Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Heliyon ; 10(13): e33835, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39050450

RESUMO

MARCH8, an E3 ubiquitin ligase, plays a crucial role in regulating various cellular processes such as protein degradation and signaling pathways and is implicated in the development and spread of pancreatic cancer. Analysis of pancreatic cancer tissues compared to adjacent normal tissues showed a decrease in miRNA-30d-5p levels and an increase in OIP5-AS1 and MARCH8 levels, as confirmed by qRT-PCR and Western blot analysis. The dual-luciferase reporter assay demonstrated a binding relationship between OIP5-AS1 and miRNA-30d-5p, as well as between miRNA-30d-5p and MARCH8 in PACN-1 cells, derived from a human pancreatic carcinoma specimen. Further investigations utilizing various assays revealed that OIP5-AS1 inhibited apoptosis and promoted cell proliferation, invasion, and migration in PACN-1 cells via the miRNA-30d-5p/MARCH8 axis in vitro. Tumor experiments in nude mice confirmed that OIP5-AS1 enhanced PACN-1 cell growth in vivo through the miRNA-30d-5p/MARCH8 axis. Additionally, OIP5-AS1 was found to activate downstream genes of the JAK-STAT pathway, namely IFNAR2, SOCS3, and JAK1, in PACN-1 cells. Furthermore, OIP5-AS1 increased the IC50 values for doxorubicin, gemcitabine, and cisplatin in PACN-1 cells, as determined by the Cell Counting Kit-8 assay. Overall, OIP5-AS1 was shown to promote aggressive traits and resistance to chemotherapy in PACN-1 cells through the miRNA-30d-5p/MARCH8 axis.

2.
Int J Biol Macromol ; 274(Pt 2): 133463, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944094

RESUMO

The membrane-associated RING-CH 8 protein (MARCH8), a member of the E3 ubiquitin ligase family, has broad-spectrum antiviral activity. However, some viruses hijack MARCH8 to promote virus replication, highlighting its dual role in the viral lifecycle. Most studies on MARCH8 have focused on RNA viruses, leaving its role in DNA viruses largely unexplored. Pseudorabies virus (PRV) is a large DNA virus that poses a potential threat to humans. In this study, we found that MARCH8 inhibited PRV replication at the cell-to-cell fusion stage. Interestingly, our findings proved that MARCH8 blocks gB cleavage by recruiting furin but this activity does not inhibit viral infection in vitro. Furthermore, we confirmed that MARCH8 inhibits cell-to-cell fusion independent of its E3 ubiquitin ligase activity but dependent on the interaction with the cell-to-cell fusion complex (gB, gD, gH, and gL). Finally, we discovered that the distribution of the cell-to-cell fusion complex is significantly altered and trapped within the trans-Golgi network. Overall, our results indicate that human MARCH8 acts as a potent antiviral host factor against PRV via trapping the cell-to-cell fusion complex in the trans-Golgi network.


Assuntos
Fusão Celular , Herpesvirus Suídeo 1 , Ubiquitina-Proteína Ligases , Replicação Viral , Rede trans-Golgi , Animais , Humanos , Linhagem Celular , Herpesvirus Suídeo 1/fisiologia , Rede trans-Golgi/metabolismo , Rede trans-Golgi/virologia , Ubiquitina-Proteína Ligases/metabolismo
3.
Cells ; 13(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38667313

RESUMO

The cellular transmembrane protein MARCH8 impedes the incorporation of various viral envelope glycoproteins, such as the HIV-1 envelope glycoprotein (Env) and vesicular stomatitis virus G-glycoprotein (VSV-G), into virions by downregulating them from the surface of virus-producing cells. This downregulation significantly reduces the efficiency of virus infection. In this study, we aimed to further characterize this host protein by investigating its species specificity and the domains responsible for its antiviral activity, as well as its ability to inhibit cell-to-cell HIV-1 infection. We found that the antiviral function of MARCH8 is well conserved in the rhesus macaque, mouse, and bovine versions. The RING-CH domains of these versions are functionally important for inhibiting HIV-1 Env and VSV-G-pseudovirus infection, whereas tyrosine motifs are crucial for the former only, consistent with findings in human MARCH8. Through analysis of chimeric proteins between MARCH8 and non-antiviral MARCH3, we determined that both the N-terminal and C-terminal cytoplasmic tails, as well as presumably the N-terminal transmembrane domain, of MARCH8 are critical for its antiviral activity. Notably, we found that MARCH8 is unable to block cell-to-cell HIV-1 infection, likely due to its insufficient downregulation of Env. These findings offer further insights into understanding the biology of this antiviral transmembrane protein.


Assuntos
HIV-1 , Proteínas de Membrana , Humanos , Animais , Proteínas de Membrana/metabolismo , Células HEK293 , Ubiquitina-Proteína Ligases/metabolismo , Camundongos , Bovinos , Macaca mulatta , Infecções por HIV/virologia , Infecções por HIV/metabolismo , Antivirais/farmacologia , Domínios Proteicos , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
4.
J Virol ; 98(2): e0172623, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38226814

RESUMO

The human papillomavirus (HPV) oncoprotein E7 is a relatively short-lived protein required for HPV-driven cancer development and maintenance. E7 is degraded through ubiquitination mediated by cullin 1 (CUL1) and the ubiquitin-conjugating enzyme E2 L3 (UBE2L3). However, E7 proteins are maintained at high levels in most HPV-positive cancer cells. A previous proteomics study has shown that UBE2L3 and CUL1 protein levels are increased by the knockdown of the E3 ubiquitin ligase membrane-associated ring-CH-type finger 8 (MARCHF8). We have recently demonstrated that HPV16 upregulates MARCHF8 expression in HPV-positive keratinocytes and head and neck cancer (HPV+ HNC) cells. Here, we report that MARCHF8 stabilizes the HPV16 E7 protein by degrading the components of the S-phase kinase-associated protein 1-CUL1-F-box ubiquitin ligase complex in HPV+ HNC cells. We found that MARCHF8 knockdown in HPV+ HNC cells drastically decreases the HPV16 E7 protein level while increasing the CUL1 and UBE2L3 protein levels. We further revealed that the MARCHF8 protein binds to and ubiquitinates CUL1 and UBE2L3 proteins and that MARCHF8 knockdown enhances the ubiquitination of the HPV16 E7 protein. Conversely, the overexpression of CUL1 and UBE2L3 in HPV+ HNC cells decreases HPV16 E7 protein levels and suppresses tumor growth in vivo. Our findings suggest that HPV-induced MARCHF8 prevents the degradation of the HPV16 E7 protein in HPV+ HNC cells by ubiquitinating and degrading CUL1 and UBE2L3 proteins.IMPORTANCESince human papillomavirus (HPV) oncoprotein E7 is essential for virus replication; HPV has to maintain high levels of E7 expression in HPV-infected cells. However, HPV E7 can be efficiently ubiquitinated by a ubiquitin ligase and degraded by proteasomes in the host cell. Mechanistically, the E3 ubiquitin ligase complex cullin 1 (CUL1) and ubiquitin-conjugating enzyme E2 L3 (UBE2L3) components play an essential role in E7 ubiquitination and degradation. Here, we show that the membrane ubiquitin ligase membrane-associated ring-CH-type finger 8 (MARCHF8) induced by HPV16 E6 stabilizes the E7 protein by degrading CUL1 and UBE2L3 and blocking E7 degradation through proteasomes. MARCHF8 knockout restores CUL1 and UBE2L3 expression, decreasing E7 protein levels and inhibiting the proliferation of HPV-positive cancer cells. Additionally, overexpression of CUL1 or UBE2L3 decreases E7 protein levels and suppresses in vivo tumor growth. Our results suggest that HPV16 maintains high E7 protein levels in the host cell by inducing MARCHF8, which may be critical for cell proliferation and tumorigenesis.


Assuntos
Proteínas Culina , Neoplasias de Cabeça e Pescoço , Proteínas Oncogênicas Virais , Proteínas E7 de Papillomavirus , Infecções por Papillomavirus , Enzimas de Conjugação de Ubiquitina , Ubiquitina-Proteína Ligases , Humanos , Proteínas Culina/genética , Proteínas Culina/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Papillomavirus Humano , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
J Virol ; 97(10): e0102823, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772822

RESUMO

IMPORTANCE: Emerging vaccine-breakthrough severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants highlight an urgent need for novel antiviral therapies. Understanding the pathogenesis of coronaviruses is critical for developing antiviral drugs. Here, we demonstrate that the SARS-CoV-2 N protein suppresses interferon (IFN) responses by reducing early growth response gene-1 (EGR1) expression. The overexpression of EGR1 inhibits SARS-CoV-2 replication by promoting IFN-regulated antiviral protein expression, which interacts with and degrades SARS-CoV-2 N protein via the E3 ubiquitin ligase MARCH8 and the cargo receptor NDP52. The MARCH8 mutants without ubiquitin ligase activity are no longer able to degrade SARS-CoV-2 N proteins, indicating that MARCH8 degrades SARS-CoV-2 N proteins dependent on its ubiquitin ligase activity. This study found a novel immune evasion mechanism of SARS-CoV-2 utilized by the N protein, which is helpful for understanding the pathogenesis of SARS-CoV-2 and guiding the design of new prevention strategies against the emerging coronaviruses.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce , Interações entre Hospedeiro e Microrganismos , SARS-CoV-2 , Ubiquitina-Proteína Ligases , Replicação Viral , Humanos , COVID-19/virologia , Descoberta de Drogas , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo
6.
Am J Physiol Cell Physiol ; 325(5): C1190-C1200, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37661917

RESUMO

Interstitial lung diseases can result in poor patient outcomes, especially in idiopathic pulmonary fibrosis (IPF), a severe interstitial lung disease with unknown causes. The lack of treatment options requires further understanding of the pathological process/mediators. Membrane-associated RING-CH 8 (MARCH8) has been implicated in immune function regulation and inflammation, however, its role in the development of pulmonary fibrosis and particularly the fibroblast to myofibroblast transition (FMT) remains a gap in existing knowledge. In this study, we demonstrated decreased MARCH8 expression in patients with IPF compared with non-PF controls and in bleomycin-induced PF. TGF-ß dose- and time-dependently decreased MARCH8 expression in normal and IPF human lung fibroblast (HLFs), along with induction of FMT markers α-SMA, collagen type I (Col-1), and fibronectin (FN). Interestingly, overexpression of MARCH8 significantly suppressed TGF-ß-induced expression of α-SMA, Col-1, and FN. By contrast, the knockdown of MARCH8 using siRNA upregulated basal expression of α-SMA/Col-1/FN. Moreover, MARCH8 knockdown enhanced TGF-ß-induced FMT marker expression. These data clearly show that MARCH8 is a critical "brake" for FMT and potentially affects PF. We further found that TGF-ß suppressed MARCH8 mRNA expression and the proteasome inhibitor MG132 failed to block MARCH8 decrease induced by TGF-ß. Conversely, TGF-ß decreases mRNA levels of MARCH8 in a dose- and time-dependent manner, suggesting the transcriptional regulation of MARCH8 by TGF-ß. Mechanistically, MARCH8 overexpression suppressed TGF-ß-induced Smad2/3 phosphorylation, which may account for the observed effects. Taken together, this study demonstrated an unrecognized role of MARCH8 in negatively regulating FMT and profibrogenic responses relevant to interstitial lung diseases.NEW & NOTEWORTHY MARCH8 is an important modulator of inflammation, immunity, and other cellular processes. We found that MARCH8 expression is downregulated in the lungs of patients with idiopathic pulmonary fibrosis (IPF) and experimental models of pulmonary fibrosis. Furthermore, TGF-ß1 decreases MARCH8 transcriptionally in human lung fibroblasts (HLFs). MARCH8 overexpression blunts TGF-ß1-induced fibroblast to myofibroblast transition while knockdown of MARCH8 drives this profibrotic change in HLFs. The findings support further exploration of MARCH8 as a novel target in IPF.


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Humanos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Miofibroblastos , Regulação para Baixo , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Fibroblastos/metabolismo , Doenças Pulmonares Intersticiais/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Bleomicina/farmacologia , Inflamação/metabolismo , RNA Mensageiro/metabolismo
7.
Mol Carcinog ; 62(7): 1062-1072, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37098835

RESUMO

Membrane-associated ring-CH-type finger 8 (MARCH8) belongs to the MARCH family of membrane-bound E3 ubiquitin ligases. The N-terminus of MARCH family members contains the C4HC3 RING-finger domain, which can bind to E2 ubiquitin-conjugating enzymes, ubiquitinate substrate proteins, and thereby promote protein degradation through the proteasome pathway. The aim of this study was to determine the role of MARCH8 in hepatocellular carcinoma (HCC). We first analyzed the clinical relevance of MARCH8 based on The Cancer Genome Atlas database. Immunohistochemical staining was used to detect MARCH8 expression in human HCC samples. Migration and invasion assays were conducted in vitro. Cell apoptosis and cell cycle distribution were analyzed by flow cytometry. The expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN)-related markers was evaluated in HCC cells through Western blot analysis. MARCH8 was highly expressed in human HCC tissues, and its high expression was inversely correlated with patients' survival. Disrupting MARCH8 expression significantly inhibited the proliferation, migration, and cell cycle progression of HCC cells, while also promoting their apoptosis. In contrast, the overexpression of MARCH8 significantly enhanced cell proliferation. Mechanistically, our results showed that MARCH8 interacted with PTEN and suppressed the protein stability of PTEN by enhancing its ubiquitination level via the proteasome. MARCH8 also activated AKT in HCC cells and tumors. In vivo, overexpression of MARCH8 could promote the growth of hepatic tumors through the AKT pathway. MARCH8 may promote the malignant progression of HCC by promoting the ubiquitination of PTEN, thereby relieving the inhibitory effect of PTEN on the malignant phenotype of HCC cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , PTEN Fosfo-Hidrolase , Ubiquitina-Proteína Ligases , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Ubiquitina-Proteína Ligases/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proliferação de Células , Movimento Celular , Apoptose , Ciclo Celular , Estabilidade Proteica , Carcinogênese , Transdução de Sinais
8.
J Virol ; 97(1): e0161422, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36541804

RESUMO

Porcine epidemic diarrhea (PED) indicates the disease of the acute and highly contagious intestinal infection due to porcine epidemic diarrhea virus (PEDV), with the characteristics of watery diarrhea, vomiting, and dehydration. One of the reasons for diarrhea and death of piglets is PEDV, which leads to 100% mortality in neonatal piglets. Therefore, it is necessary to explore the interaction between virus and host to prevent and control PEDV. This study indicated that the host protein, pre-mRNA processing factor 19 (PRPF19), could be controlled by the signal transducer as well as activator of transcription 1 (STAT1). Thus, PEDV replication could be hindered through selective autophagy. Moreover, PRPF19 was found to recruit the E3 ubiquitin ligase MARCH8 to the N protein for ubiquitination. For the purpose of degradation, the ubiquitin N protein is acknowledged by the cargo receptor NDP52 and transported to autolysosomes, thus inhibiting virus proliferation. To conclude, a unique antiviral mechanism of PRPF19-mediated virus restriction was shown. Moreover, a view of the innate immune response and protein degradation against PEDV replication was provided in this study. IMPORTANCE The highly virulent porcine epidemic diarrhea virus (PEDV) emerged in 2010, and causes high mortality rates in newborn pigs. There are no effective and safe vaccines against the highly virulent PEDV. This virus has caused devastating economic losses in the pork industry worldwide. Studying the relationship between virus and host antiviral factors is important to develop the new antiviral strategies. This study identified the pre-mRNA processing factor 19 (PRPF19) as a novel antiviral protein in PEDV replication and revealed its viral restriction mechanisms for the first time. PRPF19 recruited the E3 ubiquitin ligase MARCH8 to the PEDV N protein for ubiquitination, and the ubiquitin N protein was acknowledged by the cargo receptor NDP52 and transported to autolysosomes for degradation. Our findings provide new insights in host antiviral factors PRPF19 that regulate the selective autophagy protein degradation pathway to inhibit PEDV replication.


Assuntos
Proteínas do Capsídeo , Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Proteínas do Capsídeo/metabolismo , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas , Replicação Viral/genética , Proteínas Nucleares/metabolismo , Autofagia
9.
J Virol ; 96(22): e0155522, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36317879

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a re-emerging enteric coronavirus currently spreading in several nations and inflicting substantial financial damages on the swine industry. The currently available coronavirus vaccines do not provide adequate protection against the newly emerging viral strains. It is essential to study the relationship between host antiviral factors and the virus and to investigate the mechanisms underlying host immune response against PEDV infection. This study shows that heterogeneous nuclear ribonucleoprotein K (hnRNP K), the host protein determined by the transcription factor KLF15, inhibits the replication of PEDV by degrading the nucleocapsid (N) protein of PEDV in accordance with selective autophagy. hnRNP K was found to be capable of recruiting the E3 ubiquitin ligase, MARCH8, aiming to ubiquitinate N protein. Then, it was found that the ubiquitinated N protein could be delivered into autolysosomes for degradation by the cargo receptor NDP52, thereby inhibiting PEDV proliferation. Moreover, based on the enhanced MyD88 expression, we found that hnRNP K activated the interferon 1 (IFN-1) signaling pathway. Overall, the data obtained revealed a new mechanism of hnRNP K-mediated virus restriction wherein hnRNP K suppressed PEDV replication by degradation of viral N protein using the autophagic degradation pathway and by induction of IFN-1 production based on upregulation of MyD88 expression. IMPORTANCE The spread of the highly virulent PEDV in many countries is still leading to several epidemic and endemic outbreaks. To elucidate effective antiviral mechanisms, it is important to study the relationship between host antiviral factors and the virus and to investigate the mechanisms underlying host immune response against PEDV infection. In the work, we detected hnRNP K as a new host restriction factor which can hinder PEDV replication through degrading the nucleocapsid protein based on E3 ubiquitin ligase MARCH8 and the cargo receptor NDP52. In addition, via the upregulation of MyD88 expression, hnRNP K could also activate the interferon (IFN) signaling pathway. This study describes a previously unknown antiviral function of hnRNP K and offers a new vision toward host antiviral factors that regulate innate immune response as well as a protein degradation pathway against PEDV infection.


Assuntos
Infecções por Coronavirus , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Interferon Tipo I , Vírus da Diarreia Epidêmica Suína , Replicação Viral , Animais , Antivirais , Chlorocebus aethiops , Infecções por Coronavirus/veterinária , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Interferons , Fator 88 de Diferenciação Mieloide , Proteínas do Nucleocapsídeo/fisiologia , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Doenças dos Suínos/virologia , Ubiquitina-Proteína Ligases , Células Vero , Interferon Tipo I/imunologia
10.
J Transl Med ; 20(1): 402, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064706

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the third most common cancer and leading cause of cancer-related deaths worldwide. Aberrant cellular metabolism is a hallmark of cancer cells, and disturbed metabolism showed clinical significance in CRC. The membrane-associated RING-CH 8 (MARCH8) protein, the first MARCH E3 ligase, plays an oncogenic role and serves as a prognostic marker in multiple cancers, however, the role of MARCH8 in CRC is unclear. In the present study, we aimed to investigate the biomarkers and their underlying mechanism for CRC. METHOD: In this study, we first examined the function of MARCH8 in CRC by analysing public database. Besides, we performing gene silencing studies and generating cellular overexpression and xenograft models. Then its protein substrate was identified and validated. In addition, the expression of MARCH8 was investigated in tissue samples from CRC patients, and the molecular basis for decreased expression was analysed. RESULTS: Systematic analysis reveals that MARCH8 is a beneficial prognostic marker in CRC. In CRC, MARCH8 exhibited tumor-suppressive activity both in vivo and in vitro. Furthermore, we found that MARCH8 is negatively correlated with hexokinase 2 (HK2) protein in CRC patients. MARCH8 regulates glycolysis and promotes ubiquitination-mediated proteasome degradation to reduces HK2 protein levels. Then HK2 inhibitor partially rescues the effect of MARCH8 knockdown in CRC. Poised chromatin and elevated miR-32 repressed MARCH8 expression. CONCLUSION: In summary, we propose that in CRC, poised chromatin and miR-32 decrease the expression of MARCH8, further bind and add ubiquitin, induce HK2 degradation, and finally repress glycolysis to promote tumor suppressors in CRC.


Assuntos
Neoplasias Colorretais , MicroRNAs , Ubiquitina-Proteína Ligases , Linhagem Celular Tumoral , Proliferação de Células , Cromatina , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Glicólise , Humanos , Proteínas de Membrana/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
11.
Dev Comp Immunol ; 135: 104485, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35764162

RESUMO

Recent studies have related the membrane-associated RING-CH-type finger (MARCH) family proteins to host innate immune response. Zebrafish (Danio rerio) MARCH8 is reported to target SVCV glycoprotein for degradation; however, little is known about whether fish MARCH8 is involved in innate interferon (IFN) response. In this study, zebrafish march8 was significantly induced by SVCV infection. Overexpression of MARCH8 diminished fish IFN-mediated antiviral response, thus promoting the replication of SVCV and GCRV in fish cells. Mechanistically, MARCH8 interacts with and degrades MITA and TBK1 proteins to inhibit IFN response. Moreover, MARCH8 has an E3 ligase activity and enhances MITA and TBK1 polyubiquitination. Our findings reveal a mechanism whereby zebrafish MARCH8 downregulates fish IFN response and facilitates viral replication by targeting MITA and TBK1 for protein degradation.


Assuntos
Interferons , Peixe-Zebra , Animais , Antivirais , Imunidade Inata , Interferons/metabolismo , Proteólise , Replicação Viral
12.
Microbiol Spectr ; 10(1): e0061821, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019698

RESUMO

The host transmembrane protein MARCH8 is a RING finger E3 ubiquitin ligase that downregulates various host transmembrane proteins, such as MHC-II. We have recently reported that MARCH8 expression in virus-producing cells impairs viral infectivity by reducing virion incorporation of not only HIV-1 envelope glycoprotein but also vesicular stomatitis virus G-glycoprotein through two different pathways. However, the MARCH8 inhibition spectrum remains largely unknown. Here, we show the antiviral spectrum of MARCH8 using viruses pseudotyped with a variety of viral envelope glycoproteins. Infection experiments revealed that viral envelope glycoproteins derived from the rhabdovirus, arenavirus, coronavirus, and togavirus (alphavirus) families were sensitive to MARCH8-mediated inhibition. Lysine mutations at the cytoplasmic tails of rabies virus-G, lymphocytic choriomeningitis virus glycoproteins, SARS-CoV and SARS-CoV-2 spike proteins, and Chikungunya virus and Ross River virus E2 proteins conferred resistance to MARCH8. Immunofluorescence showed impaired downregulation of the mutants of these viral envelope glycoproteins by MARCH8, followed by lysosomal degradation, suggesting that MARCH8-mediated ubiquitination leads to intracellular degradation of these envelopes. Indeed, rabies virus-G and Chikungunya virus E2 proteins proved to be clearly ubiquitinated. We conclude that MARCH8 has inhibitory activity on a variety of viral envelope glycoproteins whose cytoplasmic lysine residues are targeted by this antiviral factor. IMPORTANCE A member of the MARCH E3 ubiquitin ligase family, MARCH8, downregulates many different kinds of host transmembrane proteins, resulting in the regulation of cellular homeostasis. On the other hands, MARCH8 acts as an antiviral factor when it binds to and downregulates HIV-1 envelope glycoprotein and vesicular stomatitis virus G-glycoprotein that are viral transmembrane proteins. This study reveals that, as in the case of cellular membrane proteins, MARCH8 shows broad-spectrum inhibition against various viral envelope glycoproteins by recognizing their cytoplasmic lysine residues, resulting in lysosomal degradation.


Assuntos
Antivirais/farmacologia , Lisina/efeitos dos fármacos , Ubiquitina-Proteína Ligases/farmacologia , Proteínas do Envelope Viral/química , Western Blotting , Regulação para Baixo , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , Lisina/metabolismo , Ubiquitinação/fisiologia , Proteínas do Envelope Viral/efeitos dos fármacos
13.
FEBS J ; 289(13): 3642-3654, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33993615

RESUMO

Membrane-associated RING-CH (MARCH) family member proteins are RING-finger E3 ubiquitin ligases that are known to downregulate cellular transmembrane proteins. MARCH8 is a novel antiviral factor that inhibits HIV-1 envelope glycoprotein and vesicular stomatitis virus G by downregulating these envelope glycoproteins from the cell surface, resulting in their reduced incorporation into virions. More recently, we have found that MARCH8 reduces viral infectivity via two different mechanisms. Additionally, several groups have reported further antiviral or virus-supportive functions of the MARCH8 protein and its other cellular mechanisms. In this review, we summarize the current knowledge about the molecular mechanisms by which MARCH8 can regulate cellular homeostasis and inhibit and occasionally support enveloped virus infection.


Assuntos
Vírion , Vírus , Antivirais/metabolismo , Proteínas de Membrana/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas do Envelope Viral/genética , Vírion/metabolismo , Vírus/metabolismo
14.
Front Immunol ; 12: 724403, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659210

RESUMO

As a fierce pathogen, spring viremia of carp virus (SVCV) can cause high mortality in the common carp, and its glycoprotein (G protein) is a component of the viral structure on the surface of virion, which is crucial in viral life cycle. This report adopted tandem affinity purification (TAP), mass spectrometry analysis (LC-MS/MS), immunoprecipitation, and confocal microscopy assays to identify Heat shock cognate protein 70 (HSC70) as an interaction partner of SVCV G protein. It was found that HSC70 overexpression dramatically inhibited SVCV replication, whereas its loss of functions elicited opposing effects on SVCV replication. Mechanistic studies indicate that HSC70 induces lysosomal degradation of ubiquitinated-SVCV G protein. This study further demonstrates that Membrane-associated RING-CH 8 (MARCH8), an E3 ubiquitin ligase, is critical for SVCV G protein ubiquitylation and leads to its lysosomal degradation. Furthermore, the MARCH8 mediated ubiquitylation of SVCV G protein required the participation of HSC70 through forming a multicomponent complex. Taken together, these results demonstrate that HSC70 serves as a scaffold for MARCH8 and SVCV G, which leads to the ubiquitylation and degradation of SVCV G protein and thus inhibits viral replication. These findings have established a novel host defense mechanism against SVCV.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Lisossomos/metabolismo , Rhabdoviridae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Carpas , Cromatografia Líquida , Doenças dos Peixes/virologia , Proteínas de Choque Térmico HSC70/genética , Rhabdoviridae/genética , Infecções por Rhabdoviridae/virologia , Espectrometria de Massas em Tandem , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Vírion/metabolismo , Replicação Viral
15.
Biomedicines ; 9(9)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34572328

RESUMO

The overexpression of adenosine triphosphate (ATP)-binding cassette (ABC) subfamily B member 1 (ABCB1; P-glycoprotein; MDR1) in some types of cancer cells is one of the mechanisms responsible for the development of multidrug resistance (MDR), which leads to the failure of chemotherapy. Therefore, it is important to inhibit the activity or reduce the expression level of ABCB1 to maintain an effective intracellular level of chemotherapeutic drugs. In this study, we found that rutaecarpine, a bioactive alkaloid isolated from Evodia Rutaecarpa, has the capacity to reverse ABCB1-mediated MDR. Our data indicated that the reversal effect of rutaecarpine was related to the attenuation of the protein level of ABCB1. Mechanistically, we demonstrated that ABCB1 is a newly discovered substrate of E3 ubiquitin ligase membrane-associated RING-CH 8 (MARCH8). MARCH8 can interact with ABCB1 and promote its ubiquitination and degradation. In short, rutaecarpine increased the degradation of ABCB1 protein by upregulating the protein level of MARCH8, thereby antagonizing ABCB1-mediated MDR. Notably, the treatment of rutaecarpine combined with other anticancer drugs exhibits a therapeutic effect on transplanted tumors. Therefore, our study provides a potential chemotherapeutic strategy of co-administrating rutaecarpine with other conventional chemotherapeutic agents to overcome MDR and improve therapeutic effect.

16.
Cancers (Basel) ; 13(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067416

RESUMO

Protein stability is largely regulated by post-translational modifications, such as ubiquitination, which is mediated by ubiquitin-activating enzyme E1, ubiquitin-conjugating enzyme E2, and ubiquitin ligase E3 with substrate specificity. Membrane-associated RING-CH (MARCH) proteins represent one novel family of transmembrane E3 ligases which target glycoproteins for lysosomal destruction. While most of the MARCH family members are known to degrade membrane proteins in immune cells, their tumor-intrinsic role is largely unknown. In this study, we found that the expression of one MARCH family member, MARCH8, is specifically downregulated in breast cancer tissues and positively correlated with breast cancer survival rate according to bioinformatic analysis of The Cancer Genomic Atlas (TCGA) dataset. MARCH8 protein expression was also lower in a variety of human breast cancer cell lines in comparison to immortalized human mammary epithelial MCF-12A cells. Restoration of MARCH8 expression induced apoptosis in human breast cancer cell lines MDA-MB-231 and BT549. Stable expression of MARCH8 inhibited tumorigenesis and lung metastases of MDA-MB-231 cells in mice. Moreover, we discovered that the breast cancer stem-cell marker and metastasis driver CD44, a membrane protein, interacts with MARCH8 and is one of the glycoprotein targets subject to MARCH8-dependent lysosomal degradation. Unexpectedly, we identified a nonmembrane protein, signal transducer and transcription activator 3 (STAT3), as another essential ubiquitination target of MARCH8, whose degradation through the proteasome pathway is responsible for the proapoptotic changes mediated by MARCH8. These findings highlight a novel tumor-suppressing function of MARCH8 in targeting both membrane and nonmembrane protein targets required for the survival and metastasis of breast cancer cells.

17.
Hum Gene Ther ; 32(17-18): 936-948, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33678011

RESUMO

Lentiviral vectors are one of the most commonly used viral delivery systems for gene therapy. Vesicular stomatitis virus-G envelope glycoprotein (VSV G)-pseudotyped lentiviral vectors have been widely used in clinical studies for treatment of virus infections and genetic deficient diseases. However, the efficiency of lentiviral vector transduction has been long recognized as a limiting factor in clinical gene therapy application, especially in transducing hematopoietic stem cells. MARCH8 (membrane-associated RING-CH 8), an E3 ubiquitin ligase, has been reported to target and downregulate VSV G. Results in this study show that MARCH8 induces ubiquitination and lysosome degradation of VSV G, and knockout of MARCH8 in virus-producing cells increases lentiviral vector transduction by elevating the level of VSV G protein. We then engineered VSV G mutant that has the lysine residues in the cytoplasmic domain substituted for arginine, and showed that this G mutant resists degradation by MARCH8, and allows the enhancement of transduction efficiency of lentiviral vector particles than the parental VSV G protein. This engineered VSV G mutant thus further advances the lentiviral vector system as a powerful tool in gene therapy.


Assuntos
Vetores Genéticos , Estomatite Vesicular , Animais , Terapia Genética , Vetores Genéticos/genética , Glicoproteínas , Lentivirus/genética , Transdução Genética , Proteínas do Envelope Viral/genética
18.
J Proteomics ; 236: 104125, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33540066

RESUMO

MARCH8 is an E3 ligase, primarily involved in immune-modulation. Recently, we reported its aberrant expression in human esophageal squamous cell carcinoma. However, exact mechanisms by which it regulates cancer have been poorly understood. We applied high-throughput quantitative proteomics approach to identify downstream protein targets of MARCH8. Silencing of endogenous MARCH8 in ESCC cells followed by LC-MS/MS analysis led to identification of 1,029 unique proteins showing altered expression post MARCH8 knockdown. Several previously reported MARCH8 target proteins viz. TFR1, syntaxin-4, e-cadherin and CD44 were found to be upregulated. Furthermore, new putative targets of MARCH8, including ß2M, were identified in the present study. We demonstrated that MARCH8 interacts with and ubiquitinates CDH1 and ß2M. Inhibiting proteasome activity with MG132 prevented CDH1 and ß2M degradation, indicating that MARCH8 might be targeting CDH1 and ß2M for proteasomal degradation. Further, loss of ß2M and CDH1 expression significantly and inversely correlated with MARCH8 expression in ESCC tissues (r =  -0.737 and  - 0.651, respectively; p < 0.01). In conclusion, our present study has led to identification of new targets of MARCH8 and suggests the role of MARCH8 in regulating CDH1 and ß2M turnover in esophageal cancer cells. SIGNIFICANCE: The use of quantitative proteomics carried out has led to the recognition of new targets of MARCH8. The present study gives a broad understanding of the molecular remodeling arising in the ESCC after MARCH8 knockdown. The study also solidifies the idea that role of MARCH8 is not just limited to immunomodulation as silencing of MARCH8 affects various other processes such as protein processing and localization. This study might help in understanding the regulation of MARCH8 in ESCCs and the mechanism by which MARCH8 might be facilitating cancer cells to evade immune surveillance.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Neoplasias de Cabeça e Pescoço , Linhagem Celular Tumoral , Proliferação de Células , Cromatografia Líquida , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Espectrometria de Massas em Tandem
19.
mBio ; 11(5)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934085

RESUMO

Membrane-associated RING-CH-type 8 (MARCH8) strongly blocks human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) incorporation into virions by downregulating its cell surface expression, but the mechanism is still unclear. We now report that MARCH8 also blocks the Ebola virus (EBOV) glycoprotein (GP) incorporation via surface downregulation. To understand how these viral fusion proteins are downregulated, we investigated the effects of MARCH8 on EBOV GP maturation and externalization via the conventional secretion pathway. MARCH8 interacted with EBOV GP and furin when detected by immunoprecipitation and retained the GP/furin complex in the Golgi when their location was tracked by a bimolecular fluorescence complementation (BiFC) assay. MARCH8 did not reduce the GP expression or affect the GP modification by high-mannose N-glycans in the endoplasmic reticulum (ER), but it inhibited the formation of complex N-glycans on the GP in the Golgi. Additionally, the GP O-glycosylation and furin-mediated proteolytic cleavage were also inhibited. Moreover, we identified a novel furin cleavage site on EBOV GP and found that only those fully glycosylated GPs were processed by furin and incorporated into virions. Furthermore, the GP shedding and secretion were all blocked by MARCH8. MARCH8 also blocked the furin-mediated cleavage of HIV-1 Env (gp160) and the highly pathogenic avian influenza virus H5N1 hemagglutinin (HA). We conclude that MARCH8 has a very broad antiviral activity by prohibiting different viral fusion proteins from glycosylation and proteolytic cleavage in the Golgi, which inhibits their transport from the Golgi to the plasma membrane and incorporation into virions.IMPORTANCE Enveloped viruses express three classes of fusion proteins that are required for their entry into host cells via mediating virus and cell membrane fusion. Class I fusion proteins are produced from influenza viruses, retroviruses, Ebola viruses, and coronaviruses. They are first synthesized as a type I transmembrane polypeptide precursor that is subsequently glycosylated and oligomerized. Most of these precursors are cleaved en route to the plasma membrane by a cellular protease furin in the late secretory pathway, generating the trimeric N-terminal receptor-binding and C-terminal fusion subunits. Here, we show that a cellular protein, MARCH8, specifically inhibits the furin-mediated cleavage of EBOV GP, HIV-1 Env, and H5N1 HA. Further analyses uncovered that MARCH8 blocked the EBOV GP glycosylation in the Golgi and inhibited its transport from the Golgi to the plasma membrane. Thus, MARCH8 has a very broad antiviral activity by specifically inactivating different viral fusion proteins.


Assuntos
Ebolavirus/química , Glicoproteínas/antagonistas & inibidores , HIV-1/química , Hemaglutininas Virais/metabolismo , Virus da Influenza A Subtipo H5N1/química , Ubiquitina-Proteína Ligases/genética , Proteínas do Envelope Viral/antagonistas & inibidores , Proteínas do Envelope Viral/fisiologia , Animais , Linhagem Celular , Chlorocebus aethiops , Ebolavirus/fisiologia , Glicosilação , Células HEK293 , HIV-1/fisiologia , Células HeLa , Células Hep G2 , Humanos , Virus da Influenza A Subtipo H5N1/fisiologia , Ligação Proteica , Células THP-1 , Ubiquitina-Proteína Ligases/metabolismo , Células Vero , Proteínas Virais de Fusão/antagonistas & inibidores , Proteínas Virais de Fusão/metabolismo
20.
Elife ; 92020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32778221

RESUMO

Membrane-associated RING-CH 8 (MARCH8) inhibits infection with both HIV-1 and vesicular stomatitis virus G-glycoprotein (VSV-G)-pseudotyped viruses by reducing virion incorporation of envelope glycoproteins. The molecular mechanisms by which MARCH8 targets envelope glycoproteins remain unknown. Here, we show two different mechanisms by which MARCH8 inhibits viral infection. Viruses pseudotyped with the VSV-G mutant, in which cytoplasmic lysine residues were mutated, were insensitive to the inhibitory effect of MARCH8, whereas those with a similar lysine mutant of HIV-1 Env remained sensitive to it. Indeed, the wild-type VSV-G, but not its lysine mutant, was ubiquitinated by MARCH8. Furthermore, the MARCH8 mutant, which had a disrupted cytoplasmic tyrosine motif that is critical for intracellular protein sorting, did not inhibit HIV-1 Env-mediated infection, while it still impaired infection by VSV-G-pseudotyped viruses. Overall, we conclude that MARCH8 reduces viral infectivity by downregulating envelope glycoproteins through two different mechanisms mediated by a ubiquitination-dependent or tyrosine motif-dependent pathway.


Assuntos
Infecções por HIV/virologia , HIV-1/fisiologia , Infecções por Rhabdoviridae/virologia , Ubiquitina-Proteína Ligases/genética , Vesiculovirus/fisiologia , Proteínas do Envelope Viral/genética , Células HEK293 , Humanos , Mutação , Ubiquitina-Proteína Ligases/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA