Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Int Immunopharmacol ; 140: 112830, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39096872

RESUMO

High-concentration fluoride treatment is commonly used to prevent dental caries in the oral cavity, and fluorine-containing protective paint is used to alleviate common root sensitivity symptoms in patients with periodontitis after periodontal treatment. Recent studies have confirmed its safe use in normal oral environments. However, whether fluoride treatment affects the progression of periodontitis in an inflammatory microenvironment remains unclear. Immunometabolism is crucial for maintaining bone regeneration and repair in periodontitis, and the precise regulation of macrophage polarisation is crucial to this process. Fluoride can influence the immune microenvironment of bone tissue by regulating immune metabolic processes. Herein, we investigated the effects of high concentrations of sodium fluoride (NaF) on periodontal tissues. We examined the expression of osteogenic and M1/M2 macrophage polarisation markers and glucose metabolism in macrophages. RNA sequencing was used to study differentially expressed genes related to M1 polarisation and glucose metabolism in treated macrophages. The results showed that NaF indirectly affects human periodontal ligament cells (hPDLCs), aggravating bone loss, tissue destruction, and submandibular lymph node drainage. Furthermore, NaF promoted glycolysis in macrophages and M1 polarisation while inhibiting osteogenic differentiation. These findings suggest that NaF has a direct effect on hPDLCs. Moreover, we found that high concentrations of NaF stimulated M1 polarisation in macrophages by promoting glycolysis. Overall, these results suggest that M1 macrophages promote the osteoclastic ability of hPDLCs and inhibit their osteogenic ability, eventually aggravating periodontitis. These findings provide important insights into the mechanism of action of NaF in periodontal tissue regeneration and reconstruction, which is critical for providing appropriate recommendations for the use of fluoride in patients with periodontitis.

2.
J Transl Med ; 22(1): 717, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095789

RESUMO

BACKGROUND: The global prevalence of autoimmune hepatitis (AIH) is increasing due in part to the lack of effective pharmacotherapies. Growing evidence suggests that fibroblast growth factor 4 (FGF4) is crucial for diverse aspects of liver pathophysiology. However, its role in AIH remains unknown. Therefore, we investigated whether FGF4 can regulate M1 macrophage and thereby help treat liver inflammation in AIH. METHODS: We obtained transcriptome-sequencing and clinical data for patients with AIH. Mice were injected with concanavalin A to induce experimental autoimmune hepatitis (EAH). The mechanism of action of FGF4 was examined using macrophage cell lines and bone marrow-derived macrophages. RESULTS: We observed higher expression of markers associated with M1 and M2 macrophages in patients with AIH than that in individuals without AIH. EAH mice showed greater M1-macrophage polarization than control mice. The expression of M1-macrophage markers correlated positively with FGF4 expression. The loss of hepatic Fgf4 aggravated hepatic inflammation by increasing the abundance of M1 macrophages. In contrast, the pharmacological administration of FGF4 mitigated hepatic inflammation by reducing M1-macrophage levels. The efficacy of FGF4 treatment was compromised following the in vivo clearance of macrophage populations. Mechanistically, FGF4 treatment activated the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT)-signal pathway in macrophages, which led to reduced M1 macrophages and hepatic inflammation. CONCLUSION: We identified FGF4 as a novel M1/M2 macrophage-phenotype regulator that acts through the PI3K-AKT-signaling pathway, suggesting that FGF4 may represent a novel target for treating inflammation in patients with AIH.


Assuntos
Polaridade Celular , Fator 4 de Crescimento de Fibroblastos , Hepatite Autoimune , Inflamação , Macrófagos , Camundongos Endogâmicos C57BL , Animais , Feminino , Humanos , Masculino , Camundongos , Polaridade Celular/efeitos dos fármacos , Modelos Animais de Doenças , Fator 4 de Crescimento de Fibroblastos/metabolismo , Hepatite Autoimune/patologia , Hepatite Autoimune/metabolismo , Inflamação/patologia , Fígado/patologia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Int J Mol Sci ; 25(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39126027

RESUMO

Korean mistletoe (Viscum album L. var. coloratum) is renowned for its medicinal properties, including anti-cancer and immunoadjuvant effects. This study aimed to elucidate the mechanisms by which Korean mistletoe lectin (V. album L. var. coloratum agglutinin; VCA) modulates breast cancer cell apoptosis and macrophage polarization. The specific objectives were to (1) investigate the direct effects of VCA on MCF-7 breast cancer cells and THP-1-derived M1/M2 macrophages; (2) analyze the impact of VCA on the paracrine interactions between these cell types; and (3) compare the efficacy of VCA in 2D vs. 3D co-culture models to bridge the gap between in vitro and in vivo studies. We employed both 2D and 3D models, co-culturing human M1/M2 macrophages with human MCF-7 breast cancer cells in a Transwell system. Our research demonstrated that M1 and M2 macrophages significantly influenced the immune and apoptotic responses of breast cancer cells when exposed to VCA. M1 macrophages exhibited cytotoxic characteristics and enhanced VCA-induced apoptosis in both 2D and 3D co-culture models. Conversely, M2 macrophages initially displayed a protective effect by reducing apoptosis in breast cancer cells, but this protective effect was reversed upon exposure to VCA. Furthermore, our findings illustrate VCA's ability to modulate M1 and M2 polarization in breast cancer cells. Finally, the use of magnetic 3D cell cultures suggests their potential to yield results comparable to conventional 2D cultures, bridging the gap between in vitro and in vivo studies.


Assuntos
Apoptose , Neoplasias da Mama , Técnicas de Cocultura , Macrófagos , Humanos , Apoptose/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Células MCF-7 , Feminino , Viscum album/química , Lectinas de Plantas/farmacologia , Células THP-1
4.
Int Immunopharmacol ; 138: 112651, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38986303

RESUMO

Peripheral blood mononuclear cells (PBMC), sourced autologously, offer numerous advantages when procured: easier acquisition process, no in vitro amplification needed, decreased intervention and overall increased acceptability make PBMC an attractive candidate for cell therapy treatment. However, the exact mechanism by which PBMC treat diseases remains poorly understood. Immune imbalance is the pathological basis of many diseases, with macrophages playing a crucial role in this process. However, research on the role and mechanisms of PBMC in regulating macrophages remains scarce. This study employed an in vitro co-culture model of PBMC and RAW264.7 macrophages to explore the role and mechanisms of PBMC in regulating macrophages. The results showed that the co-culturing led to decreased expression of inflammatory cytokines and increased expression of anti-inflammatory cytokines in RAW264.7 or in the culture supernatant. Additionally, the pro-inflammatory, tissue matrix-degrading M1 macrophages decreased, while the anti-inflammatory, matrix-synthesizing, regenerative M2 macrophages increased in both RAW264.7 and monocytes within PBMC. Moreover, co-cultured macrophages exhibited a significantly decreased p-STAT1/STAT1 ratio, while the p-STAT6/STAT6 ratio significantly increased. This suggests that PBMC may inhibit M1 macrophage polarization by blocking STAT1 signaling cascades and may promote M2 macrophage polarization through the activation of STAT6 signaling cascades. Overall, this study sheds light on the role and mechanism of PBMC in regulating macrophages. Moreover, it was found that monocytes within co-cultured PBMC differentiated into M2 macrophages in the presence of macrophages. This finding provides experimental evidence for the use of PBMC in treating inflammatory diseases, especially macrophage-depleting inflammatory diseases such as osteoarthritis.


Assuntos
Técnicas de Cocultura , Leucócitos Mononucleares , Macrófagos , Fator de Transcrição STAT1 , Fator de Transcrição STAT6 , Transdução de Sinais , Animais , Camundongos , Citocinas/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/metabolismo , Células RAW 264.7 , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT6/metabolismo
5.
BMC Cardiovasc Disord ; 24(1): 365, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014329

RESUMO

BACKGROUND: M1 macrophages are closely associated with cardiac injury after myocardial infarction (MI). Increasing evidence shows that exosomes play a key role in pathophysiological regulation after MI, but the role of M1 macrophage-derived exosomes (M1-Exos) in myocardial regeneration remains unclear. In this study, we explored the impact of M1 macrophage-derived exosomes on cardiomyocytes regeneration in vitro and in vivo. METHODS: M0 macrophages were induced to differentiate into M1 macrophages with GM-CSF (50 ng/mL) and IFN-γ (20 ng/mL). Then M1-Exos were isolated and co-incubated with cardiomyocytes. Cardiomyocyte proliferation was detected by pH3 or ki67 staining. Quantitative real-time PCR (qPCR) was used to test the level of miR-155 in macrophages, macrophage-derived exosomes and exosome-treated cardiomyocytes. MI model was constructed and LV-miR-155 was injected around the infarct area, the proliferation of cardiomyocytes was counted by pH3 or ki67 staining. The downstream gene and pathway of miR-155 were predicted and verified by dual-luciferase reporter gene assay, qPCR and immunoblotting analysis. IL-6 (50 ng/mL) was added to cardiomyocytes transfected with miR-155 mimics, and the proliferation of cardiomyocytes was calculated by immunofluorescence. The protein expressions of IL-6R, p-JAK2 and p-STAT3 were detected by Western blot. RESULTS: The results showed that M1-Exos suppressed cardiomyocytes proliferation. Meanwhile, miR-155 was highly expressed in M1-Exos and transferred to cardiomyocytes. miR-155 inhibited the proliferation of cardiomyocytes and antagonized the pro-proliferation effect of interleukin 6 (IL-6). Furthermore, miR-155 targeted gene IL-6 receptor (IL-6R) and inhibited the Janus kinase 2(JAK)/Signal transducer and activator of transcription (STAT3) signaling pathway. CONCLUSION: M1-Exos inhibited cardiomyocyte proliferation by delivering miR-155 and inhibiting the IL-6R/JAK/STAT3 signaling pathway. This study provided new insight and potential treatment strategy for the regulation of myocardial regeneration and cardiac repair by macrophages.


Assuntos
Proliferação de Células , Modelos Animais de Doenças , Exossomos , Janus Quinase 2 , Macrófagos , MicroRNAs , Infarto do Miocárdio , Miócitos Cardíacos , Fator de Transcrição STAT3 , Transdução de Sinais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos dos fármacos , MicroRNAs/metabolismo , MicroRNAs/genética , Exossomos/metabolismo , Exossomos/transplante , Exossomos/genética , Animais , Proliferação de Células/efeitos dos fármacos , Macrófagos/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/genética , Janus Quinase 2/metabolismo , Masculino , Regeneração , Ratos Sprague-Dawley , Receptores de Interleucina-6/metabolismo , Receptores de Interleucina-6/genética , Células Cultivadas , Fosforilação , Técnicas de Cocultura , Camundongos Endogâmicos C57BL , Interleucina-6/metabolismo
6.
Chin J Nat Med ; 22(7): 582-598, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39059828

RESUMO

Liver fibrosis is characterized by chronic inflammatory responses and progressive fibrous scar formation. Macrophages play a central role in the pathogenesis of hepatic fibrosis by reconstructing the immune microenvironment. Picroside II (PIC II), extracted from Picrorhizae Rhizoma, has demonstrated therapeutic potential for various liver damage. However, the mechanisms by which macrophage polarization initiates immune cascades and contributes to the development of liver fibrosis, and whether this process can be influenced by PIC II, remain unclear. In the current study, RNA sequencing and multiple molecular approaches were utilized to explore the underlying mechanisms of PIC II against liver fibrosis in multidrug-resistance protein 2 knockout (Mdr2-/-) mice. Our findings indicate that PIC II activates M1-polarized macrophages to recruit natural killer cells (NK cells), potentially via the CXCL16-CXCR6 axis. Additionally, PIC II promotes the apoptosis of activated hepatic stellate cells (aHSCs) and enhances the cytotoxic effects of NK cells, while also reducing the formation of neutrophil extracellular traps (NETs). Notably, the anti-hepatic fibrosis effects associated with PIC II were largely reversed by macrophage depletion in Mdr2-/- mice. Collectively, our research suggests that PIC II is a potential candidate for halting the progression of liver fibrosis.


Assuntos
Apoptose , Cinamatos , Células Estreladas do Fígado , Glucosídeos Iridoides , Cirrose Hepática , Macrófagos , Animais , Masculino , Camundongos , Apoptose/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Cinamatos/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Glucosídeos Iridoides/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Cirrose Hepática/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
J Obstet Gynaecol ; 44(1): 2373951, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38963237

RESUMO

BACKGROUND: The expression and function of coexpression genes of M1 macrophage in cervical cancer have not been identified. And the CXCL9-expressing tumour-associated macrophage has been poorly reported in cervical cancer. METHODS: To clarify the regulatory gene network of M1 macrophage in cervical cancer, we downloaded gene expression profiles of cervical cancer patients in TCGA database to identify M1 macrophage coexpression genes. Then we constructed the protein-protein interaction networks by STRING database and performed functional enrichment analysis to investigate the biological effects of the coexpression genes. Next, we used multiple bioinformatics databases and experiments to overall investigate coexpression gene CXCL9, including western blot assay and immunohistochemistry assay, GeneMANIA, Kaplan-Meier Plotter, Xenashiny, TISCH2, ACLBI, HPA, TISIDB, GSCA and cBioPortal databases. RESULTS: There were 77 positive coexpression genes and 5 negative coexpression genes in M1 macrophage. The coexpression genes in M1 macrophage participated in the production and function of chemokines and chemokine receptors. Especially, CXCL9 was positively correlated with M1 macrophage infiltration levels in cervical cancer. CXCL9 expression would significantly decrease and high CXCL9 levels were linked to good prognosis in the cervical cancer tumour patients, it manifestly expressed in blood immune cells, and was positively related to immune checkpoints. CXCL9 amplification was the most common type of mutation. The CXCL9 gene interaction network could regulate immune-related signalling pathways, and CXCL9 amplification was the most common mutation type in cervical cancer. Meanwhile, CXCL9 may had clinical significance for the drug response in cervical cancer, possibly mediating resistance to chemotherapy and targeted drug therapy. CONCLUSION: Our findings may provide new insight into the M1 macrophage coexpression gene network and molecular mechanisms in cervical cancer, and indicated that M1 macrophage association gene CXCL9 may serve as a good prognostic gene and a potential therapeutic target for cervical cancer therapies.


Cervical cancer is a common gynaecological malignancy, investigating the precise gene expression regulation of M1 macrophage is crucial for understanding the changes in the immune microenvironment of cervical cancer. In our study, a total of 82 coexpression genes with M1 macrophages were identified, and these genes were involved in the production and biological processes of chemokines and chemokine receptors. Especially, the chemokine CXCL9 was positively correlated with M1 macrophage infiltration levels in cervical cancer. CXCL9 as a protective factor, it manifestly expressed in blood immune cells, and was positively related to immune checkpoints. CXCL9 amplification was the most common type of mutation. And CXCL9 expression could have an effect on the sensitivity of some chemicals or targeted drugs against cervical cancer. These findings may provide new insight into the M1 macrophage coexpression gene network and molecular mechanisms, and shed light on the role of CXCL9 in cervical cancer.


Assuntos
Quimiocina CXCL9 , Neoplasias do Colo do Útero , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Humanos , Feminino , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Regulação Neoplásica da Expressão Gênica , Macrófagos/metabolismo , Prognóstico , Redes Reguladoras de Genes , Mapas de Interação de Proteínas/genética , Biologia Computacional , Macrófagos Associados a Tumor/metabolismo , Perfilação da Expressão Gênica , Bases de Dados Genéticas
8.
Clin Immunol ; 266: 110309, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002795

RESUMO

Psoriasis is a common inflammatory systemic disease characterized by pro-inflammatory macrophages activation (M1 macrophage) infiltrated in the dermal layer. How M1 macrophage contributes to psoriasis remains unknown. In this study, we found that adenosine A2A receptor (A2AR) agonist CGS 21680 HCl alleviated the imiquimod (IMQ) and mouse IL-23 Protein (rmIL-23)-induced psoriasis inflammation through reducing infiltration of M1. Conversely, Adora2a deletion in mice exacerbated psoriasis-like phenotype. Mechanistically, A2AR activation inhibited M1 macrophage activation via the NF-κB-KRT16 pathway to reduce the secretion of CXCL10/11 and inhibit Th1/17 differentiation. Notably, the KRT16 expression was first found in M1 macrophage in our study, not only in keratinocytes (KCs). CXCL10/11 are first identified as primarily derived from macrophages and dendritic cells (DCs) rather than KCs in psoriasis using single cell RNA sequencing (scRNA-Seq). In total, the study emphasizes the importance of M1 as an innate immune cell in pathogenesis of psoriasis.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Ativação de Macrófagos , Macrófagos , Psoríase , Receptor A2A de Adenosina , Animais , Humanos , Camundongos , Imunidade Adaptativa/efeitos dos fármacos , Adenosina/análogos & derivados , Agonistas do Receptor A2 de Adenosina/farmacologia , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/imunologia , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Modelos Animais de Doenças , Imiquimode/farmacologia , Imunidade Inata/efeitos dos fármacos , Queratinócitos/imunologia , Queratinócitos/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenetilaminas/farmacologia , Psoríase/imunologia , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/genética
9.
Gut Microbes ; 16(1): 2377567, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39012957

RESUMO

BACKGROUND: The intestinal-liver axis is associated with various liver diseases. Here, we verified the role of the gut microbiota and macrophage activation in the progression of pyrrolizidine alkaloids-induced hepatic sinusoidal obstruction syndrome (PA-HSOS), and explored the possible mechanisms and new treatment options. METHODS: The HSOS murine model was induced by gavage of monocrotaline (MCT). An analysis of 16S ribosomal DNA (16S rDNA) of the feces was conducted to determine the composition of the fecal microbiota. Macrophage clearance, fecal microbiota transplantation (FMT), and butyrate supplementation experiments were used to assess the role of intestinal flora, gut barrier, and macrophage activation and to explore the relationships among these three variables. RESULTS: Activated macrophages and low microflora diversity were observed in HSOS patients and murine models. Depletion of macrophages attenuated inflammatory reactions and apoptosis in the mouse liver. Moreover, compared with control-FMT mice, the exacerbation of severe liver injury was detected in HSOS-FMT mice. Specifically, butyrate fecal concentrations were significantly reduced in HSOS mice, and administration of butyrate could partially alleviated liver damage and improved the intestinal barrier in vitro and in vivo. Furthermore, elevated lipopolysaccharides in the portal vein and high proportions of M1 macrophages in the liver were also detected in HSOS-FMT mice and mice without butyrate treatment, which resulted in severe inflammatory responses and further accelerated HSOS progression. CONCLUSIONS: These results suggested that the gut microbiota exacerbated HSOS progression by regulating macrophage M1 polarization via altered intestinal barrier function mediated by butyrate. Our study has identified new strategies for the clinical treatment of HSOS.


Assuntos
Butiratos , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Hepatopatia Veno-Oclusiva , Fígado , Macrófagos , Animais , Camundongos , Butiratos/metabolismo , Macrófagos/imunologia , Masculino , Humanos , Hepatopatia Veno-Oclusiva/microbiologia , Fígado/metabolismo , Ativação de Macrófagos , Camundongos Endogâmicos C57BL , Mucosa Intestinal/microbiologia , Feminino , Fezes/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Função da Barreira Intestinal
10.
Arch Oral Biol ; 167: 106052, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39047597

RESUMO

OBJECTIVE: To determine the biological effects of arecoline on oral submucous fibrosis (OSF). DESIGN: The differential genes between OSF tissue and normal oral tissue were collected form GSE64216 dataset, analyzed by Gene Expression Omnibus (GEO) database. Real-time PCR and immunohistochemistry were used to analyze the expression of IL-4 gene and protein in oral tissue. Enzyme-linked immunosorbent assay (ELISA) was used to analyze the expression of exocrine IL-4 protein in human oral fibroblasts (HOF) pre-treated by arecoline. Cell Counting Kit-8 (CCK-8) and transwell assays were used to analyze the proliferation and migration of HOF cells, respectively. After IL-4 was knocked down by short hairpin (sh) plasmid, the proliferation and migration of HOF cells were detected. Flow cytometry was used to analyze the proportion of M2-macrophages. Real-time PCR and immunohistochemistry were used to verify the expression of biomarker proteins of macrophages in OSF tissues. RESULTS: The expression of IL-4 gene and protein were both up-regulated in OSF tissue. Arecoline could enhance the expression of IL-4 gene and exocrine protein in HOF cells, and promote the proliferation and migration of HOF cells. While knockdown of IL-4 could inhibit arecoline-induced proliferation and migration in HOF cells. The results of flow cytometry showed that recombinant human IL-4 (rhIL-4) protein could increase the proportion of M2-macrophages. Similarly, the results of real-time PCR and immunohistochemistry showed the expression of ARG1 (Biomarker proteins of M2-macrophage) was up-regulated in OSF tissues. CONCLUSION: Arecoline promotes activation of fibroblasts and polarization of M2-macrophages by up-regulating the expression of IL-4.


Assuntos
Arecolina , Movimento Celular , Proliferação de Células , Fibroblastos , Interleucina-4 , Macrófagos , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima , Interleucina-4/farmacologia , Humanos , Arecolina/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Proliferação de Células/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Movimento Celular/efeitos dos fármacos , Fibrose Oral Submucosa/metabolismo , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Citometria de Fluxo , Células Cultivadas
11.
Acta Trop ; 257: 107320, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002739

RESUMO

PURPOSE: The polarization of macrophages with the resulting inflammatory response play a crucial part in tissue and organ damage due to inflammatory. Study has proved Lian Hua Qing Wen capsules (LHQW) can reduce activation of inflammatory response and damage of tissue derived from the inflammatory reactions. However, the mechanism of LHQW regulates the macrophage-induced inflammatory response is unclear. Therefore, we investigated the mechanism of LHQW regulated the inflammatory response of M1 macrophages by cellular experiments and computer simulations. METHODS: This study has analysed the targets and mechanisms of macrophage regulating inflammatory response at gene and protein levels through bioinformatics. The monomeric components of LHQW were analyzed by High Performance Liquid Chromatography (HPLC). We established the in vitro cell model by M1 macrophages (Induction of THP-1 cells into M1 macrophages). RT-qPCR and immunofluorescence were used to detect changes in gene and protein levels of key targets after LHQW treatment. Computer simulations were utilized to verify the binding stability of monomeric components and protein targets. RESULTS: Macrophages had 140,690 gene targets, inflammatory response had 12,192 gene targets, intersection gene targets were 11,772. Key monomeric components (including: Pinocembrin, Fargesone-A, Nodakenin and Bowdichione) of LHQW were screened by HPLC. The results of cellular experiments indicated that LHQW could significantly reduce the mRNA expression of CCR5, CSF2, IFNG and TNF, thereby alleviating the inflammatory response caused by M1 macrophage. The computer simulations further validated the binding stability and conformation of key monomeric components and key protein targets, and IFNG/Nodakenin was able to form the most stable binding conformation for its action. CONCLUSION: In this study, the mechanism of LHQW inhibits the polarization of macrophages and the resulting inflammatory response was investigated by computer simulations and cellular experiments. We found that LHQW may not only reduce cell damage and death by acting on TNF and CCR5, but also inhibit the immune recognition process and inflammatory response by regulating CSF2 and IFNG to prevent polarization of macrophages. Therefore, these results suggested that LHQW may act through multiple targets to inhibit the polarization of macrophages and the resulting inflammatory response.


Assuntos
Simulação por Computador , Medicamentos de Ervas Chinesas , Macrófagos , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Inflamação , Anti-Inflamatórios/farmacologia , Células THP-1 , Biologia Computacional , Cromatografia Líquida de Alta Pressão
12.
Chin J Nat Med ; 22(7): 608-618, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39059830

RESUMO

Wound healing in diabetic ulcers remains a significant clinical challenge, primarily due to bacterial infection and impaired angiogenesis. Periplaneta americana extract (PAE) has been widely used to treat diabetic wounds, yet its underlying mechanisms are not fully understood. This study aimed to elucidate these mechanisms by analyzing long non-coding RNA (lncRNA) expressions in the wound tissues from diabetic anal fistula patients treated with or without PAE, using high-throughput sequencing. Peripheral blood monocytes from patients were differentiated into M0 macrophages with human macrophage colony-stimulating factor (hM-CSF) and subsequently polarized into M1 macrophages with lipopolysaccharide. The results indicated that LINC01133 and SLAMF9 were downregulated in wound tissues of patients treated with PAE. Furthermore, PAE suppressed M1 macrophage polarization and enhanced human umbilical vein endothelial cell (HUVEC) proliferation, migration, and angiogenesis. These effects were diminished when LINC01133 or SLAMF9 were overexpressed. Mechanistically, LINC01133 was shown to upregulate SLAMF9 through interaction with ELAVL1. Overexpression of SLAMF9 reversed the effects of LINC01133 silencing on macrophage polarization and HUVEC functions. In conclusion, PAE facilitates the healing of infected diabetic ulcers by downregulating the LINC01133/SLAMF9 pathway.


Assuntos
Regulação para Baixo , Células Endoteliais da Veia Umbilical Humana , Periplaneta , RNA Longo não Codificante , Cicatrização , Humanos , Cicatrização/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Extratos Vegetais/farmacologia , Feminino , Pessoa de Meia-Idade
13.
Acta Pharm Sin B ; 14(7): 3169-3183, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39027257

RESUMO

Optimum genetic delivery for modulating target genes to diseased tissue is a major obstacle for profitable gene therapy. Lipid nanoparticles (LNPs), considered a prospective vehicle for nucleic acid delivery, have demonstrated efficacy in human use during the COVID-19 pandemic. This study introduces a novel biomaterial-based platform, M1-polarized macrophage-derived cellular nanovesicle-coated LNPs (M1-C-LNPs), specifically engineered for a combined gene-immunotherapy approach against solid tumor. The dual-function system of M1-C-LNPs encapsulates Bcl2-targeting siRNA within LNPs and immune-modulating cytokines within M1 macrophage-derived cellular nanovesicles (M1-NVs), effectively facilitating apoptosis in cancer cells without impacting T and NK cells, which activate the intratumoral immune response to promote granule-mediating killing for solid tumor eradication. Enhanced retention within tumor was observed upon intratumoral administration of M1-C-LNPs, owing to the presence of adhesion molecules on M1-NVs, thereby contributing to superior tumor growth inhibition. These findings represent a promising strategy for the development of targeted and effective nanoparticle-based cancer genetic-immunotherapy, with significant implications for advancing biomaterial use in cancer therapeutics.

14.
Mar Drugs ; 22(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38921580

RESUMO

SeviL, a galactoside-binding lectin previously isolated from the mussel Mytilisepta virgata, was demonstrated to trigger apoptosis in HeLa ovarian cancer cells. Here, we show that this lectin can promote the polarization of macrophage cell lines toward an M1 functional phenotype at low concentrations. The administration of SeviL to monocyte and basophil cell lines reduced their growth in a dose-dependent manner. However, low lectin concentrations induced proliferation in the RAW264.7 macrophage cell line, which was supported by the significant up-regulation of TOM22, a component of the mitochondrial outer membrane. Furthermore, the morphology of lectin-treated macrophage cells markedly changed, shifting from a spherical to an elongated shape. The ability of SeviL to induce the polarization of RAW264.7 cells to M1 macrophages at low concentrations is supported by the secretion of proinflammatory cytokines and chemokines, as well as by the enhancement in the expression of IL-6- and TNF-α-encoding mRNAs, both of which encode inflammatory molecular markers. Moreover, we also observed a number of accessory molecular alterations, such as the activation of MAP kinases and the JAK/STAT pathway and the phosphorylation of platelet-derived growth factor receptor-α, which altogether support the functional reprogramming of RAW264.7 following SeviL treatment. These results indicate that this mussel ß-trefoil lectin has a concentration-dependent multifunctional role in regulating cell proliferation, phenotype, and death in macrophages, suggesting its possible involvement in regulating hemocyte activity in vivo.


Assuntos
Bivalves , Lectinas , Macrófagos , Animais , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Células RAW 264.7 , Lectinas/farmacologia , Proliferação de Células/efeitos dos fármacos , Humanos , Citocinas/metabolismo , Fenótipo , Transdução de Sinais/efeitos dos fármacos
15.
Sci Rep ; 14(1): 12728, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830934

RESUMO

To clarify the impact of SETD2 on macrophage function in pediatric patients with acute suppurative osteomyelitis and to elucidate the precise underlying mechanism. To gain insights into the potential functions of SETD2, a comprehensive study was conducted utilizing a co-culture model of human bone mesenchymal stem cells (hBMSCs) and bone marrow-derived macrophages (THP-1). A range of techniques were employed, including quantitative polymerase chain reaction, western blotting, ELISA, alkaline phosphatase activity assays, alizarin red S staining, luciferase reporter gene assays, and chromatin immunoprecipitation, to unravel the intricate interactions and molecular mechanisms involving SETD2 in this system. It was observed that SETD2 expression was reduced in THP-1 cells stimulated by staphylococcal protein A (SPA). Furthermore, the downregulation of SETD2 resulted in elevated M1 macrophage polarization and glycolysis, effects that were mitigated by SPA stimulation. Notably, SPA-stimulated THP-1 cells exhibited an increase in HIF-1α expression, which exhibited an inverse correlation with SETD2 levels. Moreover, it was discovered that SETD2 functioned as a catalyst for H3K36me3 and bound to the HIF-1α gene, which, in turn, regulated HIF-1α expression. Furthermore, the suppression of HIF-1α abrogated the consequences of SETD2 downregulation on glycolysis and M1 macrophage polarization. Lastly, the study demonstrated that M1 macrophage polarization serves as a mediator for BMP4's inhibitory effect on osteogenic differentiation of hBMSCs. This research has uncovered a previously unknown role of SETD2 in macrophages during osteomyelitis, revealing its significance in the pathogenesis of this condition. These findings suggest SETD2 as a novel target for the treatment of osteomyelitis.


Assuntos
Diferenciação Celular , Histona-Lisina N-Metiltransferase , Macrófagos , Células-Tronco Mesenquimais , Osteogênese , Osteomielite , Humanos , Osteomielite/metabolismo , Osteomielite/patologia , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Macrófagos/metabolismo , Macrófagos/imunologia , Células-Tronco Mesenquimais/metabolismo , Células THP-1 , Técnicas de Cocultura , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia
16.
Inflammation ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886294

RESUMO

Abstract-Obesity-related asthma is primarily characterized by nonallergic inflammation, with pathogenesis involving oxidative stress, metabolic imbalance, and immunoinflammatory mechanisms. M1 macrophages, which predominantly secrete pro-inflammatory factors, mediate insulin resistance and systemic metabolic inflammation in obese individuals. Concurrently, adenosine monophosphate-activated protein kinase (AMPK) serves as a critical regulator of intracellular energy metabolism and is closely associated with macrophage activation. However, their specific roles and associated mechanisms in obesity-related asthma remain to be explored. In this study, we investigated the macrophage polarization status and potential interventional mechanisms through obesity-related asthmatic models and lipopolysaccharide (LPS) -treated RAW264.7 cell with a comprehensive series of evaluations, including HE, PAS and Masson staining of lung histopathology, immunohistochemical staining, immunofluorescence technology, qRT-PCR, Western Blot, and ELISA inflammatory factor analysis. The results revealed M1 macrophage polarization in obesity-related asthmatic lung tissue alongside downregulation of AMPK expression. Under LPS stimulation, exogenous AMPK activation attenuated M1 macrophage polarization via the Janus kinase 2/ signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway. Additionally, in obesity-related asthmatic mice, AMPK activation was found to alleviate airway inflammation by regulating M1 macrophage polarization, the mechanism closely associated with the JAK2/STAT3 pathway. These findings not only advance our understanding of macrophage polarization in obesity-related asthma, but also provide new therapeutic targets for its treatment.

17.
J Nanobiotechnology ; 22(1): 300, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816719

RESUMO

BACKGROUND: Extracellular vesicles (EVs) derived from human adipose-derived mesenchymal stem cells (hADSCs) have shown great therapeutic potential in plastic and reconstructive surgery. However, the limited production and functional molecule loading of EVs hinder their clinical translation. Traditional two-dimensional culture of hADSCs results in stemness loss and cellular senescence, which is unfavorable for the production and functional molecule loading of EVs. Recent advances in regenerative medicine advocate for the use of three-dimensional culture of hADSCs to produce EVs, as it more accurately simulates their physiological state. Moreover, the successful application of EVs in tissue engineering relies on the targeted delivery of EVs to cells within biomaterial scaffolds. METHODS AND RESULTS: The hADSCs spheroids and hADSCs gelatin methacrylate (GelMA) microspheres are utilized to produce three-dimensional cultured EVs, corresponding to hADSCs spheroids-EVs and hADSCs microspheres-EVs respectively. hADSCs spheroids-EVs demonstrate excellent production and functional molecule loading compared with hADSCs microspheres-EVs. The upregulation of eight miRNAs (i.e. hsa-miR-486-5p, hsa-miR-423-5p, hsa-miR-92a-3p, hsa-miR-122-5p, hsa-miR-223-3p, hsa-miR-320a, hsa-miR-126-3p, and hsa-miR-25-3p) and the downregulation of hsa-miR-146b-5p within hADSCs spheroids-EVs show the potential of improving the fate of remaining ear chondrocytes and promoting cartilage formation probably through integrated regulatory mechanisms. Additionally, a quick and innovative pipeline is developed for isolating chondrocyte homing peptide-modified EVs (CHP-EVs) from three-dimensional dynamic cultures of hADSCs spheroids. CHP-EVs are produced by genetically fusing a CHP at the N-terminus of the exosomal surface protein LAMP2B. The CHP + LAMP2B-transfected hADSCs spheroids were cultured with wave motion to promote the secretion of CHP-EVs. A harvesting method is used to enable the time-dependent collection of CHP-EVs. The pipeline is easy to set up and quick to use for the isolation of CHP-EVs. Compared with nontagged EVs, CHP-EVs penetrate the biomaterial scaffolds and specifically deliver the therapeutic miRNAs to the remaining ear chondrocytes. Functionally, CHP-EVs show a major effect on promoting cell proliferation, reducing cell apoptosis and enhancing cartilage formation in remaining ear chondrocytes in the M1 macrophage-infiltrated microenvironment. CONCLUSIONS: In summary, an innovative pipeline is developed to obtain CHP-EVs from three-dimensional dynamic culture of hADSCs spheroids. This pipeline can be customized to increase EVs production and functional molecule loading, which meets the requirements for regulating remaining ear chondrocyte fate in the M1 macrophage-infiltrated microenvironment.


Assuntos
Condrócitos , Vesículas Extracelulares , Células-Tronco Mesenquimais , Peptídeos , Esferoides Celulares , Humanos , Condrócitos/metabolismo , Condrócitos/citologia , Vesículas Extracelulares/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Peptídeos/química , Peptídeos/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Macrófagos/metabolismo , Macrófagos/citologia , Células Cultivadas , Microesferas , Engenharia Tecidual/métodos , Técnicas de Cultura de Células em Três Dimensões/métodos , Microambiente Celular , Cartilagem da Orelha/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Diferenciação Celular
18.
Int J Biol Macromol ; 269(Pt 2): 132089, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705331

RESUMO

Pro-inflammatory M1 macrophages possess the ability to change the immunosuppressive tumor microenvironment by releasing various inflammatory factors simultaneously, which can effectively inhibit tumor progression and relapse. Promoting macrophage polarization towards M1 may be an effective way to treat Melanoma. However, the risk of cytokine storm caused by the proliferation and excessive activation of M1 macrophages greatly limits it as a biosafety therapeutic strategy in anti-tumor immunotherapy. Therefore, how to engineer natural M1 macrophage to a biocompatible biomaterial that maintains the duration time of tumor suppressive property duration time still remains a huge challenge. To achieve this goal, we developed an injectable macroporous hydrogel (M1LMHA) using natural M1 macrophage lysates and alginate as raw materials. M1LMHA had excellent biocompatibility, adjustable degradation rate and could sustainably release varieties of natural inflammatory factors, such as tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-γ), and interleukin-12 (IL-12), etc. M1LMHA could repolarize anti-inflammatory M2 macrophages to M1 macrophages by the synergistic effect of released tiny inflammatory factors via the NF-κB pathway. This study supported that M1LMHA might be an effective and safe tool to activate tumor-associated immune cells, improving the efficiency of anti-tumor immunotherapy.


Assuntos
Alginatos , Hidrogéis , Macrófagos Associados a Tumor , Alginatos/química , Alginatos/farmacologia , Camundongos , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Melanoma/terapia , Melanoma/imunologia , Melanoma/tratamento farmacológico , Melanoma/patologia , Porosidade , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Células RAW 264.7 , Citocinas/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos
19.
Eur J Pharmacol ; 975: 176637, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38729416

RESUMO

Macrophages play a pivotal role in safeguarding against a broad spectrum of infections, from viral, bacterial, fungal to parasitic threats and contributing to the immune defense against cancer. While morphine's immunosuppressive effects on immune cells are extensively documented, a significant knowledge gap exists regarding its influence on macrophage polarization and differentiation. Hence, we conducted a study that unveils that prior exposure to morphine significantly impedes the differentiation of bone marrow cells into macrophages. Furthermore, the polarization of macrophages toward the M1 phenotype under M1-inducing conditions experiences substantial impairment, as evidenced by the diminished expression of CD80, CD86, CD40, iNOS, and MHCII. This correlates with reduced expression of M1 phenotypical markers such as iNOS, IL-1ß, and IL-6, accompanied by noticeable morphological, size, and phagocytic alterations. Further, we also observed that morphine affected M2 macrophages. These findings emphasize the necessity for a more comprehensive understanding of the impact of morphine on compromising macrophage function and its potential ramifications for therapeutic approaches.


Assuntos
Diferenciação Celular , Imunossupressores , Macrófagos , Morfina , Morfina/farmacologia , Animais , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Diferenciação Celular/efeitos dos fármacos , Imunossupressores/farmacologia , Polaridade Celular/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Camundongos Endogâmicos C57BL , Fagocitose/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Interleucina-1beta/metabolismo
20.
J Nanobiotechnology ; 22(1): 221, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724958

RESUMO

Intra-articular drugs used to treat osteoarthritis (OA) often suffer from poor pharmacokinetics and stability. Nano-platforms as drug delivery systems for drug delivery are promising for OA therapy. In this study, we reported an M1 macrophage-targeted delivery system Bai@FA-UIO-66-NH2 based on folic acid (FA) -modified metal-organic framework (MOF) loaded with baicalin (Bai) as antioxidant agent for OA therapy. With outstanding biocompatibility and high drug loading efficiency, Bai@FA-UIO-66-NH2 could be specifically uptaken by LPS-induced macrophages to serve as a potent ROS scavenger, gradually releasing Bai at the subcellular level to reduce ROS production, modulate macrophage polarization to M2, leading to alleviation of synovial inflammation in OA joints. The synergistic effect of Bai@FA-UIO-66-NH2 on macrophage polarization and ROS scavenging significantly improved the therapeutic efficacy of OA, which may provide a new insight into the design of OA precision therapy.


Assuntos
Flavonoides , Macrófagos , Estruturas Metalorgânicas , Osteoartrite , Espécies Reativas de Oxigênio , Estruturas Metalorgânicas/química , Osteoartrite/tratamento farmacológico , Animais , Flavonoides/farmacologia , Flavonoides/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Células RAW 264.7 , Antioxidantes/farmacologia , Antioxidantes/química , Sistemas de Liberação de Medicamentos/métodos , Ácido Fólico/química , Masculino , Ratos , Lipopolissacarídeos/farmacologia , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA