RESUMO
The endocannabinoid system (ECS) is a critical regulatory network composed of endogenous cannabinoids (eCBs), their synthesizing and degrading enzymes, and associated receptors. It is integral to maintaining homeostasis and orchestrating key functions within the central nervous and immune systems. Given its therapeutic significance, we have launched a series of drug discovery endeavors aimed at ECS targets, including peroxisome proliferator-activated receptors (PPARs), cannabinoid receptors types 1 (CB1R) and 2 (CB2R), and monoacylglycerol lipase (MAGL), addressing a wide array of medical needs. The pursuit of new therapeutic agents has been enhanced by the creation of specialized labeled chemical probes, which aid in target localization, mechanistic studies, assay development, and the establishment of biomarkers for target engagement. By fusing medicinal chemistry with chemical biology in a comprehensive, translational end-to-end drug discovery strategy, we have expedited the development of novel therapeutics. Additionally, this strategy promises to foster highly productive partnerships between industry and academia, as will be illustrated through various examples.
Assuntos
Química Farmacêutica , Descoberta de Drogas , Endocanabinoides , Endocanabinoides/metabolismo , Endocanabinoides/química , Humanos , Indústria Farmacêutica , Monoacilglicerol Lipases/metabolismo , Monoacilglicerol Lipases/antagonistas & inibidores , Desenvolvimento de Medicamentos , AcademiaRESUMO
Ulcerative colitis (UC) is a chronic, relapsing nonspecific intestinal inflammatory disease. It is difficult for a single drug to treat UC effectively and maintain long-term efficacy. There is an urgent need to find new drugs and treatment strategies. MAGL11 is a new kind of single acylglycerol lipase (MAGL) inhibitor. Icaritin (Y003) is the major metabolite of icariin in vivo. Several studies have confirmed the role of MAGL inhibitors and icariin in anti-inflammatory and regulation of intestinal stability. Therefore, this study adopted a new strategy of combining MAGL inhibitor with Icaritin to further explore the role and mechanism of drugs in the treatment of UC. Enzyme-linked immunosorbent assay (ELISA), hematoxylin-eosin staining (HE), immunohistochemical (IHC) and Western blot were used to detect the synergistic protective effects of MAGL11 and Y003 on intestinal pathological injury, intestinal mucosal permeability and inflammation in UC mice. 16S rDNA sequencing was used to detect the synergistic effect of MAGL11 and Y003 on gut microbiota. The effects of MAGL11 and Y003 combined therapy on serum and fecal metabolism of UC mice were analyzed by untargeted metabolomics. Proteomics method was applied to investigate the molecular mechanisms underlying MAGL11 and Y003 synergy in the treatment of UC. The results showed that MAGL11 and Y003 could synergistically improve the clinical symptoms, reduce intestinal inflammation and pathological damage, and improve intestinal mucosal permeability in UC mice. The mechanism study found that MAGL11 and Y003 could synergistically inhibit Toll-like receptors 4 (TLR4) / Myeloid differentiation primary response gene (Myd88)/Nuclear factor kappa-B (NF-κB) pathway and further regulate gut microbiota imbalance and metabolic disorders to treat UC.
Assuntos
Anti-Inflamatórios , Colite Ulcerativa , Sinergismo Farmacológico , Flavonoides , Microbioma Gastrointestinal , Monoacilglicerol Lipases , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colite Ulcerativa/induzido quimicamente , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Camundongos , Flavonoides/uso terapêutico , Flavonoides/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Masculino , Receptor 4 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Humanos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismoRESUMO
Monoacylglycerol lipase (MAGL) is a promising target for cancer therapy due to its involvement in lipid metabolism and its impact on cancer hallmarks like cell proliferation, migration, and tumor progression. A potent reversible MAGL inhibitor, MAGL23, has been recently developed by our group, demonstrating promising anticancer activities. To enhance its pharmacological properties, a nanoformulation using nanocrystals coated with albumin was prepared (MAGL23AF). In a previous work, the formulated inhibitor showed potency in ovarian and colon cancer cell lines in terms of IC50, and was tested on mice in order to assess its biocompatibility, organs biodistribution and toxicity. In the present work, we expanded the investigation to assess the potential in vivo application of MAGL23AF. Stability assays in serum and in human derived microsomes showed a good structural stability in physiological conditions of MAGL23AF. The antitumor efficacy tested on mice bearing ovarian cancer tumor xenografts demonstrated that MAGL23AF is more potent than the non-formulated drug, leading to necrosis-driven cancer cell death. In vivo studies revealed that albumin-complexed nanocrystals improved the therapeutic window of MAGL23, exhibiting a favorable biodistribution with slightly increased accumulation in the tumor. In conclusion, the MAGL23AF showed increased in vitro stability in conditions mirroring the bloodstream environment and hepatic metabolism coupled with an optimal antitumor efficacy in vivo. These results not only validates the efficacy of our formulation but also positions it as a promising strategy for addressing challenges related to the solubility of drugs in body fluids.
Assuntos
Antineoplásicos , Monoacilglicerol Lipases , Nanopartículas , Neoplasias Ovarianas , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Animais , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Humanos , Camundongos , Linhagem Celular Tumoral , Monoacilglicerol Lipases/antagonistas & inibidores , Nanopartículas/química , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Distribuição Tecidual , Sistemas de Liberação de Medicamentos/métodos , Camundongos Nus , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/química , Albuminas/química , Portadores de Fármacos/químicaRESUMO
BACKGROUND: Monoacylglycerol lipase (MAGL) genes belong to the alpha/beta hydrolase superfamily, catalyze the terminal step of triglyceride (TAG) hydrolysis, converting monoacylglycerol (MAG) into free fatty acids and glycerol. RESULTS: In this study, 30 MAGL genes in upland cotton have been identified, which have been classified into eight subgroups. The duplication of GhMAGL genes in upland cotton was predominantly influenced by segmental duplication events, as revealed through synteny analysis. Furthermore, all GhMAGL genes were found to contain light-responsive elements. Through comprehensive association and haplotype analyses using resequencing data from 355 cotton accessions, GhMAGL3 and GhMAGL6 were detected as key genes related to lipid hydrolysis processes, suggesting a negative regulatory effect. CONCLUSIONS: In summary, MAGL has never been studied in upland cotton previously. This study provides the genetic mechanism foundation for the discover of new genes involved in lipid metabolism to improve cottonseed oil content, which will provide a strategic avenue for marker-assisted breeding aimed at incorporating desirable traits into cultivated cotton varieties.
Assuntos
Gossypium , Monoacilglicerol Lipases , Gossypium/genética , Gossypium/enzimologia , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Alelos , Família Multigênica , Estudo de Associação Genômica Ampla , Genoma de Planta , Variação Genética , Filogenia , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , HaplótiposRESUMO
Background: Human immunodeficiency virus (HIV) affects nearly 40 million people globally, with roughly 80% of all people living with HIV receiving antiretroviral therapy. Antiretroviral treatment suppresses viral load in peripheral tissues but does not effectively penetrate the blood-brain barrier. Thus, viral reservoirs persist in the central nervous system and continue to produce low levels of inflammatory factors and early viral proteins, including the transactivator of transcription (Tat). HIV Tat is known to contribute to chronic neuroinflammation and synaptodendritic damage, which is associated with the development of cognitive, motor, and/or mood problems, collectively known as HIV-associated neurocognitive disorders (HAND). Cannabinoid anti-inflammatory effects are well documented, but therapeutic utility of cannabis remains limited due to its psychotropic effects, including alterations within brain regions encoding reward processing and motivation, such as the nucleus accumbens. Alternatively, inhibiting monoacylglycerol lipase (MAGL) has demonstrated therapeutic potential through interactions with the endocannabinoid system. Methods: The present study utilized a reward-related operant behavioral task to quantify motivated behavior in female Tat transgenic mice treated with vehicle or MAGL inhibitor MJN110 (1 mg/kg). Brain tissue was collected to assess dendritic injury and neuroinflammatory profiles, including dendritic microtubule-associated protein (MAP2ab) intensity, microglia density, microglia morphology, astrocyte density, astrocytic interleukin-1ß (IL-1ß) colocalization, and various lipid mediators. Results: No significant behavioral differences were observed; however, MJN110 protected against Tat-induced dendritic injury by significantly upregulating MAP2ab intensity in the nucleus accumbens and in the infralimbic cortex of Tat(+) mice. No or only minor effects were noted for Iba-1+ microglia density and/or microglia morphology. Further, Tat increased GFAP+ astrocyte density in the infralimbic cortex and GFAP+ astrocytic IL-1ß colocalization in the nucleus accumbens, with MJN110 significantly reducing these measures in Tat(+) subjects. Lastly, selected HETE-related inflammatory lipid mediators in the striatum were downregulated by chronic MJN110 treatment. Conclusions: These findings demonstrate anti-inflammatory and neuroprotective properties of MJN110 without cannabimimetic behavioral effects and suggest a promising alternative to cannabis for managing neuroinflammation.
Assuntos
HIV-1 , Monoacilglicerol Lipases , Doenças Neuroinflamatórias , Animais , Feminino , Humanos , Camundongos , Complexo AIDS Demência/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/virologia , Encéfalo/patologia , Modelos Animais de Doenças , Infecções por HIV/tratamento farmacológico , HIV-1/fisiologia , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/etiologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismoRESUMO
Over the past decade, the idea of targeting the endocannabinoid system to treat anxiety disorders has received increasing attention. Previous studies focused more on developing cannabinoid receptor agonists or supplementing exogenous cannabinoids, which are prone to various adverse effects due to their strong pharmacological activity and poor receptor selectivity, limiting their application in clinical research. Endocannabinoid hydrolase inhibitors are considered to be the most promising development strategies for the treatment of anxiety disorders. More recent efforts have emphasized that inhibition of two major endogenous cannabinoid hydrolases, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), indirectly activates cannabinoid receptors by increasing endogenous cannabinoid levels in the synaptic gap, circumventing receptor desensitization resulting from direct enhancement of endogenous cannabinoid signaling. In this review, we comprehensively summarize the anxiolytic effects of MAGL and FAAH inhibitors and their potential pharmacological mechanisms, highlight reported novel inhibitors or natural products, and provide an outlook on future directions in this field.
Assuntos
Amidoidrolases , Ansiolíticos , Endocanabinoides , Inibidores Enzimáticos , Monoacilglicerol Lipases , Humanos , Ansiolíticos/farmacologia , Ansiolíticos/química , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Animais , Endocanabinoides/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Transtornos de Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/metabolismoRESUMO
The inhibition of endocannabinoid hydrolysis by enzymatic inhibitors may interfere with mechanisms underlying migraine-related pain. The dual FAAH/MAGL inhibitor AKU-005 shows potent inhibitory activity in vitro. Here, we assessed the effect of AKU-005 in a migraine animal model based on nitroglycerin (NTG) administration. Male rats were treated with AKU-005 (0.5 mg/kg, i.p.) or vehicle 3 h after receiving NTG (10 mg/kg, i.p.) or NTG vehicle. One hour later, rats were subjected to the open field test followed by the orofacial formalin test. At the end of the test, we collected serum samples for assessing calcitonin gene-related peptide (CGRP) levels as well as meninges, trigeminal ganglia, and brain areas to assess mRNA levels of CGRP and pro-inflammatory cytokines, and endocannabinoid and related lipid levels. AKU-005 reduced NTG-induced hyperalgesia during the orofacial formalin test but did not influence NTG-induced changes in the open field test. It significantly reduced serum levels of CGRP, CGRP, and pro-inflammatory cytokine mRNA levels in the meninges, trigeminal ganglia, and central areas. Surprisingly, AKU-005 caused no change in endocannabinoids and related lipids in the regions evaluated. The present findings suggest that AKU-005 may have anti-migraine effects by reducing CGRP synthesis and release and the associated inflammatory events. This effect, however, does not seem mediated via an interference with the endocannabinoid pathway.
Assuntos
Amidoidrolases , Peptídeo Relacionado com Gene de Calcitonina , Hiperalgesia , Gânglio Trigeminal , Animais , Masculino , Hiperalgesia/tratamento farmacológico , Ratos , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Amidoidrolases/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/sangue , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/metabolismo , Ratos Sprague-Dawley , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Endocanabinoides/metabolismo , Nitroglicerina/farmacologia , Modelos Animais de Doenças , Citocinas/metabolismo , Citocinas/sangue , Transtornos de Enxaqueca/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Oligopeptídeos , Proteínas e Peptídeos SalivaresRESUMO
The endocannabinoid system (ECS) is critically involved in the pathophysiology of Multiple Sclerosis (MS), a neuroinflammatory and neurodegenerative disease of the central nervous system (CNS). Over the past decade, researchers have extensively studied the neuroprotective and anti-inflammatory effects of the ECS. Inhibiting the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG) has emerged as a promising strategy to mitigate brain damage in MS. In this study, we investigated the effects of a novel reversible MAGL inhibitor (MAGLi 432) on C57/BL6 female mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. We assessed its implications on motor disability, neuroinflammation, and synaptic dysfunction. Systemic in vivo treatment with MAGLi 432 resulted in a less severe EAE disease, accompanied by increased 2-AG levels and decreased levels of arachidonic acid (AA) and prostaglandins (PGs) in the brain. Additionally, MAGLi 432 reduced both astrogliosis and microgliosis, as evidenced by decreased microglia/macrophage density and a less reactive morphology. Flow cytometry analysis further revealed fewer infiltrating CD45+ and CD3+ cells in the brains of MAGLi 432-treated EAE mice. Finally, MAGLi treatment counteracted the striatal synaptic hyperexcitability promoted by EAE neuroinflammation. In conclusion, MAGL inhibition significantly ameliorated EAE clinical disability and striatal inflammatory synaptopathy through potent anti-inflammatory effects. These findings provide new mechanistic insights into the neuroprotective role of the ECS during neuroinflammation and highlight the therapeutic potential of MAGLi-based drugs in mitigating MS-related inflammatory and neurodegenerative brain damage.
Assuntos
Ácidos Araquidônicos , Encefalomielite Autoimune Experimental , Endocanabinoides , Glicerídeos , Camundongos Endogâmicos C57BL , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Glicerídeos/metabolismo , Camundongos , Endocanabinoides/metabolismo , Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/patologia , Sinapses/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismoRESUMO
BACKGROUND AND PURPOSE: Transient hypofunction of the NMDA receptor represents a convergence point for the onset and further development of psychiatric disorders, including schizophrenia. Although the cumulative evidence indicates dysregulation of the hippocampal formation in schizophrenia, the integrity of the synaptic transmission and plasticity conveyed by the somatosensorial inputs to the dentate gyrus, the perforant pathway synapses, have barely been explored in this pathological condition. EXPERIMENTAL APPROACH: We identified a series of synaptic alterations of the lateral and medial perforant paths in animals postnatally treated with the NMDA antagonist MK-801. This dysregulation suggests decreased cognitive performance, for which the dentate gyrus is critical. KEY RESULTS: We identified alterations in the synaptic properties of the lateral and medial perforant paths to the dentate gyrus synapses in slices from MK-801-treated animals. Altered glutamate release and decreased synaptic strength precede an impairment in the induction and expression of long-term potentiation (LTP) and CB1 receptor-mediated long-term depression (LTD). Remarkably, by inhibiting the degradation of 2-arachidonoylglycerol (2-AG), an endogenous ligand of the CB1 receptor, we restored the LTD in animals treated with MK-801. Additionally, we showed for the first time, that spatial discrimination, a cognitive task that requires dentate gyrus integrity, is impaired in animals exposed to transient hypofunction of NMDA receptors. CONCLUSION AND IMPLICATIONS: Dysregulation of glutamatergic transmission and synaptic plasticity from the entorhinal cortex to the dentate gyrus has been demonstrated, which may explain the cellular dysregulations underlying the altered cognitive processing in the dentate gyrus associated with schizophrenia.
Assuntos
Giro Denteado , Maleato de Dizocilpina , Plasticidade Neuronal , Via Perfurante , Receptores de N-Metil-D-Aspartato , Animais , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Maleato de Dizocilpina/farmacologia , Via Perfurante/efeitos dos fármacos , Via Perfurante/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Masculino , Ratos , Endocanabinoides/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/antagonistas & inibidores , Ratos Wistar , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciação de Longa Duração/efeitos dos fármacosRESUMO
Alzheimer's disease (AD), the most common neurodegenerative disease (NDD), is characterized by chronic neuronal cell death through progressive loss of cognitive function. Amyloid beta (Aß) deposition, neuroinflammation, oxidative stress, and hyperphosphorylated tau proteins are considered the hallmarks of AD pathology. Different therapeutic approaches approved by the Food and Drug Administration can only target a single altered pathway instead of various mechanisms that are involved in AD pathology, resulting in limited symptomatic relief and almost no effect in slowing down the disease progression. Growing evidence on modulating the components of the endocannabinoid system (ECS) proclaimed their neuroprotective effects by reducing neurochemical alterations and preventing cellular dysfunction. Recent studies on AD mouse models have reported that the inhibitors of the fatty acid amide hydrolase (FAAH) and monoacylglycerol (MAGL), hydrolytic enzymes for N-arachidonoyl ethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), respectively, might be promising candidates as therapeutical intervention. The FAAH and MAGL inhibitors alone or in combination seem to produce neuroprotection by reversing cognitive deficits along with Aß-induced neuroinflammation, oxidative responses, and neuronal death, delaying AD progression. Their exact signaling mechanisms need to be elucidated for understanding the brain intrinsic repair mechanism. The aim of this review was to shed light on physiology and pathophysiology of AD and to summarize the experimental data on neuroprotective roles of FAAH and MAGL inhibitors. In this review, we have also included CB1R and CB2R modulators with their diverse roles to modulate ECS mediated responses such as anti-nociceptive, anxiolytic, and anti-inflammatory actions in AD. Future research would provide the directions in understanding the molecular mechanisms and development of new therapeutic interventions for the treatment of AD.
Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Estados Unidos , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Endocanabinoides , Doenças NeuroinflamatóriasRESUMO
AIMS: Activation of the endocannabinoid system by monoacylglycerol lipase (MAGL) blockade may affect the lower urinary tract function. We investigated the effect of an MAGL inhibitor, MJN110, on neurogenic lower urinary tract dysfunction (LUTD) in the mouse model of spinal cord injury (SCI). METHODS: Female C57BL/6 mice that underwent spinal cord transection at T8-10 level were divided into three groups consisting of (1) vehicle-treated SCI mice, (2) 5 mg/kg, or (3) 10 mg/kg of MJN110-treated SCI mice. MJN110 and vehicle were administered intraperitoneally for 7 days from 4 weeks after spinal cord transection. We then conducted awake cystometrograms and compared urodynamic parameters between three groups. The expression of cannabinoid (CB) receptors, TRP receptors, and inflammatory cytokines in L6-S1 dorsal root ganglia (DRG) or the bladder mucosa were evaluated and compared among three groups. Changes in the level of serum 2-arachidonoylglycerol (2-AG) and bladder MAGL were also evaluated. RESULTS: In the cystometrogram, detrusor overactivity (DO) parameters, such as the number of nonvoiding contraction (NVC), a ratio of time to the 1st NVC to intercontraction interval (ICI), and NVC integrals were improved by MJN110 treatment, and some effects were dose dependent. Although MJN110 did not improve voiding efficiency, it decreased bladder capacity, ICI, and residual urine volume compared to vehicle injection. MJN110 treatment groups had lower CB2, TRPV1, TRPA1, and inflammatory cytokines mRNA levels in DRG and bladder mucosa. Serum 2-AG was increased, and bladder MAGL was decreased after MAGL inhibitor treatment. CONCLUSIONS: MAGL inhibition improved LUTD including attenuation of DO after SCI. Thus, MAGL can be a therapeutic target for neurogenic LUTD after SCI.
Assuntos
Camundongos Endogâmicos C57BL , Monoacilglicerol Lipases , Traumatismos da Medula Espinal , Bexiga Urinária , Urodinâmica , Animais , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/metabolismo , Feminino , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/fisiopatologia , Urodinâmica/efeitos dos fármacos , Camundongos , Modelos Animais de Doenças , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiopatologia , Receptores de Canabinoides/metabolismo , Receptores de Canabinoides/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Endocanabinoides/metabolismo , Citocinas/metabolismo , Bexiga Urinaria Neurogênica/tratamento farmacológico , Bexiga Urinaria Neurogênica/fisiopatologia , Bexiga Urinaria Neurogênica/etiologia , Sintomas do Trato Urinário Inferior/tratamento farmacológico , Sintomas do Trato Urinário Inferior/fisiopatologia , Sintomas do Trato Urinário Inferior/etiologia , Carbamatos , SuccinimidasRESUMO
Intervertebral disc degeneration (IVDD) stands as the primary cause of low back pain (LBP). A significant contributor to IVDD is nucleus pulposus cell (NPC) senescence. However, the precise mechanisms underlying NPC senescence remain unclear. Monoacylglycerol lipase (MAGL) serves as the primary enzyme responsible for the hydrolysis of 2-arachidonoylglycerol (2-AG), breaking down monoglycerides into glycerol and fatty acids. It plays a crucial role in various pathological processes, including pain, inflammation, and oxidative stress. In this study, we utilized a lipopolysaccharide (LPS)-induced NPC senescence model and a rat acupuncture-induced IVDD model to investigate the role of MAGL in IVDD both in vitro and in vivo. Initially, our results showed that MAGL expression was increased 2.41-fold and 1.52-fold within NP tissues from IVDD patients and rats induced with acupuncture, respectively. This increase in MAGL expression was accompanied by elevated expression of p16INK4α. Following this, it was noted that the suppression of MAGL resulted in a notable decrease in the quantity of SA-ß-gal-positive cells and hindered the manifestation of p16INK4α and the inflammatory factor IL-1ß in NPCs. MAGL inhibition promotes type II collagen (Col-2) expression and inhibits matrix metalloproteinase 13 (MMP13), thereby restoring the balance of extracellular matrix (ECM) metabolism both in vitro and in vivo. A significant role for STING has also been demonstrated in the regulation of NPC senescence by MAGL. The expression of the STING protein was reduced by 57% upon the inhibition of MAGL. STING activation can replicate the effects of MAGL and substantially increase LPS-induced inflammation while accelerating the senescence of NPCs. These results strongly indicate that the inhibition of MAGL can significantly suppress nucleus pulposus senescence via its interaction with STING, consequently restoring the balance of ECM metabolism. This insight provides new perspectives for potential treatments for IVDD.
Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Animais , Humanos , Ratos , Inflamação/metabolismo , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Lipopolissacarídeos/farmacologia , Monoacilglicerol Lipases/metabolismoRESUMO
Rationale: Renal fibrosis, with no therapeutic approaches, is a common pathological feature in various chronic kidney diseases (CKD). Tubular cell injury plays a pivotal role in renal fibrosis. Commonly, injured tubular cells exhibit significant lipid accumulation. However, the underlying mechanisms remain poorly understood. Methods: 2-arachidonoylglycerol (2-AG) levels in CKD patients and CKD model specimens were measured using mass spectrometry. 2-AG-loaded nanoparticles were infused into unilateral ureteral obstruction (UUO) mice. Lipid accumulation and renal fibrosis were tested. Furthermore, monoacylglycerol lipase (MAGL), the hydrolyzing enzyme of 2-AG, was assessed in CKD patients and models. Tubular cell-specific MAGL knock-in mice were generated. Moreover, MAGL recombination protein was also administered to unilateral ischemia reperfusion injury (UIRI) mice. Besides, a series of methods including RNA sequencing, metabolomics, primary cell culture, lipid staining, etc. were used. Results: 2-AG was increased in the serum or kidneys from CKD patients and models. Supplement of 2-AG further induced lipid accumulation and fibrogenesis through cannabinoid receptor type 2 (CB2)/ß-catenin signaling. ß-catenin knockout blocked 2-AG/CB2-induced fatty acid ß-oxidation (FAO) deficiency and lipid accumulation. Remarkably, MAGL significantly decreased in CKD, aligning with lipid accumulation and fibrosis. Specific transgene of MAGL in tubular cells significantly preserved FAO, inhibited lipid-mediated toxicity in tubular cells, and finally retarded fibrogenesis. Additionally, supplementation of MAGL in UIRI mice also preserved FAO function, inhibited lipid accumulation, and protected against renal fibrosis. Conclusion: MAGL is a potential diagnostic marker for kidney function decline, and also serves as a new therapeutic target for renal fibrosis through ameliorating lipotoxicity.
Assuntos
Monoacilglicerol Lipases , Insuficiência Renal Crônica , Animais , Humanos , Camundongos , beta Catenina , Fibrose , RimRESUMO
Osteoarthritis is characterized by progressive articular cartilage degradation, subchondral bone changes, and synovial inflammation, and affects various joints, causing pain and disability. Current osteoarthritis therapies, primarily focused on pain management, face limitations due to limited effectiveness and high risks of adverse effects. Safer and more effective treatments are urgently needed. Considering that the endocannabinoid 2-arachidonoyl glycerol is involved in pain processing, increasing its concentration through monoacylglycerol lipase (MAGL) inhibition reduces pain in various animal models. Furthermore, drug repurposing approaches leverage established drug safety profiles, presenting a cost-effective route to accelerate clinical application. To this end, cetirizine and levetiracetam were examined for their MAGL inhibitory effects. In vitro studies revealed that cetirizine and levetiracetam inhibited MAGL with IC50 values of 9.3931 µM and 3.0095 µM, respectively. In vivo experiments demonstrated that cetirizine, and to a lesser extent levetiracetam, reduced mechanical and thermal nociception in complete Freund adjuvant (CFA)-induced osteoarthritis in rats. Cetirizine exhibited a notable anti-inflammatory effect, reducing CFA-induced inflammation, as well as the inflammatory infiltrate and granuloma formation in the affected paw. These findings suggest that cetirizine may serve as a promising starting point for the development of novel compounds for osteoarthritis treatment, addressing both pain and inflammation.
RESUMO
The endocannabinoid system (ECS) is a new target for the development of retinal disease therapeutics, whose pathophysiology involves neurodegeneration and neuroinflammation. The endocannabinoid 2-arachidonoylglycerol (2-AG) affects neurons and microglia by activating CB1/CB2 cannabinoid receptors (Rs). The aim of this study was to investigate the effects of 2-AG on the CB1R expression/downregulation and retinal neurons/reactive microglia, when administered repeatedly (4 d), in three different paradigms. These involved the 2-AG exogenous administration (a) intraperitoneally (i.p.) and (b) topically and (c) by enhancing the 2-AG endogenous levels via the inhibition (AM11920, i.p.) of its metabolic enzymes (MAGL/ABHD6). Sprague Dawley rats were treated as mentioned above in the presence or absence of CB1/CB2R antagonists and the excitatory amino acid, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Immunohistochemistry, Western blot and a 2-AG level analyses were performed. The 2-AG repeated treatment (i.p.) induced the CB1R downregulation, abolishing its neuroprotective actions. However, 2-AG attenuated the AMPA-induced activation of microglia via the CB2R, as concurred by the AM630 antagonist effect. Topically administered 2-AG was efficacious as a neuroprotectant/antiapoptotic and anti-inflammatory agent. AM11920 increased the 2-AG levels providing neuroprotection against excitotoxicity and reduced microglial activation without affecting the CB1R expression. Our findings show that 2-AG, in the three paradigms studied, displays differential pharmacological profiles in terms of the downregulation of the CB1R and neuroprotection. All treatments, however, attenuated the activation of microglia via the CB2R activation, supporting the anti-inflammatory role of 2-AG in the retina.
Assuntos
Endocanabinoides , Microglia , Ratos , Animais , Endocanabinoides/farmacologia , Endocanabinoides/metabolismo , Receptores de Canabinoides/metabolismo , Microglia/metabolismo , Ratos Sprague-Dawley , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Retina/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismoRESUMO
Cannabis is well established to impact affective states, emotion and perceptual processing, primarily through its interactions with the endocannabinoid system. While cannabis use is quite prevalent in many individuals afflicted with psychiatric illnesses, there is considerable controversy as to whether cannabis may worsen these conditions or provide some form of therapeutic benefit. The development of pharmacological agents which interact with components of the endocannabinoid system in more localized and discrete ways then via phytocannabinoids found in cannabis, has allowed the investigation if direct targeting of the endocannabinoid system itself may represent a novel approach to treat psychiatric illness without the potential untoward side effects associated with cannabis. Herein we review the current body of literature regarding the various pharmacological tools that have been developed to target the endocannabinoid system, their impact in preclinical models of psychiatric illness and the recent data emerging of their utilization in clinical trials for psychiatric illnesses, with a specific focus on substance use disorders, trauma-related disorders, and autism. We highlight several candidate drugs which target endocannabinoid function, particularly inhibitors of endocannabinoid metabolism or modulators of cannabinoid receptor signaling, which have emerged as potential candidates for the treatment of psychiatric conditions, particularly substance use disorder, anxiety and trauma-related disorders and autism spectrum disorders. Although there needs to be ongoing clinical work to establish the potential utility of endocannabinoid-based drugs for the treatment of psychiatric illnesses, the current data available is quite promising and shows indications of several potential candidate diseases which may benefit from this approach.
Assuntos
Cannabis , Alucinógenos , Transtornos Mentais , Humanos , Endocanabinoides , Transtornos Mentais/tratamento farmacológico , Ansiedade , Transtornos de Ansiedade , Agonistas de Receptores de CanabinoidesRESUMO
The enhancement of the endocannabinoid tone might have a beneficial influence on hypertension. Polypharmacology proposes multi-target-directed ligands (MTDLs) as potential therapeutic agents for the treatment of complex diseases. In the present paper, we studied JZL195, a dual inhibitor of the two major endocannabinoid-degrading enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Hemodynamic parameters were assessed in conscious animals via radiotelemetry and tail-cuff methods and then evaluated by the area under the curve (AUC). Single administration of JZL195 induced dose-dependent weak hypotensive and bradycardic responses in SHR but not in WKY. Similarly, its chronic application revealed only a slight hypotensive potential which, however, effectively prevented the progression of hypertension and did not undergo tolerance. In addition, multiple JZL195 administrations slightly decreased heart rate only in WKY and prevented the gradual weight gain in both groups. JZL195 did not affect organ weights, blood glucose level, rectal temperature and plasma oxidative stress markers. In conclusion, chronic dual FAAH/MAGL inhibition prevents the progression of hypertension in SHR without affecting some basal functions of the body. In addition, our study clearly proves the suitability of AUC for the evaluation of weak blood pressure changes.
Assuntos
Hipertensão , Monoacilglicerol Lipases , Ratos , Animais , Piperidinas/farmacologia , Ratos Endogâmicos SHR , Monoglicerídeos , Endocanabinoides , Amidoidrolases , Hipertensão/tratamento farmacológicoRESUMO
Treating schizophrenia with the available pharmacotherapy is difficult. One possible strategy is focused on the modulation of the function of the endocannabinoid system (ECS). The ECS is comprised of cannabinoid (CB) receptors, endocannabinoids and enzymes responsible for the metabolism of endocannabinoids (fatty acid hydrolase (FAAH) and monoacylglycerol lipase (MAGL)). Here, the aim of the experiments was to evaluate the impact of inhibitors of endocannabinoids' enzymatic degradation in the brain: KML-29 (MAGL inhibitor), JZL-195 (MAGL/FAAH inhibitor) and PF-3845 (FAAH inhibitor), on the memory disturbances typical for schizophrenia in an acute N-methyl-D-aspartate (NMDA) receptor hypofunction animal model of schizophrenia (i.e., injection of MK-801, an NMDA receptor antagonist). The memory-like responses were assessed in the passive avoidance (PA) test. A single administration of KML-29 or PF-3845 had a positive effect on the memory processes, but an acute administration of JZL-195 impaired cognition in mice in the PA test. Additionally, the combined administration of a PA-ineffective dose of KML-29 (5 mg/kg) or PF-3845 (3 mg/kg) attenuated the MK-801-induced cognitive impairment (0.6 mg/kg). Our results suggest that the indirect regulation of endocannabinoids' concentration in the brain through the use of selected inhibitors may positively affect memory disorders, and thus increase the effectiveness of modern pharmacotherapy of schizophrenia.
Assuntos
Endocanabinoides , Esquizofrenia , Camundongos , Animais , Endocanabinoides/metabolismo , N-Metilaspartato , Esquizofrenia/tratamento farmacológico , Maleato de Dizocilpina/farmacologia , Inibidores Enzimáticos/farmacologia , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Monoacilglicerol Lipases/metabolismo , Amidoidrolases/metabolismoRESUMO
Background & Aims: Liver regeneration is a repair process in which metabolic reprogramming of parenchymal and inflammatory cells plays a major role. Monoacylglycerol lipase (MAGL) is an ubiquitous enzyme at the crossroad between lipid metabolism and inflammation. It converts monoacylglycerols into free fatty acids and metabolises 2-arachidonoylglycerol into arachidonic acid, being thus the major source of pro-inflammatory prostaglandins in the liver. In this study, we investigated the role of MAGL in liver regeneration. Methods: Hepatocyte proliferation was studied in vitro in hepatoma cell lines and ex vivo in precision-cut human liver slices. Liver regeneration was investigated in mice treated with a pharmacological MAGL inhibitor, MJN110, as well as in animals globally invalidated for MAGL (MAGL-/-) and specifically invalidated in hepatocytes (MAGLHep-/-) or myeloid cells (MAGLMye-/-). Two models of liver regeneration were used: acute toxic carbon tetrachloride injection and two-thirds partial hepatectomy. MAGLMye-/- liver macrophages profiling was analysed by RNA sequencing. A rescue experiment was performed by in vivo administration of interferon receptor antibody in MAGLMye-/- mice. Results: Precision-cut human liver slices from patients with chronic liver disease and human hepatocyte cell lines exposed to MJN110 showed reduced hepatocyte proliferation. Mice with global invalidation or mice treated with MJN110 showed blunted liver regeneration. Moreover, mice with specific deletion of MAGL in either hepatocytes or myeloid cells displayed delayed liver regeneration. Mechanistically, MAGLHep-/- mice showed reduced liver eicosanoid production, in particular prostaglandin E2 that negatively impacts on hepatocyte proliferation. MAGL inhibition in macrophages resulted in the induction of the type I interferon pathway. Importantly, neutralising the type I interferon pathway restored liver regeneration of MAGLMye-/- mice. Conclusions: Our data demonstrate that MAGL promotes liver regeneration by hepatocyte and macrophage reprogramming. Impact and Implications: By using human liver samples and mouse models of global or specific cell type invalidation, we show that the monoacylglycerol pathway plays an essential role in liver regeneration. We unveil the mechanisms by which MAGL expressed in both hepatocytes and macrophages impacts the liver regeneration process, via eicosanoid production by hepatocytes and the modulation of the macrophage interferon pathway profile that restrains hepatocyte proliferation.
RESUMO
Background: Osteoarthritis (OA) is a progressive degenerative joint disease that presents with significant pain and functional disability. The endocannabinoid 2-arachidonoylglycerol activates cannabinoid receptors to reduce pain while its hydrolysis by the enzyme monoacylglycerol lipase (MAGL) generates arachidonic acid, the direct precursor to proalgesic eicosanoids synthesized by cyclooxygenase-2 (COX-2), highlighting the potential for crosstalk between MAGL and COX-2. While COX-2 expression in human OA cartilage has been described, the distribution of MAGL in knee osteochondral tissue has not been reported and was the goal of the current study. Methods: MAGL and COX-2 expression in International Cartilage Repair Society grade II and grade IV knee osteochondral tissue obtained from male and female subjects with OA was investigated through immunohistochemistry. Immunolocalization of both proteins was investigated within articular cartilage and subchondral bone. Results: MAGL is expressed throughout the cartilage of grade II arthritic tissue, with prominent distribution in the superficial and deep zones. Elevated expression of MAGL was evident in grade IV samples, with additional distribution observed in subchondral bone. COX-2 expression followed a similar pattern, with uniform distribution in cartilage and increased expression in grade IV tissue. Conclusions: This study establishes MAGL expression in arthritic cartilage and subchondral bone of subjects with OA. The proximity between MAGL and COX-2 suggests the potential for crosstalk between endocannabinoid hydrolysis and eicosanoid signaling in the maintenance of OA pain.