-transferase P (GSTP1) protein stability, represented by significantly increased lysine malonylation (Mal-Lys) modification of GSTP1. SIRT5 overexpression alleviated DCM-related myocardial injury, which was reversed by GSTP1 knockdown. Reduced SIRT5 transcription in DCM resulted from the downregulation of SPI1. SPI1 promoted the transcription of SIRT5, thereby ameliorating DCM-associated myocardial injury. However, SIRT5 deletion resulted in a significant reversal of the protective effect of SPI1. These observations suggest that SPI1 activates SIRT5 transcriptionally to mediate GSTP1 Mal-Lys modification and protein stability, thus ameliorating DCM-associated myocardial injury.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Sirtuínas , Animais , Camundongos , Cardiomiopatias Diabéticas/genética , Glutationa Transferase , Lisina/metabolismo , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Piroptose , Sirtuínas/genética , Sirtuínas/metabolismo
3.
Proteome Sci ; 21(1): 18, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833721

RESUMO

BACKGROUND: End-stage renal disease (ESRD) is a condition that is characterized by the loss of kidney function. ESRD patients suffer from various endothelial dysfunctions, inflammation, and immune system defects. Lysine malonylation (Kmal) is a recently discovered post-translational modification (PTM). Although Kmal has the ability to regulate a wide range of biological processes in various organisms, its specific role in ESRD is limited. METHODS: In this study, the affinity enrichment and liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques have been used to create the first global proteome and malonyl proteome (malonylome) profiles of peripheral blood mononuclear cells (PBMCs) from twenty patients with ESRD and eighty-one controls. RESULTS: On analysis, 793 differentially expressed proteins (DEPs) and 12 differentially malonylated proteins (DMPs) with 16 Kmal sites were identified. The Rap1 signaling pathway and platelet activation pathway were found to be important in the development of chronic kidney disease (CKD), as were DMPs TLN1 and ACTB, as well as one malonylated site. One conserved Kmal motif was also discovered. CONCLUSIONS: These findings provided the first report on the Kmal profile in ESRD, which could be useful in understanding the potential role of lysine malonylation modification in the development of ESRD.

4.
J Proteomics ; 287: 104977, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37482272

RESUMO

Primary Sjogren's Syndrome (pSS) is a chronic autoimmune disease, with unclear pathogenies. Lysine-malonylation (Kmal) as a novel post-translational modification (PTMs) was found associated with metabolic, immune, and inflammatory processes. For purpose of investigating the proteomic profile and functions of kmal in pSS, liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based analysis and bioinformatics analysis are performed based on twenty-eight pSS patients versus twenty-seven healthy controls (HCs). A total of 331 down-regulated proteins and 289 up-regulated proteins are observed in differentially expressed proteins (DEPs) of pSS. We discover the expression of transforming growth factor beta-1 (TGFB1) and CD40 ligand downregulate which enriches in the inflammatory associated pathway. Expression of signal transducer and activator of transcription 1-alpha/beta (STAT1) show upregulation and enrich in type I interferon signaling pathway and IL-27-mediated signaling pathway. In differentially malonylated proteins (DMPs) of pSS, we identify 3 proteins are down-regulated in 7 sites and 18 proteins are up-regulated in 19 sites. Expression of malonylated integrin-linked kinase (ILK) significantly enrich in the focal adhesion pathway. Together, our data provide evidence that downregulation of TGFB1 and CD40LG play a critical role in the inflammatory process of pSS, while upregulation of STAT1 may be associated with IL-27 immunity and pSS immune dysfunction. Moreover, kmal modification at the kinase domain of ILK may destabilize ILK that thus contributing to pSS pathogenies by regulating the focal adhesion pathway. SIGNIFICANCE: Our research offered the first characterization of Kmal, a newly identified form of lysine acylation in pSS, as well as proteomic data on individuals with pSS. In this study, we found that several key DMPs were associated with focal adhesion pathway, which contributes to the development of pSS. The present results provide an informative dataset for the future exploration of Kmal in pSS.


Assuntos
Interleucina-27 , Síndrome de Sjogren , Humanos , Síndrome de Sjogren/metabolismo , Lisina/metabolismo , Cromatografia Líquida , Proteômica/métodos , Espectrometria de Massas em Tandem
5.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176152

RESUMO

Lysine malonylation (Kmal) is an evolutionarily conserved post-translational modification (PTM) that has been demonstrated to be involved in cellular and organismal metabolism. However, the role that Kmal plays in response to drought stress of the terrestrial cyanobacteria N. flagelliforme is still unknown. In this study, we performed the first proteomic analysis of Kmal in N. flagelliforme under different drought stresses using LC-MS/MS. In total, 421 malonylated lysine residues were found in 236 different proteins. GO and KEGG enrichment analysis indicated that these malonylated proteins were highly enriched in several metabolic pathways, including carbon metabolism and photosynthesis. Decreased malonylation levels were found to hinder the reception and transmission of light energy and CO2 fixation, which led to a decrease in photosynthetic activity. Kmal was also shown to inhibit the flux of the TCA cycle and activate the gluconeogenesis pathway in response to drought stress. Furthermore, malonylated antioxidant enzymes and antioxidants were synergistically involved in reactive oxygen species (ROS) scavenging. Malonylation was involved in lipid degradation and amino acid biosynthesis as part of drought stress adaptation. This work represents the first comprehensive investigation of the role of malonylation in dehydrated N. flagelliforme, providing an important resource for understanding the drought tolerance mechanism of this organism.


Assuntos
Lisina , Nostoc , Lisina/metabolismo , Gluconeogênese , Proteômica , Secas , Cromatografia Líquida , Malonatos , Espectrometria de Massas em Tandem , Proteínas/metabolismo , Fotossíntese
6.
Cell Rep ; 42(4): 112319, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37002924

RESUMO

Protein post-translational modifications (PTMs) participate in important bioactive regulatory processes and therefore can help elucidate the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Here, we investigate the involvement of PTMs in ketogenic diet (KD)-improved fatty liver by multi-omics and reveal a core target of lysine malonylation, acetyl-coenzyme A (CoA) carboxylase 1 (ACC1). ACC1 protein levels and Lys1523 malonylation are significantly decreased by KD. A malonylation-mimic mutant of ACC1 increases its enzyme activity and stability to promote hepatic steatosis, whereas the malonylation-null mutant upregulates the ubiquitination degradation of ACC1. A customized Lys1523ACC1 malonylation antibody confirms the increased malonylation of ACC1 in the NAFLD samples. Overall, the lysine malonylation of ACC1 is attenuated by KD in NAFLD and plays an important role in promoting hepatic steatosis. Malonylation is critical for ACC1 activity and stability, highlighting the anti-malonylation effect of ACC1 as a potential strategy for treating NAFLD.


Assuntos
Dieta Cetogênica , Hepatopatia Gordurosa não Alcoólica , Humanos , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Acetil-CoA Carboxilase/farmacologia , Fígado/metabolismo , Lisina/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Processamento de Proteína Pós-Traducional
7.
Life Sci ; 320: 121572, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36921688

RESUMO

AIMS: The specificity of the lysine demalonylation substrates of the pharmaceutically attractive tumor promoter/suppressor SIRT5 is not comprehensively clarified. The present study re-analyses publicly available data and highlights potentially pharmaceutically interesting outcomes by the use of bioinformatics. MATERIALS AND METHODS: The interaction networks of SIRT5 malonylome from the wild-type and ob/ob (obese pre-diabetic type) mice were subjected to the pathway enrichment and gene function prediction analysis using GeneMania (3.5.2) application run under Cytoscape (3.9.1) environment. KEY FINDINGS: The analysis in the wild-type mice revealed the involvement of SIRT5 malonylome in Eukaryotic translation elongation (ETE; the nodes EF1A1, EEF2, EEF1D, and EEF1G), Amino acid and derivative metabolism (AADM), and Selenoamino acid metabolism (SAM). The tumor promoter/suppressor activity of SIRT5 is mediated through the tumor promoter substrates included in AADM (GLUD1, SHMT1, ACAT1), and the tumor suppressor substrates involved in AADM and SAM (ALDH9A1, BHMT, GNMT). Selen stimulates the expression of SIRT5 and other sirtuins. SIRT5 in turn regulates the selenocysteine synthesis, which creates a regulatory loop. The analysis of SIRT5 malonylome in pre-diabetic ob/ob mice identifies the mTORC1 pathway as a mechanism, which facilitates SIRT5 functions. The comparison of the outcomes of SIRT5 malonylome, succinylome, and glutarylome analysis disclosed several differences. SIGNIFICANCE: The analysis showed additional aspects of SIRT5 malonylome functions besides the control of glucose metabolism. It defined several unique substrates and pathways, and it showed differences compared to other enzymatic activities of SIRT5, which could be used for pharmaceutical benefits.


Assuntos
Estado Pré-Diabético , Sirtuínas , Camundongos , Animais , Lisina/metabolismo , Glicólise/genética , Processamento de Proteína Pós-Traducional , Carcinógenos , Sirtuínas/metabolismo
8.
J Proteomics ; 271: 104767, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36336260

RESUMO

Lysine acetylation is a common posttranslational modification that regulates numerous biochemical functions in both eukaryotic and prokaryotic species. In addition, several new non-acetyl acylations are structurally different from lysine acetylation and participate in diverse physiological functions. Here, a comprehensive analysis of several lysine acylomes was performed by combining the high-affinity antibody enrichment with high-resolution LC-MS/MS. In total, we identified 2536 lysine acetylated sites, 4723 propionylated sites, 2150 succinylated sites and 3001 malonylated sites in Bacillus subtilis, respectively. These acylated proteins account for 35.8% of total protein in this bacterium. The four lysine acylomes showed a motif preference for glutamate surrounding the modified lysine residues, and a functional preference for several metabolic pathways, such as carbon metabolism, fatty acid metabolism, and ribosome. In addition, more protein-protein interaction clusters were identified in the propionylated substrates than other three lysine acylomes. In summary, our study presents a global landscape of acylation in the Gram-positive model organism Bacillus and their potential functions in metabolism and physiology.


Assuntos
Bacillus subtilis , Lisina , Lisina/metabolismo , Bacillus subtilis/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Acetilação , Processamento de Proteína Pós-Traducional
9.
Microbiol Res ; 265: 127209, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36174356

RESUMO

Mycobacterium tuberculosis (Mtb), the pathogenic agent of tuberculosis, remains a primary inducement of morbidity and mortality globally. Mtb have evolved mechanisms to recognize diverse signals, such as acidic pH within phagolysosomes and therefore to reprogram multiple physiological and metabolic processes to adapt to intracellular survival. Moreover, lysine malonylation has been suggested to participate in regulation of enzymes in carbon metabolism. However, lysine malonylation in Mtb and its association with acidic pH associated metabolism adaptation remain unknown. Here, we systematically characterized the comparative malonylome of Mtb H37Rv grown in normal (7H9-Tyloxapol (Ty)-7.4) and acidic (7H9-Ty-4.5) medium mimicking lysosome pH. In total, 2467 lysine malonylation sites within 1026 proteins were identified, which related to diverse biological processes, particularly accumulated in metabolic process. 1090 lysine malonylation sites from 562 proteins were quantified, among which 391 lysine malonylation sites in 273 protein were down-regulated while 40 lysine malonylation sites from 36 proteins were up-regulated in acidic medium, indicating that malonylation may participate in acidic pH associated metabolism. Accordingly, the enzyme activity of GlcB was reduced under acidic stress corresponding to decreased malonylation of GlcB compared with that of normal condition and this was further demonstrated by site-specific mutations. We further found that Mtb-CobB, a sirtuin-like deacetylase and desuccinylase, involved in demalonylase activity. Together, the Mtb malonylome not only indicates the critical role of malonylation in metabolism regulation, but may provide new insights of malonylation on metabolism adaptation to acidic micro-environment in vivo.


Assuntos
Mycobacterium tuberculosis , Sirtuínas , Ácidos/metabolismo , Carbono/metabolismo , Lisina/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas/metabolismo , Sirtuínas/metabolismo
10.
Front Mol Biosci ; 9: 899013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547393

RESUMO

The nucleosome, the basic repeating unit of chromatin, is a dynamic structure that consists of DNA and histones. Insights derived from biochemical and biophysical approaches have revealed that histones posttranslational modifications (PTMs) are key regulators of nucleosome structure and dynamics. Mounting evidence suggests that the newly identified negatively charged histone lysine acylations play significant roles in altering nucleosome and chromatin dynamics, subsequently affecting downstream DNA-templated processes including gene transcription and DNA damage repair. Here, we present an overview of the dynamic changes of nucleosome and chromatin structures in response to negatively charged histone lysine acylations, including lysine malonylation, lysine succinylation, and lysine glutarylation.

11.
J Proteomics ; 262: 104597, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35489682

RESUMO

Rheumatoid arthritis (RA) is an autoimmune inflammatory disease of unknown etiology in which the posttranslational modifications (PTMs) of proteins play an important role. PTMs, such as those involved in the formation of neutrophil extracellular traps (NETs), have been well studied. The excessive formation and release of NETs can mediate inflammation and joint destruction in RA. It has been gradually recognized that lysine malonylation (Kmal) can regulate some biological processes in some prokaryotes and eukaryotes. However, less is known about the role of Kmal in RA. We therefore performed proteome and malonylome analyses to explore the proteomic characteristics of the peripheral blood mononuclear cells from 36 RA patients and 82 healthy subjects. In total, 938 differentially expressed proteins (DEPs) and 42 differentially malonylated proteins (DMPs) with 55 Kmal sites were detected through a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based analysis. Functional analysis showed that two DEPs with four malonylated sites and one DMP with a malonylated site were identified in the neutrophil extracellular trap formation (NETosis) pathway. Altogether, this study not only describes the characteristics of the malonylome in RA for the first time, but it also reveals that malonylation may be involved in the NETosis pathway. SIGNIFICANCE: This is the first report that reveals the proteomic features of Kmal in RA through a LC-MS/MS-based method. In this study, we found that several key DMPs were associated with the NETosis pathway, which contributes to the development of RA. The present results provide an informative dataset for the future exploration of Kmal in RA.


Assuntos
Artrite Reumatoide , Armadilhas Extracelulares , Cromatografia Líquida , Armadilhas Extracelulares/metabolismo , Humanos , Leucócitos Mononucleares , Neutrófilos/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem
12.
Cartilage ; 13(2_suppl): 1185S-1199S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33567897

RESUMO

OBJECTIVE: Obesity accelerates the development of osteoarthritis (OA) during aging and is associated with altered chondrocyte cellular metabolism. Protein lysine malonylation (MaK) is a posttranslational modification (PTM) that has been shown to play an important role during aging and obesity. The objective of this study was to investigate the role of sirtuin 5 (Sirt5) in regulating MaK and cellular metabolism in chondrocytes under obesity-related conditions. METHODS: MaK and SIRT5 were immunostained in knee articular cartilage of obese db/db mice and different aged C57BL6 mice with or without destabilization of the medial meniscus surgery to induce OA. Primary chondrocytes were isolated from 7-day-old WT and Sirt5-/- mice and treated with varying concentrations of glucose and insulin to mimic obesity. Sirt5-dependent effects on MaK and metabolism were evaluated by western blot, Seahorse Respirometry, and gas/chromatography-mass/spectrometry (GC-MS) metabolic profiling. RESULTS: MaK was significantly increased in cartilage of db/db mice and in chondrocytes treated with high concentrations of glucose and insulin (GluhiInshi). Sirt5 was increased in an age-dependent manner following joint injury, and Sirt5 deficient primary chondrocytes had increased MaK, decreased glycolysis rate, and reduced basal mitochondrial respiration. GC-MS identified 41 metabolites. Sirt5 deficiency altered 13 distinct metabolites under basal conditions and 18 metabolites under GluhiInshi treatment. Pathway analysis identified a wide range of Sirt5-dependent altered metabolic pathways that include amino acid metabolism, TCA cycle, and glycolysis. CONCLUSION: This study provides the first evidence that Sirt5 broadly regulates chondrocyte metabolism. We observed changes in SIRT5 and MaK levels in cartilage with obesity and joint injury, suggesting that the Sirt5-MaK pathway may contribute to altered chondrocyte metabolism that occurs during OA development.


Assuntos
Cartilagem Articular , Condrócitos , Obesidade , Sirtuínas , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Condrócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/patologia , Osteoartrite/metabolismo , Sirtuínas/deficiência , Sirtuínas/metabolismo
13.
Proteome Sci ; 19(1): 1, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436009

RESUMO

BACKGROUND: Protein lysine malonylation, a novel post-translational modification (PTM), has been recently linked with energy metabolism in bacteria. Staphylococcus aureus is the third most important foodborne pathogen worldwide. Nonetheless, substrates and biological roles of malonylation are still poorly understood in this pathogen. RESULTS: Using anti-malonyl-lysine antibody enrichment and high-resolution LC-MS/MS analysis, 440 lysine-malonylated sites were identified in 281 proteins of S. aureus strain. The frequency of valine in position - 1 and alanine at + 2 and + 4 positions was high. KEGG pathway analysis showed that six categories were highly enriched, including ribosome, glycolysis/gluconeogenesis, pentose phosphate pathway (PPP), tricarboxylic acid cycle (TCA), valine, leucine, isoleucine degradation, and aminoacyl-tRNA biosynthesis. In total, 31 malonylated sites in S. aureus shared homology with lysine-malonylated sites previously identified in E. coli, indicating malonylated proteins are highly conserved among bacteria. Key rate-limiting enzymes in central carbon metabolic pathways were also found to be malonylated in S. aureus, namely pyruvate kinase (PYK), 6-phosphofructokinase, phosphoglycerate kinase, dihydrolipoyl dehydrogenase, and F1F0-ATP synthase. Notably, malonylation sites were found at or near protein active sites, including KH domain protein, thioredoxin, alanine dehydrogenase (ALD), dihydrolipoyl dehydrogenase (LpdA), pyruvate oxidase CidC, and catabolite control protein A (CcpA), thus suggesting that lysine malonylation may affect the activity of such enzymes. CONCLUSIONS: Data presented herein expand the current knowledge on lysine malonylation in prokaryotes and indicate the potential roles of protein malonylation in bacterial physiology and metabolism.

14.
IEEE Access ; 8: 77888-77902, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33354488

RESUMO

Post Translational Modification (PTM) is considered an important biological process with a tremendous impact on the function of proteins in both eukaryotes, and prokaryotes cells. During the past decades, a wide range of PTMs has been identified. Among them, malonylation is a recently identified PTM which plays a vital role in a wide range of biological interactions. Notwithstanding, this modification plays a potential role in energy metabolism in different species including Homo Sapiens. The identification of PTM sites using experimental methods is time-consuming and costly. Hence, there is a demand for introducing fast and cost-effective computational methods. In this study, we propose a new machine learning method, called Mal-Light, to address this problem. To build this model, we extract local evolutionary-based information according to the interaction of neighboring amino acids using a bi-peptide based method. We then use Light Gradient Boosting (LightGBM) as our classifier to predict malonylation sites. Our results demonstrate that Mal-Light is able to significantly improve malonylation site prediction performance compared to previous studies found in the literature. Using Mal-Light we achieve Matthew's correlation coefficient (MCC) of 0.74 and 0.60, Accuracy of 86.66% and 79.51%, Sensitivity of 78.26% and 67.27%, and Specificity of 95.05% and 91.75%, for Homo Sapiens and Mus Musculus proteins, respectively. Mal-Light is implemented as an online predictor which is publicly available at: (http://brl.uiu.ac.bd/MalLight/).

15.
Mol Genet Genomic Med ; 8(9): e1403, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32666640

RESUMO

BACKGROUND: Neural tube defects (NTDs) are severe congenital malformations. Diabetes during pregnancy is a risk factor for NTDs, but its mechanism remains elusive. Emerging evidence suggests that protein malonylation is involved in diabetes. Here, we report the correlation between histone lysine malonylation in diabetes-induced NTDs. METHODS: Nano-HPLC/MS/MS was used to screen the histone malonylation profile in human embryonic brain tissue. Then, the histone malonylation level was compared between the brains of normal control mice and mice with diabetes-induced NTDs. Finally, the histone malonylation level was compared under high glucose exposure in an E9 neuroepithelial cell line (NE4C). RESULTS: A total of 30 histone malonylation sites were identified in human embryonic brain tissue, including 18 novel sites. Furthermore, we found an increased histone malonylation level in brain tissues from mice with diabetes-induced NTDs. Finally, both the histone malonylation modified sites and the modified levels were proved to be increased in the NE4C treated with high glucose. CONCLUSION: Our results present a comprehensive map of histone malonylation in the human fetal brain. Furthermore, we provide experimental evidence supporting a relationship between histone malonylation and NTDs caused by high glucose-induced diabetes. These findings offer new insights into the pathological role of histone modifications in human NTDs.


Assuntos
Histonas/metabolismo , Defeitos do Tubo Neural/metabolismo , Gravidez em Diabéticas/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Linhagem Celular , Epigênese Genética , Feminino , Humanos , Lisina/metabolismo , Masculino , Malonatos/metabolismo , Camundongos , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/patologia , Gravidez
16.
Front Microbiol ; 11: 776, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411114

RESUMO

Lysine malonylation (Kmal) is a new post-translational modification (PTM), which has been reported in several prokaryotic and eukaryotic species. Although Kmal can regulate many and diverse biological processes in various organisms, knowledge about this important PTM in the apicomplexan parasite Toxoplasma gondii is limited. In this study, we performed the first global profiling of malonylated proteins in T. gondii tachyzoites using affinity enrichment and Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Three experiments performed in tandem revealed 294, 345, 352 Kmal sites on 203, 236, 230 malonylated proteins, respectively. Computational analysis showed the identified malonylated proteins to be localized in various subcellular compartments and involved in many cellular functions, particularly mitochondrial function. Additionally, one conserved Kmal motif with a strong bias for cysteine was detected. Taken together, these findings provide the first report of Kmal profile in T. gondii and should be an important resource for studying the physiological roles of Kmal in this parasite.

17.
Brief Bioinform ; 20(6): 2185-2199, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30351377

RESUMO

As a newly discovered post-translational modification (PTM), lysine malonylation (Kmal) regulates a myriad of cellular processes from prokaryotes to eukaryotes and has important implications in human diseases. Despite its functional significance, computational methods to accurately identify malonylation sites are still lacking and urgently needed. In particular, there is currently no comprehensive analysis and assessment of different features and machine learning (ML) methods that are required for constructing the necessary prediction models. Here, we review, analyze and compare 11 different feature encoding methods, with the goal of extracting key patterns and characteristics from residue sequences of Kmal sites. We identify optimized feature sets, with which four commonly used ML methods (random forest, support vector machines, K-nearest neighbor and logistic regression) and one recently proposed [Light Gradient Boosting Machine (LightGBM)] are trained on data from three species, namely, Escherichia coli, Mus musculus and Homo sapiens, and compared using randomized 10-fold cross-validation tests. We show that integration of the single method-based models through ensemble learning further improves the prediction performance and model robustness on the independent test. When compared to the existing state-of-the-art predictor, MaloPred, the optimal ensemble models were more accurate for all three species (AUC: 0.930, 0.923 and 0.944 for E. coli, M. musculus and H. sapiens, respectively). Using the ensemble models, we developed an accessible online predictor, kmal-sp, available at http://kmalsp.erc.monash.edu/. We hope that this comprehensive survey and the proposed strategy for building more accurate models can serve as a useful guide for inspiring future developments of computational methods for PTM site prediction, expedite the discovery of new malonylation and other PTM types and facilitate hypothesis-driven experimental validation of novel malonylated substrates and malonylation sites.


Assuntos
Biologia Computacional , Lisina/metabolismo , Aprendizado de Máquina , Malonatos/metabolismo , Animais , Humanos
18.
J Comput Chem ; 39(22): 1757-1763, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29761520

RESUMO

Malonylation is a recently discovered post-translational modification (PTM) in which a malonyl group attaches to a lysine (K) amino acid residue of a protein. In this work, a novel machine learning model, SPRINT-Mal, is developed to predict malonylation sites by employing sequence and predicted structural features. Evolutionary information and physicochemical properties are found to be the two most discriminative features whereas a structural feature called half-sphere exposure provides additional improvement to the prediction performance. SPRINT-Mal trained on mouse data yields robust performance for 10-fold cross validation and independent test set with Area Under the Curve (AUC) values of 0.74 and 0.76 and Matthews' Correlation Coefficient (MCC) of 0.213 and 0.20, respectively. Moreover, SPRINT-Mal achieved comparable performance when testing on H. sapiens proteins without species-specific training but not in bacterium S. erythraea. This suggests similar underlying physicochemical mechanisms between mouse and human but not between mouse and bacterium. SPRINT-Mal is freely available as an online server at: http://sparks-lab.org/server/SPRINT-Mal/. © 2018 Wiley Periodicals, Inc.


Assuntos
Proteínas de Bactérias/química , Lisina/química , Aprendizado de Máquina , Malonatos/química , Animais , Proteínas de Bactérias/metabolismo , Hominidae/metabolismo , Humanos , Lisina/metabolismo , Malonatos/metabolismo , Camundongos , Estrutura Molecular , Processamento de Proteína Pós-Traducional , Saccharopolyspora/química , Saccharopolyspora/metabolismo
19.
BMC Genomics ; 19(1): 209, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29558883

RESUMO

BACKGROUND: Protein lysine malonylation, a newly discovered post-translational modification (PTM), plays an important role in diverse metabolic processes in both eukaryotes and prokaryotes. Common wheat is a major global cereal crop. However, the functions of lysine malonylation are relatively unknown in this crop. Here, a global analysis of lysine malonylation was performed in wheat. RESULTS: In total, 342 lysine malonylated sites were identified in 233 proteins. Bioinformatics analysis showed that the frequency of arginine (R) in position + 1 was highest, and a modification motif, KmaR, was identified. The malonylated proteins were located in multiple subcellular compartments, especially in the cytosol (45%) and chloroplast (30%). The identified proteins were found to be involved in diverse pathways, such as carbon metabolism, the Calvin cycle, and the biosynthesis of amino acids, suggesting an important role for lysine malonylation in these processes. Protein interaction network analysis revealed eight highly interconnected clusters of malonylated proteins, and 137 malonylated proteins were mapped to the protein network database. Moreover, five proteins were simultaneously modified by lysine malonylation, acetylation and succinylation, suggesting that these three PTMs may coordinately regulate the function of many proteins in common wheat. CONCLUSIONS: Our results suggest that lysine malonylation is involved in a variety of biological processes, especially carbon fixation in photosynthetic organisms. These data represent the first report of the lysine malonylome in common wheat and provide an important dataset for further exploring the physiological role of lysine malonylation in wheat and likely all plants.


Assuntos
Lisina/metabolismo , Malonatos/metabolismo , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/análise , Triticum/metabolismo , Biologia Computacional , Proteômica/métodos
20.
Mol Cell Endocrinol ; 473: 245-256, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29408602

RESUMO

Dietary supplementation of nicotinamide adenine dinucleotide (NAD+) precursors has been suggested as a treatment for non-alcoholic fatty liver disease and obesity. In the liver, NAD+ is primarily generated by nicotinamide phosphoribosyltransferase (NAMPT), and hepatic levels of NAMPT and NAD+ have been reported to be dependent on age and body composition. The aim of the present study was to identify time course-dependent changes in hepatic NAD content and NAD+ salvage capacity in mice challenged with a high-fat diet (HFD). We fed 7-week-old C57BL/6JBomTac male mice either regular chow or a 60% HFD for 6, 12, 24, and 48 weeks, and we evaluated time course-dependent changes in whole body metabolism, liver steatosis, and abundance of hepatic NAD-associated metabolites and enzymes. Mice fed a 60% HFD rapidly accumulated fat and hepatic triglycerides with associated changes in respiratory exchange ratio (RER) and a disruption of the circadian feeding pattern. The HFD did not alter hepatic NAD+ levels, but caused a decrease in NADP+ and NADPH levels. Decreased NADP+ content was not accompanied by alterations in NAD kinase (NADK) abundance in HFD-fed mice, but NADK levels increased with age regardless of diet. NAMPT protein abundance did not change with age or diet. HFD consumption caused a severe decrease in protein lysine malonylation after six weeks, which persisted throughout the experiment. This decrease was not associated with changes in SIRT5 abundance. In conclusion, hepatic NAD+ salvage capacity is resistant to long-term HFD feeding, and hepatic lipid accumulation does not compromise the hepatic NAD+ pool in HFD-challenged C57BL/6JBomTac male mice.


Assuntos
Dieta Hiperlipídica , Fígado/metabolismo , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Adiposidade , Animais , Comportamento Alimentar , Lisina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , NADP/metabolismo , Respiração , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA