Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Virol ; 98(4): e0005124, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38466095

RESUMO

Avian metapneumovirus subgroup C (aMPV/C), an important pathogen causing acute respiratory infection in chickens and turkeys, contributes to substantial economic losses in the poultry industry worldwide. aMPV/C has been reported to induce autophagy, which is beneficial to virus replication. Sequestosome 1 (SQSTM1/P62), a selective autophagic receptor, plays a crucial role in viral replication by clearing ubiquitinated proteins. However, the relationship between SQSTM1-mediated selective autophagy and aMPV/C replication is unclear. In this study, we found that the expression of SQSTM1 negatively regulates aMPV/C replication by reducing viral protein expression and viral titers. Further studies revealed that the interaction between SQSTM1 and aMPV/C M2-2 protein is mediated via the Phox and Bem1 (PB1) domain of the former, which recognizes a ubiquitinated lysine at position 67 of the M2-2 protein, and finally degrades M2-2 via SQSTM1-mediated selective autophagy. Collectively, our results reveal that SQSTM1 degrades M2-2 via a process of selective autophagy to suppress aMPV/C replication, thereby providing novel insights for the prevention and control of aMPV/C infection.IMPORTANCEThe selective autophagy plays an important role in virus replication. As an emerging pathogen of avian respiratory virus, clarification of the effect of SQSTM1, a selective autophagic receptor, on aMPV/C replication in host cells enables us to better understand the viral pathogenesis. Previous study showed that aMPV/C infection reduced the SQSTM1 expression accompanied by virus proliferation, but the specific regulatory mechanism between them was still unclear. In this study, we demonstrated for the first time that SQSTM1 recognizes the 67th amino acid of M2-2 protein by the interaction between them, followed by M2-2 degradation via the SQSTM1-mediated selective autophagy, and finally inhibits aMPV/C replication. This information supplies the mechanism by which SQSTM1 negatively regulates viral replication, and provides new insights for preventing and controlling aMPV/C infection.


Assuntos
Autofagia , Aves , Metapneumovirus , Proteólise , Proteína Sequestossoma-1 , Proteínas Virais , Replicação Viral , Animais , Humanos , Células HEK293 , Metapneumovirus/classificação , Metapneumovirus/crescimento & desenvolvimento , Infecções por Paramyxoviridae/metabolismo , Infecções por Paramyxoviridae/veterinária , Infecções por Paramyxoviridae/virologia , Ligação Proteica , Proteína Sequestossoma-1/química , Proteína Sequestossoma-1/metabolismo , Células Vero , Proteínas Virais/química , Proteínas Virais/metabolismo , Aves/virologia
2.
Cell Biosci ; 13(1): 220, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037116

RESUMO

BACKGROUND: Heart failure (HF) seriously threatens human health worldwide. However, the pathological mechanisms underlying HF are still not fully clear. RESULTS: In this study, we performed proteomics and transcriptomics analyses on samples from human HF patients and healthy donors to obtain an overview of the detailed changes in protein and mRNA expression that occur during HF. We found substantial differences in protein expression changes between the atria and ventricles of myocardial tissues from patients with HF. Interestingly, the metabolic state of ventricular tissues was altered in HF samples, and inflammatory pathways were activated in atrial tissues. Through analysis of differentially expressed genes in HF samples, we found that several glutathione S-transferase (GST) family members, especially glutathione S-transferase M2-2 (GSTM2), were decreased in all the ventricular samples. Furthermore, GSTM2 overexpression effectively relieved the progression of cardiac hypertrophy in a transverse aortic constriction (TAC) surgery-induced HF mouse model. Moreover, we found that GSTM2 attenuated DNA damage and extrachromosomal circular DNA (eccDNA) production in cardiomyocytes, thereby ameliorating interferon-I-stimulated macrophage inflammation in heart tissues. CONCLUSIONS: Our study establishes a proteomic and transcriptomic map of human HF tissues, highlights the functional importance of GSTM2 in HF progression, and provides a novel therapeutic target for HF.

4.
J Cancer Res Clin Oncol ; 149(15): 14255-14269, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37553422

RESUMO

PURPOSE: Hepatocellular carcinoma (HCC) remains a highly deadly malignant tumor with high recurrence and metastasis rates. Cancer stem cells (CSCs) are involved in tumor metastasis, recurrence, and resistance to drugs, which have attracted widespread attention in recent years. Research has shown that pseudogenes may regulate stemness to promote the progression of HCC, but its specific mechanisms and impact on prognosis remain unclear. METHODS: In this study, clinical prognosis information of HCC was first downloaded from The Cancer Genome Atlas (TCGA) database. Then we calculated the mRNA expression-based stemness index (mRNAsi) of HCC. We also screened the differentially expressed pseudogene (DEPs) and conducted univariate Cox regression analysis to investigate their effect on the prognosis of HCC. Further, genomic mutation frequency analysis and weighted gene co-expression network analysis (WGCNA) were performed to compare the role of pseudogenes and stemness in promoting the progression of HCC. Finally, we conducted the correlation analysis to examine the potential mechanism of pseudogenes regulating stemness to promote the progression of HCC and detected the possible pathways through the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. RESULTS: Herein, we revealed that the high stemness of HCC correlated with an unfavorable prognosis. We obtained 31 up-regulated and 8 down-regulated DEPs in HCC and screened CTB-63M22.1, a poor prognostic indicator of HCC. In addition, CTB-63M22.1 had a mutation frequency similar to mRNAsi and acted in a module similar to that of mRNAsi on HCC. We then screened two RNA-binding proteins (RBPs) LIN28B and NOP56 with the highest correlation with stemness. We also discovered that they were primarily enriched in the biological process as examples of mitotic nuclear division and cell cycle. CONCLUSIONS: Collectively, these results revealed that pseudogenes CTB-63M22.1 may regulate cancer stemness by regulating RBPs, suggesting that CTB-63M22.1 may serve as an innovative therapeutic target and a reliable prognostic marker for HCC.

5.
Antioxidants (Basel) ; 12(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36978921

RESUMO

Investigations of the effect of antioxidants on idiopathic Parkinson's disease have been unsuccessful because the preclinical models used to propose these clinical studies do not accurately represent the neurodegenerative process of the disease. Treatment with certain exogenous neurotoxins induces massive and extremely rapid degeneration; for example, MPTP causes severe Parkinsonism in just three days, while the degenerative process of idiopathic Parkinson´s disease proceeds over many years. The endogenous neurotoxin aminochrome seems to be a good alternative target since it is formed in the nigrostriatal system neurons where the degenerative process occurs. Aminochrome induces all the mechanisms reported to be involved in the degenerative processes of idiopathic Parkinson's disease. The presence of neuromelanin-containing dopaminergic neurons in the postmortem brain of healthy elderly people suggests that neuromelanin synthesis is a normal and harmless process despite the fact that it requires oxidation of dopamine to three ortho-quinones that are potentially toxic, especially aminochrome. The apparent contradiction that neuromelanin synthesis is harmless, despite its formation via neurotoxic ortho-quinones, can be explained by the protective roles of DT-diaphorase and glutathione transferase GSTM2-2 as well as the neuroprotective role of astrocytes secreting exosomes loaded with GSTM2-2. Increasing the expression of DT-diaphorase and GSTM2-2 may be a therapeutic goal to prevent the degeneration of new neuromelanin-containing dopaminergic neurons. Several phytochemicals that induce DT-diaphorase have been discovered and, therefore, an interesting question is whether these phytochemical KEAP1/NRF2 activators can inhibit or decrease aminochrome-induced neurotoxicity.

6.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674625

RESUMO

To study the effects of the crosslinking of IGF1 and/or the human thyroid-stimulating monoclonal autoantibody (TSmAb), M22 on mouse adipocytes, two- and three-dimensional (2D or 3D) cultures of 3T3-L1 cells were prepared. Each sample was then subjected to the following analyses: (1) lipid staining, (2) a real-time cellular metabolic analysis, (3) analysis of the mRNA expression of adipogenesis-related genes and extracellular matrix (ECM) molecules including collagen (Col) 1, 4 and 6, and fibronectin (Fn), and (4) measurement of the size and physical properties of the 3D spheroids with a micro-squeezer. Upon adipogenic differentiation (DIF+), lipid staining and the mRNA expression of adipogenesis-related genes in the 2D- or 3D-cultured 3T3-L1 cells substantially increased. On adding IGF1 but not M22 to DIF+ cells, a significant enhancement in lipid staining and gene expressions of adipogenesis-related genes was detected in the 2D-cultured 3T3-L1 cells, although some simultaneous suppression or enhancement effects by IGF1 and M22 against lipid staining or Fabp4 expression, respectively, were detected in the 3D 3T3-L1 spheroids. Real-time metabolic analyses indicated that monotherapy with IGF1 or M22 shifted cellular metabolism toward energetic states in the 2D 3T3-L1 cells upon DIF+, although no significant metabolic changes were induced by DIF+ alone in 2D cultures. In addition, some synergistical effects on cellular metabolism by IGF1 and M22 were also observed in the 2D 3T3-L1 cells as well as in cultured non-Graves' orbitopathy-related human orbital fibroblasts (n-HOFs), but not in Graves' orbitopathy-related HOFs (GHOFs). In terms of the physical properties of the 3D 3T3-L1 spheroids, (1) their sizes significantly increased upon DIF+, and this increase was significantly enhanced by the presence of both IGF1 and M22 despite downsizing by monotreatment, and (2) their stiffness increased substantially, and no significant effects by IGF-1 and/or M22 were observed. Regarding the expression of ECM molecules, (1) upon DIF+, significant downregulation or upregulation of Col1 and Fn (3D), or Col4 and 6 (2D and 3D) were observed, and (2) in the presence of IGF-1 and/or M22, the mRNA expression of Col4 was significantly downregulated by M22 (2D and 3D), but the expression of Col1 was modulated in different manners by monotreatment (upregulation) or the combined treatment (downregulation) (3D). These collective data suggest that the human-specific TSmAb M22 induced some unexpected simultaneous crosslinking effects with IGF-1 with respect to the adipogenesis of 2D-cultured 3T3-L1 cells and the physical properties of 3D 3T3-L1 spheroids.


Assuntos
Adipogenia , Oftalmopatia de Graves , Humanos , Animais , Camundongos , Oftalmopatia de Graves/metabolismo , Autoanticorpos/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , RNA Mensageiro/metabolismo , Lipídeos/farmacologia , Células 3T3-L1
7.
Front Immunol ; 13: 970750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045682

RESUMO

Retinoic acid-inducible gene I (RIG-I) is a receptor that senses viral RNA and interacts with mitochondrial antiviral signaling (MAVS) protein, leading to the production of type I interferons and inflammatory cytokines to establish an antiviral state. This signaling axis is initiated by the K63-linked RIG-I ubiquitination, mediated by E3 ubiquitin ligases such as TRIM25. However, many viruses, including several members of the family Paramyxoviridae and human respiratory syncytial virus (HRSV), a member of the family Pneumoviridae, escape the immune system by targeting RIG-I/TRIM25 signaling. In this study, we screened human metapneumovirus (HMPV) open reading frames (ORFs) for their ability to block RIG-I signaling reconstituted in HEK293T cells by transfection with TRIM25 and RIG-I CARD (an N-terminal CARD domain that is constitutively active in RIG-I signaling). HMPV M2-2 was the most potent inhibitor of RIG-I/TRIM25-mediated interferon (IFN)-ß activation. M2-2 silencing induced the activation of transcription factors (IRF and NF-kB) downstream of RIG-I signaling in A549 cells. Moreover, M2-2 inhibited RIG-I ubiquitination and CARD-dependent interactions with MAVS. Immunoprecipitation revealed that M2-2 forms a stable complex with RIG-I CARD/TRIM25 via direct interaction with the SPRY domain of TRIM25. Similarly, HRSV NS1 also formed a stable complex with RIG-I CARD/TRIM25 and inhibited RIG-I ubiquitination. Notably, the inhibitory actions of HMPV M2-2 and HRSV NS1 are similar to those of V proteins of several members of the Paramyxoviridae family. In this study, we have identified a novel mechanism of immune escape by HMPV, similar to that of Pneumoviridae and Paramyxoviridae family members.


Assuntos
Interferon Tipo I , Metapneumovirus , Infecções por Paramyxoviridae/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Antivirais , Proteína DEAD-box 58/metabolismo , Células HEK293 , Humanos , Imunidade Inata , Interferon Tipo I/metabolismo , Interferon beta/metabolismo , Paramyxoviridae , Infecções por Paramyxoviridae/virologia , Receptores Imunológicos/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
8.
J Virol ; 96(17): e0072322, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35975999

RESUMO

The production of type I interferon (IFN) is the hallmark of the innate immune response. Most, if not all, mammalian viruses have a way to circumvent this response. Fundamental knowledge on viral evasion of innate immune responses may facilitate the design of novel antiviral therapies. To investigate how human metapneumovirus (HMPV) interacts with the innate immune response, recombinant viruses lacking G, short hydrophobic (SH), or M2-2 protein expression were assessed for IFN induction in A549 cells. HMPV lacking G or SH protein expression induced similarly low levels of IFN, compared to the wild-type virus, whereas HMPV lacking M2-2 expression induced significantly more IFN than the wild-type virus. However, sequence analysis of the genomes of M2-2 mutant viruses revealed large numbers of mutations throughout the genome. Over 70% of these nucleotide substitutions were A-to-G and T-to-C mutations, consistent with the properties of the adenosine deaminase acting on RNA (ADAR) protein family. Knockdown of ADAR1 by CRISPR interference confirmed the role of ADAR1 in the editing of M2-2 deletion mutant virus genomes. More importantly, Northern blot analyses revealed the presence of defective interfering RNAs (DIs) in M2-2 mutant viruses and not in the wild-type virus or G and SH deletion mutant viruses. DIs are known to be potent inducers of the IFN response. The presence of DIs in M2-2 mutant virus stocks and hypermutated virus genomes interfere with studies on HMPV and the innate immune response and should be addressed in future studies. IMPORTANCE Understanding the interaction between viruses and the innate immune response is one of the barriers to the design of antiviral therapies. Here, we investigated the role of the G, SH, and M2-2 proteins of HMPV as type I IFN antagonists. In contrast to other studies, no IFN-antagonistic functions could be observed for the G and SH proteins. HMPV with a deletion of the M2-2 protein did induce type I IFN production upon infection of airway epithelial cells. However, during generation of virus stocks, these viruses rapidly accumulated DIs, which are strong activators of the type I IFN response. Additionally, the genomes of these viruses were hypermutated, which was prevented by generating stocks in ADAR knockdown cells, confirming a role for ADAR in hypermutation of HMPV genomes or DIs. These data indicate that a role of the HMPV M2-2 protein as a bona fide IFN antagonist remains elusive.


Assuntos
Imunidade Inata , Interferon Tipo I , Metapneumovirus , Proteínas Virais , Células A549 , Adenosina Desaminase , Antivirais/metabolismo , Humanos , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/imunologia , Metapneumovirus/genética , Metapneumovirus/metabolismo , Proteínas de Ligação a RNA , Proteínas Virais/genética , Proteínas Virais/metabolismo
9.
Virus Res ; 318: 198850, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35750131

RESUMO

The human Respiratory Syncytial Virus (hRSV) is the main causative agent of acute respiratory infections (ARI), such as pneumonia and bronchiolitis. One of the factors that lead to success in viral replication is the interaction of the M2-2 protein with the ribosomal complex. This interaction is responsible for the phase change of viral activity, acting as an inhibitor or inducer of viral replication, according to the concentration of mRNA. Based on the importance of M2-2 gene and protein have to viral physiology, we performed here evaluations of genetic diversity, phylogenetic reconstructions, phylodynamics, and selection test. Our results suggested an alternative way of classifying this virus in clades A and B, based on a new phylogenetic marker, the M2-2 gene. Therefore, our study is the first one to investigate the dynamics of the evolutionary diversification process of hRSV from the perspective of the M2-2 viral gene. In our study was also identified that the M2-2 gene is under the effect of purifying selection originated by population genetic bottlenecks. Therefore, the M2-2 gene demonstrated an interesting potential to be applied in evolutionary studies involving hRSV, recovering phylogenetic signals and traits of natural selection under the evolution of this virus.


Assuntos
Filogenia , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Genes Virais , Humanos , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/genética , Vírus Sincicial Respiratório Humano/genética , Seleção Genética , Proteínas Virais
10.
J Infect Dis ; 226(12): 2069-2078, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-35732186

RESUMO

BACKGROUND: This United States-based study compared 2 candidate vaccines: RSV/ΔNS2/Δ1313/I1314L, attenuated by NS2 gene-deletion and temperature-sensitivity mutation in the polymerase gene; and RSV/276, attenuated by M2-2 deletion. METHODS: RSV-seronegative children aged 6-24 months received RSV/ΔNS2/Δ1313/I1314L (106 plaque-forming units [PFU]), RSV/276 (105 PFU), or placebo intranasally. Participants were monitored for vaccine shedding, reactogenicity, and RSV serum antibodies, and followed over the subsequent RSV season. RESULTS: Enrollment occurred September 2017 to October 2019. During 28 days postinoculation, upper respiratory illness and/or fever occurred in 64% of RSV/ΔNS2/Δ1313/I1314L, 84% of RSV/276, and 58% of placebo recipients. Symptoms were generally mild. Cough was more common in RSV/276 recipients than RSV/ΔNS2/Δ1313/I1314L (48% vs 12%; P = .012) or placebo recipients (17%; P = .084). There were no lower respiratory illness or serious adverse events. Eighty-eight and 96% of RSV/ΔNS2/Δ1313/I1314L and RSV/276 recipients were infected with vaccine (shed vaccine and/or had ≥4-fold rises in RSV antibodies). Serum RSV-neutralizing titers and anti-RSV F IgG titers increased ≥4-fold in 60% and 92% of RSV/ΔNS2/Δ1313/I1314L and RSV/276 vaccinees, respectively. Exposure to community RSV during the subsequent winter was associated with strong anamnestic RSV-antibody responses. CONCLUSIONS: Both vaccines had excellent infectivity and were well tolerated. RSV/276 induced an excess of mild cough. Both vaccines were immunogenic and primed for strong anamnestic responses. CLINICAL TRIALS REGISTRATION: NCT03227029 and NCT03422237.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Criança , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Tosse , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vacinas contra Vírus Sincicial Respiratório/genética , Vírus Sinciciais Respiratórios , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genética
11.
Cryobiology ; 106: 113-121, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35276219

RESUMO

DP6, VS55 and M22 are the most commonly used cryoprotective agent (CPA) cocktails for vitrification experiments in tissues and organs. However, complete phase diagrams for the three CPAs are often unavailable or incomplete (only available for full strength CPAs) thereby hampering optimization of vitrification and rewarming procedures. In this paper, we used differential scanning calorimetry (DSC) to measure the transition temperatures including heterogeneous nucleation temperatures (Thet), glass transition temperatures (Tg), rewarming phase crystallization (devitrification and/or recrystallization) temperatures (Td) and melting temperatures (Tm) while cooling or warming the CPA sample at 5 °C/min and plotted the obtained transition temperatures for different concentrations of CPAs into the phase diagrams. We also used cryomicroscopy cooling or warming the sample at the same rate to record the ice crystallization during the whole process, and we presented the cryomicroscopic images at the transition temperatures, which agreed with the DSC presented phenomena.


Assuntos
Crioprotetores , Vitrificação , Varredura Diferencial de Calorimetria , Criopreservação/métodos , Crioprotetores/química , Crioprotetores/farmacologia , Congelamento
12.
Neural Regen Res ; 17(9): 1861-1866, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35142659

RESUMO

Astrocytes protect neurons by modulating neuronal function and survival. Astrocytes support neurons in several ways. They provide energy through the astrocyte-neuron lactate shuttle, protect neurons from excitotoxicity, and internalize neuronal lipid droplets to degrade fatty acids for neuronal metabolic and synaptic support, as well as by their high capacity for glutamate uptake and the conversion of glutamate to glutamine. A recent reported astrocyte system for protection of dopamine neurons against the neurotoxic products of dopamine, such as aminochrome and other o-quinones, were generated under neuromelanin synthesis by oxidizing dopamine catechol structure. Astrocytes secrete glutathione transferase M2-2 through exosomes that transport this enzyme into dopaminergic neurons to protect these neurons against aminochrome neurotoxicity. The role of this new astrocyte protective mechanism in Parkinson´s disease is discussed.

13.
J Clin Endocrinol Metab ; 107(4): e1653-e1660, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-34788857

RESUMO

CONTEXT: We previously presented evidence that TSH receptor (TSHR)-stimulating autoantibodies (TSAbs) bind to and activate TSHRs but do not bind to IGF1 receptors (IGF1Rs). Nevertheless, we showed that IGF1Rs were involved in thyroid eye disease (TED) pathogenesis because TSAbs activated crosstalk between TSHR and IGF1R. Teprotumumab, originally generated to inhibit IGF1 binding to IGF1R, was recently approved for the treatment of TED (Tepezza). OBJECTIVE: To investigate the role of TSHR/IGF1R crosstalk in teprotumumab treatment of TED. DESIGN: We used orbital fibroblasts from patients with TED (TEDOFs) and measured stimulated hyaluronan (HA) secretion as a measure of orbital fibroblast activation by TED immunoglobulins (TED-Igs) and monoclonal TSAb M22. We previously showed that M22, which does not bind to IGF1R, stimulated HA in a biphasic dose-response with the higher potency phase dependent on TSHR/IGF1R crosstalk and the lower potency phase independent of IGF1R. Stimulation by TED-Igs and M22 was measured in the absence or presence of teprotumumab biosimilar (Tepro) or K1-70, an antibody that inhibits TSHR. RESULTS: We show: (1) Tepro dose-dependently inhibits stimulation by TED-Igs; (2) Tepro does not bind to TSHRs; (3) Tepro inhibits IGF1R-dependent M22-induced HA production, which is mediated by TSHR/IGF1R crosstalk, but not IGF1R-independent M22 stimulation; and (4) ß-arrestin 1 knockdown, which blocks TSHR/IGF1R crosstalk and prevents Tepro inhibition of HA production by M22 and by a pool of TED-Igs. CONCLUSION: We conclude that Tepro inhibits HA production by TEDOFs by inhibiting TSHR/IGF1R crosstalk and suggest that inhibition of TSHR/IGF1R crosstalk is the mechanism of its action in treating TED.


Assuntos
Oftalmopatia de Graves , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Oftalmopatia de Graves/metabolismo , Humanos , Ácido Hialurônico/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptores da Tireotropina , Tireotropina/farmacologia
14.
Mol Ther Nucleic Acids ; 25: 264-276, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34458010

RESUMO

Emerging evidence has shown that long non-coding RNAs (lncRNAs) play crucial roles in human cancers. However, systematic characterization of lncRNAs and their roles in gastrointestinal stromal tumor (GIST) therapy have been lacking. We performed high-throughput RNA sequencing (RNA-seq) of 20 GIST and paired adjacent normal samples. We characterized the transcriptional landscape and dysregulation of lncRNAs in GIST. We identified 866 upregulated and 1,268 downregulated lncRNAs in GIST samples, the majority of which were GIST-specific over other cancer types. Most hallmarks were found to be dysregulated in GIST samples, and lncRNAs were highly associated with cancer-related hallmarks. RP11-616M22.7 was identified to increase in imatinib-resistant samples compared to those in non-resistant samples. Further analysis revealed that RP11-616M22.7 was closely associated with the Hippo signaling pathway. By treating GIST cells with different doses of imatinib, we verified that RP11-616M22.7 knockdown promotes the sensitivity of tumor cells, whereas RP11-616M22.7 overexpression induces resistance to imatinib. We further confirmed reducing of resistance to imatinib by knocking down RP11-616M22.7 in vivo. Additionally, RP11-616M22.7 was observed to interact with RASSF1 protein. Our study revealed that deficiency of RP11-616M22.7 was able to reduce resistance of the GIST cell response to imatinib treatment both in vitro and in vivo.

15.
J Clin Endocrinol Metab ; 106(8): e3125-e3142, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33693700

RESUMO

CONTEXT: Thyroid-associated ophthalmopathy (TAO) is an organ-specific autoimmune disease closely associated with Graves' disease. IL-38, a novel cytokine in the IL-1 superfamily, has been reported to be involved in the pathogenesis of various autoimmune diseases. OBJECTIVE: We aimed to evaluate the relationship between IL-38 and TAO disease activity and its role in inflammation and fibrosis in TAO. METHODS: Blood samples and orbital connective tissues were collected from TAO patients and controls. Orbital fibroblasts were isolated from patients with TAO. Enzyme-linked immunosorbent assay, immunohistochemistry, flow cytometry, immunofluorescence, quantitative real-time PCR and Western blot analysis were performed. RESULTS: Here, we demonstrated that IL-38 levels decreased in the circulation and orbital connective tissues of patients with TAO compared with the controls, and levels were negatively correlated with the clinical activity score. In vitro, potent anti-inflammatory and antifibrotic effects of IL-38 were observed. Furthermore, we revealed that IL-38 can counteract the phosphorylation of star molecules in multiple classical pathways. CONCLUSION: IL-38 plays a protective role in TAO and is associated with its pathogenesis. Our data suggest that IL-38 may be a promising marker of TAO disease activity and a potential target for TAO therapy.


Assuntos
Oftalmopatia de Graves/sangue , Inflamação/sangue , Interleucinas/sangue , Adulto , Biomarcadores , Feminino , Fibroblastos/patologia , Fibrose/sangue , Fibrose/patologia , Oftalmopatia de Graves/patologia , Humanos , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Órbita/patologia
16.
Retrovirology ; 17(1): 30, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912211

RESUMO

BACKGROUND: Human T-cell leukemia virus type 1 (HTLV-1) infects primarily CD4+ T-lymphocytes and evoques severe diseases, predominantly Adult T-Cell Leukemia/ Lymphoma (ATL/L) and HTLV-1-associated Myelopathy/ Tropical Spastic Paraparesis (HAM/TSP). The viral transactivator of the pX region (Tax) is important for initiating malignant transformation, and deregulation of the major signaling pathway nuclear factor of kappa B (NF-κB) by Tax represents a hallmark of HTLV-1 driven cancer. RESULTS: Here we found that Tax mutants which are defective in NF-κB signaling showed diminished protein expression levels compared to Tax wildtype in T-cells, whereas Tax transcript levels were comparable. Strikingly, constant activation of NF-κB signaling by the constitutive active mutant of inhibitor of kappa B kinase (IKK2, IKK-ß), IKK2-EE, rescued protein expression of the NF-κB defective Tax mutants M22 and K1-10R and even increased protein levels of Tax wildtype in various T-cell lines while Tax transcript levels were only slightly affected. Using several Tax expression constructs, an increase of Tax protein occurred independent of Tax transcripts and independent of the promoter used. Further, Tax and M22 protein expression were strongly enhanced by 12-O-Tetradecanoylphorbol-13-Acetate [TPA; Phorbol 12-myristate 13-acetate (PMA)]/ ionomycin, inducers of NF-κB and cytokine signaling, but not by tumor necrosis factor alpha (TNF-α). On the other hand, co-expression of Tax with a dominant negative inhibitor of κB, IκBα-DN, or specific inhibition of IKK2 by the compound ACHP, led to a vast decrease in Tax protein levels to some extent independent of Tax transcripts in transiently transfected and Tax-transformed T-cells. Cycloheximide chase experiments revealed that co-expression of IKK2-EE prolongs the half-life of M22, and constant repression of NF-κB signaling by IκBα-DN strongly reduces protein stability of Tax wildtype suggesting that NF-κB activity is required for Tax protein stability. Finally, protein expression of Tax and M22 could be recovered by NH4Cl and PYR-41, inhibitors of the lysosome and the ubiquitin-activating enzyme E1, respectively. CONCLUSIONS: Together, these findings suggest that Tax's capability to induce NF-κB is critical for protein expression and stabilization of Tax itself. Overall, identification of this novel positive feedback loop between Tax and NF-κB in T-cells improves our understanding of Tax-driven transformation.


Assuntos
Retroalimentação Fisiológica , Produtos do Gene tax/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Subunidade p50 de NF-kappa B/metabolismo , Regulação da Expressão Gênica , Produtos do Gene tax/genética , Humanos , Ionomicina/farmacologia , Células Jurkat , Mutação , Subunidade p50 de NF-kappa B/genética , Estabilidade Proteica , Transdução de Sinais/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia
17.
J Infect Dis ; 221(12): 2050-2059, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32006006

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) is the leading viral cause of severe pediatric respiratory illness, and vaccines are needed. Live RSV vaccine D46/NS2/N/ΔM2-2-HindIII, attenuated by deletion of the RSV RNA regulatory protein M2-2, is based on previous candidate LID/ΔM2-2 but incorporates prominent differences from MEDI/ΔM2-2, which was more restricted in replication in phase 1. METHODS: RSV-seronegative children aged 6-24 months received 1 intranasal dose (105 plaque-forming units [PFUs] of D46/NS2/N/ΔM2-2-HindIII [n = 21] or placebo [n = 11]) and were monitored for vaccine shedding, reactogenicity, RSV-antibody responses and RSV-associated medically attended acute respiratory illness (RSV-MAARI) and antibody responses during the following RSV season. RESULTS: All 21 vaccinees were infected with vaccine; 20 (95%) shed vaccine (median peak titer, 3.5 log10 PFUs/mL with immunoplaque assay and 6.1 log10 copies/mL with polymerase chain reaction). Serum RSV-neutralizing antibodies and anti-RSV fusion immunoglobulin G increased ≥4-fold in 95% and 100% of vaccines, respectively. Mild upper respiratory tract symptoms and/or fever occurred in vaccinees (76%) and placebo recipients (18%). Over the RSV season, RSV-MAARI occurred in 2 vaccinees and 4 placebo recipients. Three vaccinees had ≥4-fold increases in serum RSV-neutralizing antibody titers after the RSV season without RSV-MAARI. CONCLUSIONS: D46/NS2/N/ΔM2-2-HindIII had excellent infectivity and immunogenicity and primed vaccine recipients for anamnestic responses, encouraging further evaluation of this attenuation strategy. CLINICAL TRIALS REGISTRATION: NCT03102034 and NCT03099291.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais/genética , Adolescente , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Criança , Deleção de Genes , Humanos , Interações Hidrofóbicas e Hidrofílicas , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/imunologia , RNA Viral/química , RNA Viral/genética , RNA Viral/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/química , Vacinas contra Vírus Sincicial Respiratório/genética , Vírus Sincicial Respiratório Humano/genética , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/química , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
18.
J Infect Dis ; 221(4): 534-543, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31758177

RESUMO

BACKGROUND: The safety and immunogenicity of live respiratory syncytial virus (RSV) candidate vaccine, LID/ΔM2-2/1030s, with deletion of RSV ribonucleic acid synthesis regulatory protein M2-2 and genetically stabilized temperature-sensitivity mutation 1030s in the RSV polymerase protein was evaluated in RSV-seronegative children. METHODS: Respiratory syncytial virus-seronegative children ages 6-24 months received 1 intranasal dose of 105 plaque-forming units (PFU) of LID/ΔM2-2/1030s (n = 21) or placebo (n = 11). The RSV serum antibodies, vaccine shedding, and reactogenicity were assessed. During the following RSV season, medically attended acute respiratory illness (MAARI) and pre- and postsurveillance serum antibody titers were monitored. RESULTS: Eighty-five percent of vaccinees shed LID/ΔM2-2/1030s vaccine (median peak nasal wash titers: 3.1 log10 PFU/mL by immunoplaque assay; 5.1 log10 copies/mL by reverse-transcription quantitative polymerase chain reaction) and had ≥4-fold rise in serum-neutralizing antibodies. Respiratory symptoms and fever were common (60% vaccinees and 27% placebo recipients). One vaccinee had grade 2 wheezing with rhinovirus but without concurrent LID/ΔM2-2/1030s shedding. Five of 19 vaccinees had ≥4-fold increases in antibody titers postsurveillance without RSV-MAARI, indicating anamnestic responses without significant illness after infection with community-acquired RSV. CONCLUSIONS: LID/ΔM2-2/1030s had excellent infectivity without evidence of genetic instability, induced durable immunity, and primed for anamnestic antibody responses, making it an attractive candidate for further evaluation.


Assuntos
Deleção de Genes , RNA Polimerase Dependente de RNA/genética , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Vacinação , Proteínas Virais/genética , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Temperatura Corporal , Método Duplo-Cego , Feminino , Humanos , Imunogenicidade da Vacina , Lactente , Masculino , Mutação Puntual , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vírus Sincicial Respiratório Humano/genética , Vacinas Atenuadas , Replicação Viral/genética
19.
Intern Med ; 58(21): 3121-3123, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31292406

RESUMO

We herein report a rare case of a 41-year-old woman with painless thyroiditis who was positive for thyrotropin (TSH) receptor-blocking (TBAbs) and receptor-stimulating autoantibodies (TSAbs) in the thyrotoxic phase. Her serum thyroid hormone levels were high, and TSH was undetectable. The low uptake of 99mTc led to the diagnosis of painless thyroiditis. M22-TRAb, TBAb and TSAb were detectable in the thyrotoxic phase. Three months later, she became severely hypothyroid. M22-TRAb and TBAb were still strongly positive, although the TSAb levels had decreased to just above the reference range. In this case, TBAb led to hypothyroidism.


Assuntos
Autoanticorpos/sangue , Receptores da Tireotropina/imunologia , Tireoidite/imunologia , Adulto , Feminino , Humanos , Hipotireoidismo/etiologia , Imunoglobulinas Estimuladoras da Glândula Tireoide/sangue , Glândula Tireoide/diagnóstico por imagem , Tireoidite/complicações , Tireotoxicose/etiologia , Tireotropina/sangue , Ultrassonografia
20.
Open Forum Infect Dis ; 6(6): ofz212, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31211158

RESUMO

BACKGROUND: The live respiratory syncytial virus (RSV) candidate vaccine LIDcpΔM2-2 is attenuated through deletion of M2-2 and 5 cold-passage mutations. METHODS: RSV-seronegative children aged 6-24 months received a single intranasal dose of 105 plaque-forming units (PFU) of LIDcpΔM2-2 or placebo. RSV serum antibodies, vaccine infectivity, and reactogenicity were assessed. RESULTS: Four of 11 (36%) vaccinees shed vaccine virus with median peak titers of 1.6 log10 PFU/mL by quantitative culture and 4.5 log10 copies/mL by polymerase chain reaction; 45% had ≥4-fold rise in serum-neutralizing antibodies. Respiratory symptoms or fever were common in vaccinees (64%) and placebo recipients (6/6, 100%). CONCLUSIONS: RSV LIDcpΔM2-2 is overattenuated. Clinical Trial Numbers. NCT02890381, NCT02948127.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA