Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 983
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(30): e2404000121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39008676

RESUMO

Atypical Chemokine Receptor 3 (ACKR3) belongs to the G protein-coupled receptor family but it does not signal through G proteins. The structural properties that govern the functional selectivity and the conformational dynamics of ACKR3 activation are poorly understood. Here, we combined hydrogen/deuterium exchange mass spectrometry, site-directed mutagenesis, and molecular dynamics simulations to examine the binding mode and mechanism of action of ACKR3 ligands of different efficacies. Our results show that activation or inhibition of ACKR3 is governed by intracellular conformational changes of helix 6, intracellular loop 2, and helix 7, while the DRY motif becomes protected during both processes. Moreover, we identified the binding sites and the allosteric modulation of ACKR3 upon ß-arrestin 1 binding. In summary, this study highlights the structure-function relationship of small ligands, the binding mode of ß-arrestin 1, the activation dynamics, and the atypical dynamic features in ACKR3 that may contribute to its inability to activate G proteins.


Assuntos
Simulação de Dinâmica Molecular , Ligação Proteica , Receptores CXCR , Humanos , Receptores CXCR/metabolismo , Receptores CXCR/genética , Sítios de Ligação , Conformação Proteica , beta-Arrestina 1/metabolismo , beta-Arrestina 1/genética , Ligantes , Células HEK293 , Mutagênese Sítio-Dirigida , Regulação Alostérica , Relação Estrutura-Atividade
2.
Food Chem ; 458: 140277, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38970957

RESUMO

This study analyzed the metabolite profiles and antioxidant capacities of two waxy and non-waxy Korean red rice accessions newly bred. Fifteen phenolic compounds were detected in the rice samples. Accession1 had high fatty acids, phytosterols, and vitamin E; accession3 had high vitamin E and phytosterol; and accession4 had a high total flavonoid. The correlation analysis findings from this study validated the positive association between all the metabolites and antioxidant activity. in silico results revealed that protocatechuic acid had a docking score of -9.541, followed by luteolin, quercetin, and caffeic acid, all of which had significant docking scores and a significant number of contacts. Similarly, molecular dynamics simulations showed that phytochemicals had root mean square deviation values of <2.8 Å with Keap 1, indicating better stability. This study provides valuable insights into potential directions for future investigations and improvements in the functional qualities of other colored rice varieties.

3.
Protein J ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980535

RESUMO

In the realm of parasitology, autophagy has emerged as a critical focal point, particularly in combating Leishmaniasis. Central to this endeavour is the recognition of the protein ATG8 as pivotal for the survival and infectivity of the parasitic organism Leishmania major, thereby making it a potential target for therapeutic intervention. Consequently, there is a pressing need to delve into the structural characteristics of ATG8 to facilitate the design of effective drugs. In this study, our efforts centered on the purification of ATG8 from Leishmania major, which enabled novel insights into its structural features through meticulous spectroscopic analysis. We aimed to comprehensively assess the stability and behaviour of ATG8 in the presence of various denaturants, including urea, guanidinium chloride, and SDS-based chemicals. Methodically, our approach included secondary structural analysis utilizing CD spectroscopy, which not only validated but also augmented computationally predicted structures of ATG8 reported in previous investigations. Remarkably, our findings unveiled that the purified ATG8 protein retained its folded conformation, exhibiting the anticipated secondary structure. Moreover, our exploration extended to the influence of lipids on ATG8 stability, yielding intriguing revelations. We uncovered a nuanced perspective suggesting that targeting both the lipid composition of Leishmania major and ATG8 could offer a promising strategy for future therapeutic approaches in combating leishmaniasis. Collectively, our study underscores the importance of understanding the structural intricacies of ATG8 in driving advancements towards the development of targeted therapies against Leishmaniasis, thereby providing a foundation for future investigations in this field.

4.
Front Pharmacol ; 15: 1424175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005934

RESUMO

Histone deacetylase 3 (HDAC3) is a member of the histone deacetylase family that has emerged as a crucial target in the quest for novel therapeutic interventions against various complex diseases, including cancer. The repositioning of FDA-approved drugs presents a promising avenue for the rapid discovery of potential HDAC3 inhibitors. In this study, we performed a structure-based virtual screening of FDA-approved drugs obtained from DrugBank. Candidate hits were selected based on their binding affinities and interactions with HDAC3. These promising hits were then subjected to a comprehensive assessment of their biological properties and drug profiles. Our investigation identified two FDA-approved drugs, Imatinib and Carpipramine, characterized by their exceptional affinity and specificity for the binding pocket of HDAC3. These molecules demonstrated a strong preference for HDAC3 binding site and formed interactions with functionally significant residues within the active site pocket. To gain deeper insights into the binding dynamics, structural stability, and interaction mechanisms, we performed molecular dynamics (MD) simulations spanning 300 nanoseconds (ns). The results of MD simulations indicated that Imatinib and Carpipramine stabilized the structure of HDAC3 and induced fewer conformational changes. Taken together, the findings from this study suggest that Imatinib and Carpipramine may offer significant therapeutic potential for treating complex diseases, especially cancer.

5.
Arch Biochem Biophys ; 759: 110088, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992456

RESUMO

Ponatinib and tofacitinib, established kinase inhibitors and FDA-approved for chronic myeloid leukemia and rheumatoid arthritis, are recently undergoing investigation in diverse clinical trials for potential repurposing. The aryl hydrocarbon receptor (AhR), a transcription factor influencing a spectrum of physiological and pathophysiological activities, stands as a therapeutic target for numerous diseases. This study employs molecular modelling tools and in vitro assays to identify ponatinib and tofacitinib as AhR ligands, elucidating their binding and molecular interactions in the AhR PAS-B domain. Molecular docking analyses revealed that ponatinib and tofacitinib occupy the central pocket within the primary cavity, similar to AhR agonists 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and (benzo[a]pyrene) B[a]P. Our simulations also showed that these compounds exhibit good stability, stabilizing many hot spots within the PAS-B domain, including the Dα-Eα loop, which serves as a regulatory element for the binding pocket. Binding energy calculations highlighted ponatinib's superior predicted affinity, revealing F295 as a crucial residue in maintaining strong interaction with the two compounds. Our in vitro data suggest that ponatinib functions as an AhR antagonist, blocking the downstream signaling of AhR pathway induced by TCDD and B[a]P. Additionally, both tofacitinib and ponatinib cause impairment in AhR-regulated CYP1A1 enzyme activity induced by potent AhR agonists. This study unveils ponatinib and tofacitinib as potential modulators of AhR, providing valuable insights into their therapeutic roles in AhR-associated diseases and enhancing our understanding of the intricate relationship between kinase inhibitors and AhR.

6.
Drug Dev Res ; 85(5): e22232, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38992915

RESUMO

The human aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, plays a pivotal role in a diverse array of pathways in biological and pathophysiological events. This position AhR as a promising target for both carcinogenesis and antitumor strategies. In this study we utilized computational modeling to screen and identify FDA-approved drugs binding to the allosteric site between α2 of bHLH and PAS-A domains of AhR, with the aim of inhibiting its canonical pathway activity. Our findings indicated that nilotinib effectively fits into the allosteric pocket and forms interactions with crucial residues F82, Y76, and Y137. Binding free energy value of nilotinib is the lowest among top hits and maintains stable within its pocket throughout entire (MD) simulations time. Nilotinib has also substantial interactions with F295 and Q383 when it binds to orthosteric site and activate AhR. Surprisingly, it does not influence AhR nuclear translocation in the presence of AhR agonists; instead, it hinders the formation of the functional AhR-ARNT-DNA heterodimer assembly, preventing the upregulation of regulated enzymes like CYP1A1. Importantly, nilotinib exhibits a dual impact on AhR, modulating AhR activity via the PAS-B domain and working as a noncompetitive allosteric antagonist capable of blocking the canonical AhR signaling pathway in the presence of potent AhR agonists. These findings open a new avenue for the repositioning of nilotinib beyond its current application in diverse diseases mediated via AhR.


Assuntos
Sítio Alostérico , Receptores de Hidrocarboneto Arílico , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores de Hidrocarboneto Arílico/química , Humanos , Regulação Alostérica/efeitos dos fármacos , Pirimidinas/farmacologia , Pirimidinas/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Simulação de Dinâmica Molecular , Aprovação de Drogas , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/antagonistas & inibidores
7.
Chem Biodivers ; : e202400904, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973448

RESUMO

There was an emergency call globally when COVID-19 was detected in December 2019. The SARS-CoV-2 virus, a modified virus, is what causes this contagious disease. Although research is being conducted throughout the world, the main target is still to find the promising candidate to target RNA-dependent RNA polymerase (RdRp) to provide possible drug against COVID-19. Aim of this work is to find a molecule to inhibit the translational process of viral protein synthesis. Density Functional Theory calculations revealed information about the formation of the desired ligand (RD). Molecular docking of RD with RdRp was performed and compared with some reported molecules and the data revealed that RD had the best docking score with RdRp (-6.7 kcal/mol). Further, molecular dynamics (MD) simulations of RD with RdRp of SARS-CoV-2 revealed the formation of stable complex with a maximum number of seven hydrogen bonds. Root mean square deviations values are in acceptable range and root mean square fluctuations has less fluctuation indicate stable complex formation. Further, based on MM-GBSA calculation, RD formed a stable complex with RdRp of nCoV with ΔG° of -12.28 kcal·mol-1.

8.
ACS Nano ; 18(23): 15013-15024, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38822455

RESUMO

Electrophoretic transport plays a pivotal role in advancing sensing technologies. So far, systematic studies have focused on the translocation of canonical B-form or A-form nucleic acids, while direct RNA analysis is emerging as the new frontier for nanopore sensing and sequencing. Here, we compare the less-explored dynamics of noncanonical RNA:DNA hybrids in electrophoretic transport to the well-researched transport of B-form DNA. Using DNA/RNA nanotechnology and solid-state nanopores, the translocation of RNA:DNA (RD) and DNA:DNA (DD) duplexes was examined. Notably, RD duplexes were found to translocate through nanopores faster than DD duplexes, despite containing the same number of base pairs. Our experiments reveal that RD duplexes present a noncanonical helix, with distinct transport properties from B-form DD molecules. We find that RD and DD molecules, with the same contour length, move with comparable velocity through nanopores. We examined the physical characteristics of both duplex forms using atomic force microscopy, atomistic molecular dynamics simulations, agarose gel electrophoresis, and dynamic light scattering measurements. With the help of coarse-grained and molecular dynamics simulations, we find the effective force per unit length applied by the electric field to a fragment of RD or DD duplex in nanopores with various geometries or shapes to be approximately the same. Our results shed light on the significance of helical form in nucleic acid translocation, with implications for RNA sensing, sequencing, and the molecular understanding of electrophoretic transport.


Assuntos
DNA , Eletroforese , Simulação de Dinâmica Molecular , Nanoporos , RNA , RNA/química , DNA/química , Conformação de Ácido Nucleico , Nanotecnologia/métodos
9.
Front Immunol ; 15: 1413893, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915396

RESUMO

Introduction: Trypanosoma cruzi is a protozoan parasite that causes the tropical ailment known as Chagas disease, which has its origins in South America. Globally, it has a major impact on health and is transported by insect vector that serves as a parasite. Given the scarcity of vaccines and the limited treatment choices, we conducted a comprehensive investigation of core proteomics to explore a potential reverse vaccine candidate with high antigenicity. Methods: To identify the immunodominant epitopes, T. cruzi core proteomics was initially explored. Consequently, the vaccine sequence was engineered to possess characteristics of non-allergenicity, antigenicity, immunogenicity, and enhanced solubility. After modeling the tertiary structure of the human TLR4 receptor, the binding affinities were assessed employing molecular docking and molecular dynamics simulations (MDS). Results: Docking of the final vaccine design with TLR4 receptors revealed substantial hydrogen bond interactions. A server-based methodology for immunological simulation was developed to forecast the effectiveness against antibodies (IgM + IgG) and interferons (IFN-g). The MDS analysis revealed notable levels of structural compactness and binding stability with average RMSD of 5.03 Aring;, beta-factor 1.09e+5 Å, Rg is 44.7 Aring; and RMSF of 49.50 Aring;. This is followed by binding free energies calculation. The system stability was compromised by the complexes, as evidenced by their corresponding Gibbs free energies of -54.6 kcal/mol. Discussion: Subtractive proteomics approach was applied to determine the antigenic regions of the T cruzi. Our study utilized computational techniques to identify B- and T-cell epitopes in the T. cruzi core proteome. In current study the developed vaccine candidate exhibits immunodominant features. Our findings suggest that formulating a vaccine targeting the causative agent of Chagas disease should be the initial step in its development.


Assuntos
Doença de Chagas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteoma , Vacinas Protozoárias , Receptor 4 Toll-Like , Trypanosoma cruzi , Trypanosoma cruzi/imunologia , Doença de Chagas/imunologia , Doença de Chagas/prevenção & controle , Humanos , Proteoma/imunologia , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/química , Vacinas Protozoárias/imunologia , Animais , Epitopos Imunodominantes/imunologia , Proteômica/métodos , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/química , Anticorpos Antiprotozoários/imunologia , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/química , Desenvolvimento de Vacinas , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química
10.
Materials (Basel) ; 17(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38930190

RESUMO

Precise management of the inverse correlation between the total porosity and compressive strength is crucial for the progress of foaming glass-ceramics (FGCs). To deeply understand this relationship, we investigated the atomic-level transformations of five CO2-foaming FGC samples using molecular dynamics simulation. The short-range and intermediate-range structures of the FGCs with varying total porosities (36.68%, 66.28%, 66.96%, 72.21%, and 79.88%) in the system were elucidated. Na cations were observed to exhibit a strong interaction with CO2, accumulating at the surface of the pore wall and influencing the oxygen species. Therefore, the change in the atomic structure of the matrix was accompanied by an increase in the total porosity with an increasing CO2 content. Specifically, as the total porosity increased, the bridging oxygen content within the FGCs rose accordingly. However, once the total porosity exceeded 66.96%, the bridging oxygen content began to decline. This observation was significant considering the role of the bridging oxygen content in forming a continuous cross-linked network of chemical bonds, which contributed to the enhanced mechanical strength. Consequently, the influence of the total porosity on the oxygen species resulted in a two-stage reduction in the compressive strength. This study offers valuable insights for the development of high-strength lightweight FGCs.

11.
Saudi J Biol Sci ; 31(8): 104035, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38934013

RESUMO

Interleukin-8 (IL-8) is a chemokine, a type of signaling molecule that has a role in immunological responses and inflammation. In recent years, IL-8 is additionally related to cancer growth and recurrence. Breast cancer growth, progression, and metastatic development are all linked to IL-8. Breast cancer cells are known to develop faster when IL-8 stimulates their proliferation and survival. It can also cause angiogenesis, or the creation of new blood vessels, which is necessary for tumor nutrition and growth. IL-8 and curcumin have been subjects of interest in drug design, particularly in the context of inflammation-related disorders and cancer. This study aims to give an overview of the role of IL-8. Inhibitor-based treatment approaches were being used to target IL-8 with curcumin. Molecular docking method was employed to find a potential interaction to supress competitive inhibition of IL-8 with curcumin. PASS analysis and ADMET characteristics were also being carried out. In the end, IL-8 complexed with curcumin is chosen for MD simulations. Overall, our results showed that during the simulation, the complex stayed comparatively stable. It is also possible to investigate curcumin further as a possible treatment option. The combined results imply that IL-8 and their genetic alterations can be studied in precision cancer therapeutic treatments, utilizing target-driven therapy and early diagnosis.

12.
Curr Res Struct Biol ; 7: 100151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881558

RESUMO

The COVID-19 pandemic in the later phase showed the presence of the B.1.1.529 variant of the SARS-CoV-2 designated as Omicron. AYUSH-64 a poly herbal drug developed by Central Council for Research in Ayurvedic Sciences (CCRAS) has been recommended by Ministry of Ayush in asymptomatic, mild to moderate COVID-19 patients. One of the earlier, in-silico study has shown the binding of the constituents of AYUSH-64 to the main protease (Mpro) of the SARS-CoV-2. This study enlisted four phytochemicals of AYUSH-64, which were found to have significant binding with the Mpro. In continuation to the same, the current study proposes to understand the binding of these four phytochemicals to main protease (Mpro) and receptor binding domain (RBD) of spike protein of the Omicron variant. An enhanced molecular docking methodology, namely, ensemble docking has been used to find the most efficiently binding phytochemical. Using molecular dynamics (MD) simulations and clustering approach it was observed that the Mpro and RBD Spike of Omicron variant of SARS-CoV-2 in complex with human ACE2 tends to attain 4 and 8 conformational respectively. Based on the docking studies, the best binding phytochemical of the AYUSH-64, akummicine N-oxide was selected for MD simulations. MD simulations of akummicine N-oxide bound to omicron variant of Mpro and RBD Spike-ACE complex was performed. The conformational, interaction and binding energy analysis suggested that the akummicine N-oxide binds well with Mpro and RBD Spike-ACE2 complex. The interaction between RBD Spike and ACE2 was observed to weaken in the presence of akummicine N-oxide. Hence, it can be inferred that, these phytochemicals from AYUSH-64 formulation may have the potential to act against the Omicron variant of SARS-CoV-2.

13.
Biochim Biophys Acta Biomembr ; 1866(7): 184349, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38815687

RESUMO

Cell membranes are responsible for a range of biological processes that require interactions between lipids and proteins. While the effects of lipids on proteins are becoming better understood, our knowledge of how protein conformational changes influence membrane dynamics remains rudimentary. Here, we performed experiments and computer simulations to study the dynamic response of a lipid membrane to changes in the conformational state of pH-low insertion peptide (pHLIP), which transitions from a surface-associated (SA) state at neutral or basic pH to a transmembrane (TM) α-helix under acidic conditions. Our results show that TM-pHLIP significantly slows down membrane thickness fluctuations due to an increase in effective membrane viscosity. Our findings suggest a possible membrane regulatory mechanism, where the TM helix affects lipid chain conformations, and subsequently alters membrane fluctuations and viscosity.

14.
Sci Total Environ ; 940: 173510, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38806124

RESUMO

The adsorption of phosphorus (P) onto active soil surfaces plays a pivotal role in immobilizing P, thereby influencing soil fertility and the filter function of soil to protect freshwater systems from eutrophication. Competitive anions, such as organic matter (OM), significantly affect the strength of this P-binding, eventually controlling P mobility and release, but surprisingly, these processes are insufficiently understood at the molecular level. In this study, we provide a molecular-level perspective on the influence of OM on P binding at the goethite-water interface using a combined experimental-theoretical approach. By examining the impact of citric acid (CIT) and histidine (HIS) on the adsorption of orthophosphate (OP), glycerol phosphate (GP), and inositol hexaphosphate (IHP) through adsorption experiments and molecular dynamics simulations, we address fundamental questions regarding P binding trends, OM interaction with the goethite surface, and the effect of OM on P adsorption. Our findings reveal the complex nature of P adsorption on goethite surfaces, where the specific OM, treatment conditions (covering the surface with OM or simultaneous co-adsorption), and initial concentrations collectively shape these interactions. P adsorption on goethite exhibits a binding strength increasing in the order of GP < OP < IHP. Crucially, this trend remains consistent across all adsorption experiments, regardless of the presence or absence of OM, CIT, or HIS, and irrespective of the specific treatment method. Notably, OP is particularly susceptible to inhibition by OM, while adsorption of GP depends on specific OM treatments. Despite being less sensitive to OM, IHP shows reduced adsorption, especially at higher initial P concentrations. Of significance is the strong inhibitory effect of CIT, particularly evident when the surface is pre-covered, resulting in a substantial 70 % reduction in OP adsorption compared to bare goethite. The sequence of goethite binding affinity to P and OM underscores a higher affinity of CIT and HIS compared to OP and GP, suggesting that OM can effectively compete with both OP and GP and replace them at the surface. In contrast, the impact of OM on IHP adsorption appears insignificant, as IHP exhibits a higher affinity than both CIT and HIS towards the goethite surface. The coverage of goethite surfaces with OM results in the blocking of active sites and the generation of an unfavorable electric potential and field, inhibiting anion adsorption and consequently reducing P binding. It is noteworthy that electrostatic interactions predominantly contribute more to the binding of P and OM to the surface compared to dispersion interactions.

15.
Curr Issues Mol Biol ; 46(5): 4119-4132, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38785521

RESUMO

8-oxoguanine (oxoG) is formed in DNA by the action of reactive oxygen species. As a highly mutagenic and the most common oxidative DNA lesion, it is an important marker of oxidative stress. Human 8-oxoguanine-DNA glycosylase (OGG1) is responsible for its prompt removal in human cells. OGG1 is a bifunctional DNA glycosylase with N-glycosylase and AP lyase activities. Aspects of the detailed mechanism underlying the recognition of 8-oxoguanine among numerous intact bases and its subsequent interaction with the enzyme's active site amino acid residues are still debated. The main objective of our work was to determine the effect (structural and thermodynamic) of introducing an oxoG-clamp in model DNA substrates on the process of 8-oxoG excision by OGG1. Towards that end, we used DNA duplexes modeling OGG1-specific lesions: 8-oxoguanine or an apurinic/apyrimidinic site with either cytidine or the oxoG-clamp in the complementary strand opposite to the lesion. It was revealed that there was neither hydrolysis of the N-glycosidic bond at oxoG nor cleavage of the sugar-phosphate backbone during the reaction between OGG1 and oxoG-clamp-containing duplexes. Possible structural reasons for the absence of OGG1 enzymatic activity were studied via the stopped-flow kinetic approach and molecular dynamics simulations. The base opposite the damage was found to have a critical effect on the formation of the enzyme-substrate complex and the initiation of DNA cleavage. The oxoG-clamp residue prevented the eversion of the oxoG base into the OGG1 active site pocket and impeded the correct convergence of the apurinic/apyrimidinic site of DNA and the attacking nucleophilic group of the enzyme. An obtained three-dimensional model of the OGG1 complex with DNA containing the oxoG-clamp, together with kinetic data, allowed us to clarify the role of the contact of amino acid residues with DNA in the formation of (and rearrangements in) the enzyme-substrate complex.

16.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731888

RESUMO

The interaction of heparin with antithrombin (AT) involves a specific sequence corresponding to the pentasaccharide GlcNAc/NS6S-GlcA-GlcNS3S6S-IdoA2S-GlcNS6S (AGA*IA). Recent studies have revealed that two AGA*IA-containing hexasaccharides, which differ in the sulfation degree of the iduronic acid unit, exhibit similar binding to AT, albeit with different affinities. However, the lack of experimental data concerning the molecular contacts between these ligands and the amino acids within the protein-binding site prevents a detailed description of the complexes. Differential epitope mapping (DEEP)-STD NMR, in combination with MD simulations, enables the experimental observation and comparison of two heparin pentasaccharides interacting with AT, revealing slightly different bound orientations and distinct affinities of both glycans for AT. We demonstrate the effectiveness of the differential solvent DEEP-STD NMR approach in determining the presence of polar residues in the recognition sites of glycosaminoglycan-binding proteins.


Assuntos
Antitrombinas , Heparina , Oligossacarídeos , Humanos , Antitrombinas/química , Antitrombinas/metabolismo , Sítios de Ligação , Mapeamento de Epitopos/métodos , Heparina/química , Heparina/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Ligação Proteica , Solventes/química
17.
Biologicals ; 86: 101770, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38749079

RESUMO

Monkeypox is a type of DNA-enveloped virus that belongs to the orthopoxvirus family, closely related to the smallpox virus. It can cause an infectious disease in humans known as monkeypox disease. Although there are multiple drugs and vaccines designed to combat orthopoxvirus infections, with a primary focus on smallpox, the recent spread of the monkeypox virus to over 50 countries have ignited a mounting global concern. This unchecked viral proliferation has raised apprehensions about the potential for a pandemic corresponding to the catastrophic impact of COVID-19. This investigation explored the structural proteins of monkeypox virus as potential candidates for designing a novel hybrid multi-epitope vaccine. The epitopes obtained from the selected proteins were screened to ensure their non-allergenicity, non-toxicity, and antigenicity to trigger T and B-cell responses. The interaction of the vaccine with toll-like receptor-3 (TLR-3) and major histocompatibility complexes (MHCs) was assessed using Cluspro 2.0. To establish the reliability of the docked complexes, a comprehensive evaluation was conducted using Immune and MD Simulations and Normal Mode Analysis. However, to validate the computational results of this study, additional in-vitro and in-vivo research is essential.


Assuntos
Monkeypox virus , Humanos , Monkeypox virus/imunologia , Simulação de Acoplamento Molecular , Pandemias/prevenção & controle , Imunogenicidade da Vacina , COVID-19/prevenção & controle , COVID-19/imunologia , Mpox/prevenção & controle , Mpox/imunologia , Epitopos/imunologia , Preparação para Pandemia
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124466, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38761474

RESUMO

The interaction of biomacromolecules with each other or with the ligands is essential for biological activity. In this context, the molecular recognition of bovine serum albumin (BSA) with 4-(Benzo[1,3]dioxol-5-yloxymethyl)-7-hydroxy-chromen-2-one (4BHC) is explored using multispectroscopic and computational techniques. UV-Vis spectroscopy helped in predicting the conformational variations in BSA. Using fluorescence spectroscopy, the quenching behaviour of the fluorophore upon interaction with the ligand is examined, which is found to be a static type of quenching; fluorescence lifetime studies further verify this. The binding constant is discovered to be in the range of 104 M-1, which indicates the moderate type of association that results in reversible binding, where the transport and release of ligands in the target tissue takes place. Fourier-transform infrared spectroscopy (FT-IR) measurements validate the secondary structure conformational changes of BSA after complexing with 4BHC. The thermodynamic factors obtained through temperature-dependent fluorescence studies suggest that the dominant kind of interaction force is hydrophobic in nature, and the interaction process is spontaneous. The alterations in the surrounding microenvironment of the binding site and conformational shifts in the structure of the protein are studied through 3D fluorescence and synchronous fluorescence studies. Molecular docking and molecular dynamics (MD) simulations agree with experimental results and explain the structural stability throughout the discussion. The outcomes might have possible applications in the field of pharmacodynamics and pharmacokinetics.


Assuntos
Cumarínicos , Simulação de Acoplamento Molecular , Soroalbumina Bovina , Espectrometria de Fluorescência , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Animais , Bovinos , Cumarínicos/química , Cumarínicos/metabolismo , Termodinâmica , Ligação Proteica , Corantes Fluorescentes/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Sítios de Ligação , Simulação por Computador
19.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38794122

RESUMO

Single-point mutations in the Kirsten rat sarcoma (KRAS) viral proto-oncogene are the most common cause of human cancer. In humans, oncogenic KRAS mutations are responsible for about 30% of lung, pancreatic, and colon cancers. One of the predominant mutant KRAS G12D variants is responsible for pancreatic cancer and is an attractive drug target. At the time of writing, no Food and Drug Administration (FDA) approved drugs are available for the KRAS G12D mutant. So, there is a need to develop an effective drug for KRAS G12D. The process of finding new drugs is expensive and time-consuming. On the other hand, in silico drug designing methodologies are cost-effective and less time-consuming. Herein, we employed machine learning algorithms such as K-nearest neighbor (KNN), support vector machine (SVM), and random forest (RF) for the identification of new inhibitors against the KRAS G12D mutant. A total of 82 hits were predicted as active against the KRAS G12D mutant. The active hits were docked into the active site of the KRAS G12D mutant. Furthermore, to evaluate the stability of the compounds with a good docking score, the top two complexes and the standard complex (MRTX-1133) were subjected to 200 ns MD simulation. The top two hits revealed high stability as compared to the standard compound. The binding energy of the top two hits was good as compared to the standard compound. Our identified hits have the potential to inhibit the KRAS G12D mutation and can help combat cancer. To the best of our knowledge, this is the first study in which machine-learning-based virtual screening, molecular docking, and molecular dynamics simulation were carried out for the identification of new promising inhibitors for the KRAS G12D mutant.

20.
Chem Biodivers ; : e202400920, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818615

RESUMO

Parkinson's disease (PD) is a neurodegenerative condition characterized by both motor and non-motor symptoms. Although PD is commonly associated with a decline of dopaminergic neurons in the substantia nigra, other diagnostic criteria and biomarkers also exist. In the search for novel therapeutic agents, chromene and pyran derivatives have shown potential due to their diverse pharmacological activities. This study utilizes a comprehensive computational approach to investigate the viability of chromene/pyran compounds as potential treatments for PD. The drug-likeness characteristics of these molecules were analyzed using ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) studies. Molecular docking was performed against PDB ID: 2V5Z. The best three molecules chosen were compound 7, compound 24, and compound 67 have a binding energy of -6.7, -8.6, and -10.9 kcal/mol. Molecules demonstrating positive blood-brain barrier permeability, good solubility, and favorable binding affinity were further evaluated using Density Functional Theory (DFT) calculations and Molecular Dynamics (MD) simulations to assess their electronic structure and stability. DFT calculations indicated that molecule 82 has a dipole moment of 15.70 D. RMSD and RMSF results confirmed the stability of the complexes over a 100 ns simulation, with a maximum of 3 hydrogen bonds formed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA