Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 37(8): e23046, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37389546

RESUMO

Metabolic diseases are considered the primary culprit for physical and mental health of individuals. Although the diagnosis of these diseases is relatively easy, more effective and convenient potent drugs are still being explored. Ca2+ across the inner mitochondrial membrane is a vital intracellular messenger that regulates energy metabolism and cellular Ca2+ homeostasis and is involved in cell death. Mitochondria rely on a selective mitochondrial Ca2+ unidirectional transport complex (MCU complex) in their inner membrane for Ca2+ uptake. We found that the channel contains several subunits and undergoes dramatic transformations in various pathological processes, especially in metabolic diseases. In this way, we believe that the MCU complex becomes a target with significant potential for these diseases. However, there is no review linking the two factors, thus hindering the possibility of new drug production. Here, we highlight the connection between MCU complex-related Ca2+ transport and the pathophysiology of metabolic diseases, adding understanding and insight at the molecular level to provide new insights for targeting MCU to reverse metabolism-related diseases.


Assuntos
Doenças Metabólicas , Mitocôndrias , Humanos , Transporte Biológico , Morte Celular , Metabolismo Energético
2.
Front Physiol ; 14: 1106662, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846332

RESUMO

A physiological increase in cardiac workload results in adaptive cardiac remodeling, characterized by increased oxidative metabolism and improvements in cardiac performance. Insulin-like growth factor-1 (IGF-1) has been identified as a critical regulator of physiological cardiac growth, but its precise role in cardiometabolic adaptations to physiological stress remains unresolved. Mitochondrial calcium (Ca2+) handling has been proposed to be required for sustaining key mitochondrial dehydrogenase activity and energy production during increased workload conditions, thus ensuring the adaptive cardiac response. We hypothesized that IGF-1 enhances mitochondrial energy production through a Ca2+-dependent mechanism to ensure adaptive cardiomyocyte growth. We found that stimulation with IGF-1 resulted in increased mitochondrial Ca2+ uptake in neonatal rat ventricular myocytes and human embryonic stem cell-derived cardiomyocytes, estimated by fluorescence microscopy and indirectly by a reduction in the pyruvate dehydrogenase phosphorylation. We showed that IGF-1 modulated the expression of mitochondrial Ca2+ uniporter (MCU) complex subunits and increased the mitochondrial membrane potential; consistent with higher MCU-mediated Ca2+ transport. Finally, we showed that IGF-1 improved mitochondrial respiration through a mechanism dependent on MCU-mediated Ca2+ transport. In conclusion, IGF-1-induced mitochondrial Ca2+ uptake is required to boost oxidative metabolism during cardiomyocyte adaptive growth.

3.
Cells ; 11(13)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35805078

RESUMO

The Mitochondrial Calcium Uniporter Complex (MCU Complex) is essential for ß-cell function due to its role in sustaining insulin secretion. The MCU complex regulates mitochondrial Ca2+ influx, which is necessary for increased ATP production following cellular glucose uptake, keeps the cell membrane K+ channels closed following initial insulin release, and ultimately results in sustained insulin granule exocytosis. Dysfunction in Ca2+ regulation results in an inability to sustain insulin secretion. This review defines the functions, structure, and mutations associated with the MCU complex members mitochondrial calcium uniporter protein (MCU), essential MCU regulator (EMRE), mitochondrial calcium uptake 1 (MICU1), mitochondrial calcium uptake 2 (MICU2), and mitochondrial calcium uptake 3 (MICU3) in the pancreatic ß-cell. This review provides a framework for further evaluation of the MCU complex in ß-cell function and insulin secretion.


Assuntos
Proteínas de Transporte de Cátions , Células Secretoras de Insulina , Cálcio/metabolismo , Canais de Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
4.
Basic Res Cardiol ; 116(1): 65, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34914018

RESUMO

Current evidence indicates that coronary microcirculation is a key target for protecting against cardiac ischemia-reperfusion (I/R) injury. Mitochondrial calcium uniporter (MCU) complex activation and mitochondrial calcium ([Ca2+]m) overload are underlying mechanisms involved in cardiovascular disease. Histidine triad nucleotide-binding 2 (HINT2) has been reported to modulate [Ca2+]m via the MCU complex, and our previous work demonstrated that HINT2 improved cardiomyocyte survival and preserved heart function in mice with cardiac ischemia. This study aimed to explore the benefits of HINT2 on cardiac microcirculation in I/R injury with a focus on mitochondria, the MCU complex, and [Ca2+]m overload in endothelial cells. The present work demonstrated that HINT2 overexpression significantly reduced the no-reflow area and improved microvascular perfusion in I/R-injured mouse hearts, potentially by promoting endothelial nitric oxide synthase (eNOS) expression and phosphorylation. Microvascular barrier function was compromised by reperfusion injury, but was repaired by HINT2 overexpression via inhibiting VE-Cadherin phosphorylation at Tyr731 and enhancing the VE-Cadherin/ß-Catenin interaction. In addition, HINT2 overexpression inhibited the inflammatory response by suppressing vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Mitochondrial fission occurred in cardiac microvascular endothelial cells (CMECs) subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) injury and resulted in mitochondrial dysfunction and mitochondrion-dependent apoptosis, the effects of which were largely relieved by HINT2 overexpression. Additional experiments confirmed that [Ca2+]m overload was an initiating factor for mitochondrial fission and that HINT2 suppressed [Ca2+]m overload via modulation of the MCU complex through directly interacting with MCU in CMECs. Regaining [Ca2+]m overload by spermine, an MCU agonist, abolished all the protective effects of HINT2 on OGD/R-injured CMECs and I/R-injured cardiac microcirculation. In conclusion, the present report demonstrated that HINT2 overexpression inhibited MCU complex-mitochondrial calcium overload-mitochondrial fission and apoptosis pathway, and thereby attenuated cardiac microvascular ischemia-reperfusion injury.


Assuntos
Canais de Cálcio/metabolismo , Cálcio , Hidrolases/metabolismo , Proteínas Mitocondriais/metabolismo , Traumatismo por Reperfusão , Animais , Cálcio/metabolismo , Células Endoteliais/metabolismo , Camundongos , Mitocôndrias , Miócitos Cardíacos/metabolismo , Traumatismo por Reperfusão/metabolismo
7.
Mitochondrion ; 57: 9-22, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33316420

RESUMO

Mitochondria play vital role in regulating the cellular energetics and metabolism. Further, it is a signaling hub for cell survival and apoptotic pathways. One of the key determinants that calibrate both cellular energetics and survival functions is mitochondrial calcium (Ca2+) dynamics. Mitochondrial Ca2+ regulates three Ca2+-sensitive dehydrogenase enzymes involved in tricarboxylic acid cycle (TCA) cycle thereby directly controlling ATP synthesis. On the other hand, excessive Ca2+ concentration within the mitochondrial matrix elevates mitochondrial reactive oxygen species (mROS) levels and causes mitochondrial membrane depolarization. This leads to opening of the mitochondrial permeability transition pore (mPTP) and release of cytochrome c into cytosol eventually triggering apoptosis. Therefore, it is critical for cell to maintain mitochondrial Ca2+ concentration. Since cells can neither synthesize nor metabolize Ca2+, it is the dynamic interplay of Ca2+ handling proteins involved in mitochondrial Ca2+ influx and efflux that take the center stage. In this review we would discuss the key molecular machinery regulating mitochondrial Ca2+ concentration. We would focus on the channel complex involved in bringing Ca2+ into mitochondrial matrix i.e. Mitochondrial Ca2+ Uniporter (MCU) and its key regulators Mitochondrial Ca2+ Uptake proteins (MICU1, 2 and 3), MCU regulatory subunit b (MCUb), Essential MCU Regulator (EMRE) and Mitochondrial Ca2+ Uniporter Regulator 1 (MCUR1). Further, we would deliberate on major mitochondrial Ca2+ efflux proteins i.e. Mitochondrial Na+/Ca2+/Li+ exchanger (NCLX) and Leucine zipper EF hand-containing transmembrane1 (Letm1). Moreover, we would highlight the physiological functions of these proteins and discuss their relevance in human pathophysiology. Finally, we would highlight key outstanding questions in the field.


Assuntos
Cálcio/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Ciclo do Ácido Cítrico , Citocromos c/metabolismo , Regulação da Expressão Gênica , Humanos , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Mol Cell ; 78(6): 1055-1069, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32559424

RESUMO

Ca2+ ions are key second messengers in both excitable and non-excitable cells. Owing to the rather pleiotropic nature of Ca2+ transporters and other Ca2+-binding proteins, however, Ca2+ signaling has attracted limited attention as a potential target of anticancer therapy. Here, we discuss cancer-associated alterations of Ca2+ fluxes at specific organelles as we identify novel candidates for the development of drugs that selectively target Ca2+ signaling in malignant cells.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Neoplasias/metabolismo , Animais , Canais de Cálcio/metabolismo , Humanos , Mitocôndrias/metabolismo , Neoplasias/genética , Transdução de Sinais/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo
9.
Cell Calcium ; 69: 73-80, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28867646

RESUMO

During the 60s, the notion that positively charged Ca2+ ions are rapidly accumulated in energized mitochondria has been first established. In the following decades, mitochondrial Ca2+ homeostasis was shown to control cell metabolism, cell survival and other cell-specific functions through different mechanism. However, the molecular identity of the molecules controlling this process remained a mystery until just few years ago, when both mitochondrial Ca2+ uptake and release systems were genetically dissected. This finally opened the possibility to develop genetic model to directly test the contribution of mitochondrial Ca2+ homeostasis to cellular functions. Although the picture is still far from being clear, we here summarize and critically evaluate the current knowledge on how mitochondrial Ca2+ handling controls cell death.


Assuntos
Apoptose , Canais de Cálcio/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/química , Humanos , Transporte de Íons , Mitocôndrias/metabolismo
10.
Cancer Lett ; 411: 106-116, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-28947137

RESUMO

In early studies, it was shown that HINT2, which sensitizes cells to mitochondrial apoptosis, is down-regulated in hepatocellular carcinoma (HCC) cells (Martin et al., 2006). However, the molecular mechanism of this effect is unknown. Immunohistochemistry revealed that HINT2 expression is relatively low in pancreatic cancer tissues, compared to that in adjacent tissues (P < 0.05). Furthermore, its expression was related to pathological grade and lymph node metastasis (P = 0.0161 and 0.0108, respectively); in addition, down-regulation of HINT2 was found to be associated with relatively poor prognosis in pancreatic cancer patients. Up-regulation of HINT2 was shown to trigger pancreatic cancer cell apoptosis, decrease mitochondrial membrane potential (ΔΨm), promote intracellular reactive oxygen species (ROS) production, and elevate mitochondrial Ca2+ levels. However, co-treatment of HINT2 overexpressing BxPC-3 cells with ruthenium red partially inhibited HINT2-induced apoptosis, which was associated with a reduction in ΔΨm and an increase in intracellular ROS and mitochondrial Ca2+. According to our results, mitochondrial calcium uptake1 and 2 (MICU1 and MICU2) were down-regulated and the essential MCU regulator (EMRE) was up-regulated in cells transduced with Adv-HINT2. Therefore, we deduced that HINT2 triggers apoptosis in pancreatic cancer cells by regulating mitochondrial Ca2+ influx through the mitochondrial calcium uniporter (MCU). In addition, we found that HINT2 can sensitize BxPC-3 and L3.6pl cells to gemcitabine-induced apoptosis and that gemcitabine up-regulates HINT2 expression. This indicates that gemcitabine-induced apoptosis is related to HINT2 levels.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Canais de Cálcio/metabolismo , Desoxicitidina/análogos & derivados , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Desoxicitidina/farmacologia , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Mitocondriais/biossíntese , Neoplasias Pancreáticas/genética , Gencitabina
11.
Annu Rev Biochem ; 85: 161-92, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27145841

RESUMO

In the last 5 years, most of the molecules that control mitochondrial Ca(2+) homeostasis have been finally identified. Mitochondrial Ca(2+) uptake is mediated by the Mitochondrial Calcium Uniporter (MCU) complex, a macromolecular structure that guarantees Ca(2+) accumulation inside mitochondrial matrix upon increases in cytosolic Ca(2+). Conversely, Ca(2+) release is under the control of the Na(+)/Ca(2+) exchanger, encoded by the NCLX gene, and of a H(+)/Ca(2+) antiporter, whose identity is still debated. The low affinity of the MCU complex, coupled to the activity of the efflux systems, protects cells from continuous futile cycles of Ca(2+) across the inner mitochondrial membrane and consequent massive energy dissipation. In this review, we discuss the basic principles that govern mitochondrial Ca(2+) homeostasis and the methods used to investigate the dynamics of Ca(2+) concentration within the organelles. We discuss the functional and structural role of the different molecules involved in mitochondrial Ca(2+) handling and their pathophysiological role.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Mitocôndrias/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Canais de Cálcio/química , Canais de Cálcio/genética , Sinalização do Cálcio , Regulação da Expressão Gênica , Homeostase , Humanos , Transporte de Íons , Cinética , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais , Modelos Moleculares , Trocador de Sódio e Cálcio/genética , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA