Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Brain Res Bull ; : 111025, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964663

RESUMO

OBJECTIVE: Research has shown that cerebral ischemia-reperfusion injury (CIRI) involves a series of physiological and pathological mechanisms, including inflammation, oxidative stress, and cell apoptosis. The cannabinoid receptor 2 agonist AM1241 has been found to have anti-inflammatory and anti-oxidative stress effects. However, it is unclear whether AM1241 has a protective effect against brain ischemia-reperfusion injury, and its underlying mechanisms are not yet known. METHODS: In this study, we investigated the anti-inflammatory, anti-oxidative stress, and anti-apoptotic effects of AM1241 and its mechanisms in BV2 cells stimulated with H2O2 and in a C57BL/6 mouse model of CIRI in vitro and in vivo, respectively. RESULTS: In vitro, AM1241 significantly inhibited the release of pro-inflammatory cytokines TNF-α and IL-6, reactive oxygen species (ROS), and the increase in Toll-like receptor 4/myeloid differentiation protein 2 (MD2/TLR4) complex induced by H2O2. Under H2O2 stimulation, MD2 overexpression resulted in increased levels of MD2/TLR4 complex, TNF-α, IL-6, NOX2, BAX, and Cleaved-Caspase3 (C-Caspase3), as well as the activation of the MAPK pathway and NF-κB, which were reversed by AM1241. In addition, molecular docking experiments showed that AM1241 directly interacted with MD2. Surface Plasmon Resonance (SPR) experiments further confirmed the binding of AM1241 to MD2. In vivo, AM1241 significantly attenuated neurofunctional impairment, brain edema, increased infarct volume, oxidative stress levels, and neuronal apoptosis in CIRI mice overexpressing MD2. CONCLUSION: Our study demonstrates for the first time that AM1241 alleviates mouse CIRI by inhibiting the MD2/TLR4 complex, exerting anti-inflammatory, anti-oxidative stress and anti-apoptotic effects.

2.
Curr Issues Mol Biol ; 46(6): 6237-6247, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38921043

RESUMO

Serine/arginine-rich splicing factor 3 (SRSF3), the smallest member of the SR protein family, serves multiple roles in RNA processing, including splicing, translation, and stability. Recent studies have shown that SRSF3 is implicated in several inflammatory diseases. However, its impact on macrophage inflammation remains unclear. Herein, we determined the expression of SRSF3 in inflammatory macrophages and found that the level of SRSF3 was increased in macrophages within atherosclerotic plaques, as well as in RAW-264.7 macrophages stimulated by lipopolysaccharides. Moreover, the downregulation of SRSF3 suppressed the levels of inflammatory cytokines by deactivating the nuclear factor κB (NFκB) pathway. Furthermore, the alternative splicing of myeloid differentiation protein 2 (MD2), a co-receptor of toll-like receptor 4 (TLR4), is regulated by SRSF3. The depletion of SRSF3 increased the level of the shorter MD2B splicing variants, which contributed to inflammatory inhibition in macrophages. In conclusion, our findings imply that SRSF3 regulates lipopolysaccharide-stimulated inflammation, in part by controlling the alternative splicing of MD2 mRNA in macrophages.

3.
Int J Biol Macromol ; 274(Pt 2): 133500, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944071

RESUMO

In traditional Chinese medicine, Lycium barbarum is of rich medicinal value, and its polysaccharides are particularly interesting due to their significant pharmacological effects and potential health benefits. This study investigated the immunomodulatory effects of Lycium barbarum polysaccharides (LBPs) by examining their interaction with the TLR4/MD-2 complex and the impacts of gastrointestinal digestion on these interactions. We discovered that the affinity binding of LBPs for TLR4/MD-2 and their cytokine induction capability are influenced by molecular weight, with medium-sized LBPs (100-300 kDa) exhibiting stronger binding affinity and induction capability. Conversely, LBPs smaller than 10 kDa showed reduced activity. Additionally, the content of arabinose and galactose within the LBPs fractions was found to correlate positively with both receptor affinity and cytokine secretion. Simulated gastrointestinal digestion resulted in the degradation of LBPs into smaller fragments that are rich in glucose. Although these fragments exhibited decreased binding affinity to the TLR4/MD-2 complex, they maintained their activity to promote cytokine production. Our findings highlight the significance of molecular weight and specific monosaccharide composition in the immunomodulatory function of LBPs and emphasize the influence of gastrointestinal digestion on the effects of LBPs. This research contributes to a better understanding of the mechanisms underlying the immunomodulatory effects of traditional Chinese medicine polysaccharides and their practical application.

4.
Foods ; 13(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38731727

RESUMO

Dendrobium nobile Lindl. polysaccharide (DNP1) showed good anti-inflammatory activity in our previous study. In this study, the structural characterization of DNP1 and its mode of action on TLR4 were investigated. Structural characterization suggested that DNP1 was a linear glucomannan composed of (1 → 4)-ß-Manp and (1 → 4)-ß-Glcp residues, and the acetyl group was linked to the C-2 of Manp. The possible repeating structural units of DNP1 were [→4)-2-OAc-ß-Manp-(1→]3 →4)-ß-Glcp-(1→. Surface plasmon resonance (SPR) binding test results showed that DNP1 did not bind directly to TLR4. The TLR4 and MD2 receptor blocking tests confirmed that DNP1 needs MD2 and TLR4 to participate in its anti-inflammatory effect. The binding energy of DNP1 to TLR4-MD2 was -7.9 kcal/mol, indicating that DNP1 could bind to the TLR4-MD2 complex stably. Therefore, it is concluded that DNP1 may play an immunomodulatory role by binding to the TLR4-MD2 complex and inhibiting the TLR4-MD2-mediated signaling pathway.

5.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791489

RESUMO

The SARS-CoV-2 Omicron variants have replaced all earlier variants, due to increased infectivity and effective evasion from infection- and vaccination-induced neutralizing antibodies. Compared to earlier variants of concern (VoCs), the Omicron variants show high TMPRSS2-independent replication in the upper airway organs, but lower replication in the lungs and lower mortality rates. The shift in cellular tropism and towards lower pathogenicity of Omicron was hypothesized to correlate with a lower toll-like receptor (TLR) activation, although the underlying molecular mechanisms remained undefined. In silico analyses presented here indicate that the Omicron spike protein has a lower potency to induce dimerization of TLR4/MD-2 compared to wild type virus despite a comparable binding activity to TLR4. A model illustrating the molecular consequences of the different potencies of the Omicron spike protein vs. wild-type spike protein for TLR4 activation is presented. Further analyses indicate a clear tendency for decreasing TLR4 dimerization potential during SARS-CoV-2 evolution via Alpha to Gamma to Delta to Omicron variants.


Assuntos
COVID-19 , Antígeno 96 de Linfócito , Multimerização Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Receptor 4 Toll-Like , Receptor 4 Toll-Like/metabolismo , SARS-CoV-2/patogenicidade , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/virologia , Antígeno 96 de Linfócito/metabolismo , Antígeno 96 de Linfócito/genética , Antígeno 96 de Linfócito/química , Simulação por Computador , Ligação Proteica
6.
Biology (Basel) ; 13(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38785798

RESUMO

Escherichia coli (E. coli) is a frequent gram-negative bacterium that causes nosocomial infections, affecting more than 100 million patients annually worldwide. Bacterial lipopolysaccharide (LPS) from E. coli binds to toll-like receptor 4 (TLR4) and its co-receptor's cluster of differentiation protein 14 (CD14) and myeloid differentiation factor 2 (MD2), collectively known as the LPS receptor complex. LPCAT2 participates in lipid-raft assembly by phospholipid remodelling. Previous research has proven that LPCAT2 co-localises in lipid rafts with TLR4 and regulates macrophage inflammatory response. However, no published evidence exists of the influence of LPCAT2 on the gene expression of the LPS receptor complex induced by smooth or rough bacterial serotypes. We used RAW264.7-a commonly used experimental murine macrophage model-to study the effects of LPCAT2 on the LPS receptor complex by transiently silencing the LPCAT2 gene, infecting the macrophages with either smooth or rough LPS, and quantifying gene expression. LPCAT2 only significantly affected the gene expression of the LPS receptor complex in macrophages infected with smooth LPS. This study provides novel evidence that the influence of LPCAT2 on macrophage inflammatory response to bacterial infection depends on the LPS serotype, and it supports previous evidence that LPCAT2 regulates inflammatory response by modulating protein translocation to lipid rafts.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38734936

RESUMO

Rheumatoid arthritis (RA) is an idiopathic and chronic autoimmune disease for which there are currently no effective treatments. Oxypeucedanin hydrate (OXH) is a natural coumarin known for its potent anti-inflammatory properties. However, further investigations are needed to determine its therapeutic efficacy in treating RA. In this study, we evaluate the anti-inflammatory activity of OXH by treating LPS-induced RAW264.7 macrophages. Our results show that OXH treatment reverses the changes in iNOS, COX-2, IL-1ß, IL-6, and TNF-α levels. Additionally, OXH reduces ROS production. Further analysis reveals that OXH suppresses the activation of the NF-κB/MAPK pathway. CETSA results show that OXH competes with LPS for binding to the TLR4/MD2 complex. MST experiments demonstrate the specific affinity of OXH for the TLR4/MD2 complex, with a Kd value of 33.7 µM. Molecular docking analysis suggests that OXH binds to the pocket of the TLR4/MD2 complex and interacts with specific amino acids, such as GLY-343, LYS-388, and PHE-345. Molecular dynamics simulations further confirm this conclusion. Finally, we investigate the potential of OXH in treating RA using a collagen-induced arthritis (CIA) model in rats. OXH effectively ameliorates the symptoms of CIA, including improving body weight, reducing swelling and redness, increasing talus volume, and decreasing bone erosion. OXH also decreases the mRNA levels of pro-inflammatory factors in synovial tissue. Transcriptome enrichment analysis and western blot analysis confirm that OXH suppresses the NF-κB/MAPK pathway, which is consistent with our in vitro findings.

8.
3 Biotech ; 14(5): 144, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38706927

RESUMO

Sustained inflammatory responses can badly affect several vital organs and lead to chronic inflammation-related disorders, such as atherosclerosis, pneumonia, rheumatoid arthritis, obesity, diabetes, Alzheimer's disease, and cancers. Salvia multicaulis is one of the widely distributed plants that contains several biologically active phytochemicals and diterpenoids with anti-inflammatory effects. Therefore, finding alternative and safer natural plant-extracted compounds with good curative anti-inflammatory efficiencies is an urgent need for the clinical treatment of inflammation-related diseases. In the current study, S. multicaulis Vahl was used to extract and isolate two compounds identified as salvimulticanol and candesalvone B methyl ester to examine their effects against inflammation in murine macrophage RAW264.7 cells that were induced by lipopolysaccharide (LPS). Accordingly, after culturing RAW264.7 cells and induction of inflammation by LPS (100 ng/ml), cells were exposed to different concentrations (9, 18, 37.5, 75, and 150 µM) of each compound. Then, Griess assay for detection of nitric oxide (NO) levels and western blotting for the determination of inducible nitric oxide synthase (iNOS) expression were performed. Molecular docking and molecular dynamics (MD) simulation studies were employed to investigate the anti-inflammatory mechanism. Our obtained results validated that the level of NO was significantly decreased in the macrophage cell suspensions as a response to salvimulticanol treatment in a dose-dependent manner (IC50: 25.1 ± 1.2 µM) as compared to the methyl ester of candesalvone B which exerted a weaker inhibition (IC50: 69.2 ± 3.0 µM). This decline in NO percentage was comparable with a down-regulation of iNOS expression by western blotting. Salvimulticanol strongly interacted with both the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD-2) complex and the inhibitor of nuclear factor kappa-B (NF-κB) kinase subunit beta (IKKß) to disrupt their inflammatory activation due to the significant hydrogen bonds and effective interactions with amino acid residues present in the target proteins' active sites. S.multicaulis is a rich natural source of the aromatic abietane diterpenoid, salvimulticanol, which exerted a strong anti-inflammatory effect through targeting iNOS and diminishing NO production in LPS-induced RAW264.7 cells in a mechanism that is dependent on the inhibition of TLR4-MD-2 and IKKß as activators of the classical NF-κB-mediated inflammatory pathway.

9.
Phytomedicine ; 128: 155371, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518649

RESUMO

BACKGROUND: Irinotecan (CPT-11) is used as chemotherapeutic drug for treatment of colorectal cancer. However, without satisfactory treatments, its gastrointestinal toxicities such as diarrhea and intestinal inflammation severely restrained its clinical application. Roots of Aucklandia lappa Decne. are used as traditional Chinese medicine to relieve gastrointestinal dysfunction and dehydrocostus lactone (DHL) is one of its main active components. Nevertheless, the efficacy and mechanism of DHL against intestinal mucositis remains unclear. PURPOSE: The present study aimed to investigate the protective effects of DHL on CPT-11-induced intestinal mucositis and its underlying mechanisms. METHODS: The protective effect of DHL was investigated in CPT-11-induced mice and lipopolysaccharide (LPS)+CPT-11 induced THP-1 macrophages. Body weight, diarrhea score, survival rate, colon length, and histopathological changes in mice colon and jejunum were analyzed to evaluate the protective effect of DHL in vivo. And DHL on reducing inflammatory response and regulating TLR4/NF-κB/NLRP3 pathway in vivo and in vitro were explored. Moreover, DHL on the interaction between TLR4 and MD2 was investigated. And silencing TLR4 targeted by siRNA was performed to validate the mechanisms of DHL on regulating the inflammation. RESULTS: DHL prevented CPT-11-induced intestinal damage, represented by reducing weight loss, diarrhea score, mortality rate and the shortening of the colon. Histological analysis confirmed that DHL prevented intestinal epithelial injury and improved the intestinal barrier function in CPT-11 induced mice. Besides, DHL significantly downregulated the level of inflammatory cytokines by inhibiting TLR4/NF-κB/NLRP3 signaling pathway in CPT-11-induced mice and LPS+CPT-11-induced THP-1 macrophages. In addition, DHL blocked TLR4/MD2 complex formation. Molecular docking combined with SIP and DARTS assay showed that DHL could bind to TLR4/MD2 and occludes the hydrophobic pocket of MD2. Furthermore, Silencing TLR4 abrogated the effect of DHL on LPS+CPT-11 induced inflammatory response in THP-1 macrophages. Additionally, DHL ameliorate the CPT-11-induced intestinal mucositis without affecting the anti-tumor efficacy of CPT-11 in the tumor xenograft mice. CONCLUSION: This study found that DHL exhibited the anti-inflammatory effects in CPT-11-induced intestinal mucositis by inhibiting the formation of TLR4/MD2 complex and then regulation of NF-κB/NLRP3 signaling pathway. DHL is potentially served as a novel strategy of combined medication with CPT-11.


Assuntos
Irinotecano , Lactonas , Antígeno 96 de Linfócito , Mucosite , Sesquiterpenos , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Camundongos , Lactonas/farmacologia , Humanos , Antígeno 96 de Linfócito/metabolismo , Masculino , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Lipopolissacarídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células THP-1 , Antineoplásicos Fitogênicos/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos BALB C , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo
10.
ACS Infect Dis ; 10(3): 845-857, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38363869

RESUMO

Myeloid differentiation factor 2 (MD2), the TLR4 coreceptor, has been shown to possess opsonic activity and has been implicated in phagocytosis and intracellular killing of Gram-negative bacteria. However, any MD2 protein segment involved in phagocytosis of Gram-negative bacteria is not yet known. A short synthetic MD2 segment, MD54 (amino acid regions 54 to 69), was shown to interact with a Gram-negative bacterial outer membrane component, LPS, earlier. Furthermore, the MD54 peptide induced aggregation of LPS and facilitated its internalization in THP-1 cells. Currently, it has been investigated if MD2-derived MD54 possesses any opsonic property and role in phagocytosis of Gram-negative bacteria. Remarkably, we observed that MD54 facilitated agglutination of Gram-negative bacteria, Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC BAA-427), but not of Gram-positive bacteria, Bacillus subtilis (ATCC 6633) and Staphylococcus aureus (ATCC 25923). The MD54-opsonized Gram-negative bacteria internalized within PMA-treated THP-1 cells and were killed over a longer incubation period. However, both internalization and intracellular killing of the MD54-opsonized Gram-negative bacteria within THP-1 phagocytes were appreciably inhibited in the presence of a phagocytosis inhibitor, cytochalasin D. Furthermore, MD54 facilitated the clearance of Gram-negative bacteria E. coli (ATCC 25922) and P. aeruginosa (ATCC BAA-427) from the infected BALB/c mice whereas an MD54 analog, MMD54, was inactive. Overall, for the first time, the results revealed that a short MD2-derived peptide can specifically agglutinate Gram-negative bacteria, act as an opsonin for these bacteria, and facilitate their phagocytosis by THP-1 phagocytes. The results suggest that the MD54 segment could have a crucial role in MD2-mediated host-pathogen interaction involving the Gram-negative bacteria.


Assuntos
Escherichia coli , Lipopolissacarídeos , Animais , Camundongos , Lipopolissacarídeos/metabolismo , Escherichia coli/metabolismo , Fagocitose , Macrófagos/metabolismo , Bactérias Gram-Negativas/metabolismo
11.
Antioxidants (Basel) ; 13(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38397802

RESUMO

Studies in the field have actively pursued the incorporation of diverse biological functionalities into gadolinium-based contrast agents, aiming at the amalgamation of MRI imaging and therapeutic capabilities. In this research, we present the development of Gd-Ga, an anti-neuroinflammatory MR contrast agent strategically designed to target inflammatory mediators for comprehensive imaging diagnosis and targeted lesion treatment. Gd-Ga is a gadolinium complex composed of 1,4,7-tris(carboxymethylaza)cyclododecane-10-azaacetylamide (DO3A) conjugated with gallic acid (3,4,5-trihydroxybenzoic acid). Upon intravenous administration in LPS-induced mouse models, Gd-Ga demonstrated a remarkable three-fold increase in signal-to-noise (SNR) variation compared to Gd-DOTA, particularly evident in both the cortex and hippocampus 30 min post-MR monitoring. In-depth investigations, both in vitro and in vivo, into the anti-neuroinflammatory properties of Gd-Ga revealed significantly reduced protein expression levels of pro-inflammatory mediators compared to the LPS group. The alignment between in silico predictions and phantom studies indicates that Gd-Ga acts as an anti-neuroinflammatory agent by directly binding to MD2. Additionally, the robust antioxidant activity of Gd-Ga was confirmed by its effective scavenging of NO and ROS. Our collective findings emphasize the immense potential of this theranostic complex, where a polyphenol serves as an anti-inflammatory drug, presenting an exceptionally efficient platform for the diagnosis and treatment of neuroinflammation.

12.
Eur J Med Res ; 29(1): 65, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245791

RESUMO

Asthma represents a significant global challenge that affects individuals across all age groups and imposes substantial social and economic burden. Due to heterogeneity of the disease, not all patients obtain benefit with current treatments. The objective of this study was to explore the impact of MD2 on the progression of asthma using L6H21, a novel MD2 inhibitor, to identify potential targets and drug candidates for asthma treatment. To establish an asthma-related murine model and evaluate the effects of L6H21, ovalbumin (OVA) was used to sensitize and challenge mice. Pathological changes were examined with various staining techniques, such as H&E staining, glycogen staining, and Masson staining. Inflammatory cell infiltration and excessive cytokine secretion were evaluated by analyzing BALF cell count, RT-PCR, and ELISA. The TLR4/MD2 complex formation, as well as the activation of the MAPK and NF-кB pathways, was examined using western blot and co-IP. Treatment with L6H21 demonstrated alleviation of increased airway resistance, lung tissue injury, inflammatory cell infiltration and excessive cytokine secretion triggered by OVA. In addition, it also ameliorated mucus production and collagen deposition. In the L6H21 treatment group, inhibition of MAPK and NF-кB activation was observed, along with the disruption of TLR4/MD2 complex formation, in contrast to the model group. Thus, L6H21 effectively reduced the formation of the MD2 and TLR4 complex induced by OVA in a dose-dependent manner. This reduction resulted in the attenuation of MAPKs/NF-κB activation, enhanced suppression of inflammatory factor secretion, reduced excessive recruitment of inflammatory cells, and ultimately mitigated airway damage. MD2 emerges as a crucial target for asthma treatment, and L6H21, as an MD2 inhibitor, shows promise as a potential drug candidate for the treatment of asthma.


Assuntos
Asma , Chalcona , Chalconas , Humanos , Camundongos , Animais , Chalcona/uso terapêutico , Ovalbumina/uso terapêutico , NF-kappa B/genética , NF-kappa B/metabolismo , Chalconas/farmacologia , Chalconas/uso terapêutico , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/uso terapêutico , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/patologia , Pulmão/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
13.
Immunology ; 171(2): 181-197, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37885279

RESUMO

Haemolytic disorders, such as sickle cell disease, are accompanied by the release of high amounts of labile heme into the intravascular compartment resulting in the induction of proinflammatory and prothrombotic complications in affected patients. In addition to the relevance of heme-regulated proteins from the complement and blood coagulation systems, activation of the TLR4 signalling pathway by heme was ascribed a crucial role in the progression of these pathological processes. Heme binding to the TLR4-MD2 complex has been proposed recently, however, essential mechanistic information of the processes at the molecular level, such as heme-binding kinetics, the heme-binding capacity and the respective heme-binding sites (HBMs) is still missing. We report the interaction of TLR4, MD2 and the TLR4-MD2 complex with heme and the consequences thereof by employing biochemical, spectroscopic, bioinformatic and physiologically relevant approaches. Heme binding occurs transiently through interaction with up to four HBMs in TLR4, two HBMs in MD2 and at least four HBMs in their complex. Functional studies highlight that mutations of individual HBMs in TLR4 preserve full receptor activation by heme, suggesting that heme interacts with TLR4 through different binding sites independently of MD2. Furthermore, we confirm and extend the major role of TLR4 for heme-mediated cytokine responses in human immune cells.


Assuntos
Transdução de Sinais , Receptor 4 Toll-Like , Humanos , Receptor 4 Toll-Like/metabolismo , Sítios de Ligação , Citocinas/metabolismo , Antígeno 96 de Linfócito/metabolismo , Lipopolissacarídeos
14.
Acta Pharmacol Sin ; 45(3): 531-544, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37919475

RESUMO

Cardiac inflammation contributes to heart failure (HF) induced by isoproterenol (ISO) through activating ß-adrenergic receptors (ß-AR). Recent evidence shows that myeloid differentiation factor 2 (MD2), a key protein in endotoxin-induced inflammation, mediates inflammatory heart diseases. In this study, we investigated the role of MD2 in ISO-ß-AR-induced heart injuries and HF. Mice were infused with ISO (30 mg·kg-1·d-1) via osmotic mini-pumps for 2 weeks. We showed that MD2 in cardiomyocytes and cardiac macrophages was significantly increased and activated in the heart tissues of ISO-challenged mice. Either MD2 knockout or administration of MD2 inhibitor L6H21 (10 mg/kg every 2 days, i.g.) could prevent mouse hearts from ISO-induced inflammation, remodelling and dysfunction. Bone marrow transplantation study revealed that both cardiomyocyte MD2 and bone marrow-derived macrophage MD2 contributed to ISO-induced cardiac inflammation and injuries. In ISO-treated H9c2 cardiomyocyte-like cells, neonatal rat primary cardiomyocytes and primary mouse peritoneal macrophages, MD2 knockout or pre-treatment with L6H21 (10 µM) alleviated ISO-induced inflammatory responses, and the conditioned medium from ISO-challenged macrophages promoted the hypertrophy and fibrosis in cardiomyocytes and fibroblasts. We demonstrated that ISO induced MD2 activation in cardiomyocytes via ß1-AR-cAMP-PKA-ROS signalling axis, and induced inflammatory responses in macrophages via ß2-AR-cAMP-PKA-ROS axis. This study identifies MD2 as a key inflammatory mediator and a promising therapeutic target for ISO-induced heart failure.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Ratos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Isoproterenol/toxicidade , Receptores Adrenérgicos beta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Macrófagos/metabolismo
15.
Life Sci ; 335: 122242, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37952834

RESUMO

AIM: 2-Pentadecyl-2-oxazoline (PEA-OXA), the oxazoline derivative of N-palmitoylethanolamine, exerts anti-inflammatory activity; however, very little is known about the molecular mechanisms underlying this effect. Here, we tested the anti-neuroinflammatory effect of PEA-OXA in primary microglia and we also investigated the possible interaction of the molecule with the Toll-like receptor 4 (TLR4)-myeloid differentiation protein-2 (MD-2) complex. MAIN METHODS: The anti-inflammatory effect of PEA-OXA was analyzed by measuring the expression and release of pro-inflammatory mediators in primary microglia by real-time PCR and ELISA, respectively. The effect of PEA-OXA on the activation of TLR4 signaling was assessed using two stably TLR4-transfected cell lines (i.e., HEK-293 and Ba/F3 cells). Finally, the putative binding mode of PEA-OXA to TLR4-MD-2 was investigated by molecular docking simulations. KEY FINDINGS: Treatment with PEA-OXA resulted in the following effects: (i) it down-regulated gene expression of several pro-inflammatory molecules and the secretion of pro-inflammatory cytokines in LPS stimulated microglia cells; (ii) it did not prevent microglia activation after stimulation with TLR2 ligands; (iii) it prevented TLR4/NF-κB activation triggered by LPS in HEK-Blue™ hTLR4 cells; and (iv) it interfered with the binding of LPS to TLR4-MD-2 complex. Furthermore, molecular docking studies suggested that PEA-OXA could bind MD-2 with a 1:3 (MD-2/PEA-OXA) stoichiometry. CONCLUSION: We show for the first time that the anti-neuroinflammatory effect of PEA-OXA involves its activity against TLR4 signaling, making this molecule a valuable tool for the development of new compounds directed to control neuroinflammation via inhibiting TLR4 signaling.


Assuntos
Inflamação , Lipopolissacarídeos , Humanos , Lipopolissacarídeos/efeitos adversos , Inflamação/metabolismo , Receptor 4 Toll-Like/metabolismo , Simulação de Acoplamento Molecular , Microglia/metabolismo , Células HEK293 , Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo
16.
J Agric Food Chem ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37921432

RESUMO

This study aimed to effectively identify anti-inflammatory peptides in Jinhua ham, a dry-cured meat product made from the hind legs of pigs by curing and fermenting processes, and elucidate their anti-inflammatory mechanism. The investigation involved a combination of chromatographic purification, in silico screening, and in vitro validation. The first peak of JHP (JHP-P1) was purified using two-part exchange chromatography, in which 3350 peptides were identified by nano-HPLC-MS/MS, among which QLEELKR and EAEERADIAESQVNKLR showed significant anti-inflammatory potential (prediction scores: 0.759 and 0.841). In molecular docking and in vitro RAW264.7 cell experiments, these peptides displayed a strong affinity for Toll-like receptor 4-myeloid differentiation-2 (TLR4-MD-2), specifically binding around Arg 380, Lys 475, His 401, Gln 423, Asp 426, etc. This binding inhibited TLR4 expression and prevented trimer formation about TLR4-MD-2 and lipopolysaccharide (LPS), strongly inhibiting the inflammatory cascade. JHP suppressed LPS-induced cytokine overproduction and partially inhibited the phosphorylation of proteins in the MAPK/NF-κB pathway. These results demonstrated that combining in silico methods (activity prediction and molecular docking) is an effective strategy for screening anti-inflammatory peptides. This study provided a theoretical basis for identifying more anti-inflammatory peptides and applying them in functional foods.

17.
Front Neurol ; 14: 1258342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954643

RESUMO

Introduction: Myotonic dystrophy type 2 (MD2) presents with a varied manifestation. Even though the myopathy in these patients is more widespread, axial musculature involvement is one of the most prominent conditions. MD2 patients also often report chronic low back pain (CLBP). The purpose of this study was to evaluate trunk muscle function, including respiratory muscles, in patients with MD2 and to compare it with healthy controls, to determine the occurrence of CLBP in patients with MD2, and to assess whether trunk muscle dysfunction increases the risk of CLBP in these patients. Methods: We enrolled 40 MD2 patients (age range 23 to 76 years, 26 women). A comprehensive battery of tests was used to evaluate trunk muscle function. The tests consisted of quantitative muscle strength testing of low back extensor muscles and respiratory muscles and the assessment of trunk muscle endurance. A neurological evaluation contained procedures assessing the distribution of muscle weakness, myotonia, and pain, and used questionnaires focused on these items and on disability, depression, and physical activity. Results: The results of this study suggest that patients with MD2 show significant dysfunction of the trunk muscles, including the respiratory muscles, expressed by decreased muscle strength and endurance. The prevalence of CLBP in patients with MD2 was 52.5%. Based on our analysis, the only independent significant risk factor for CLBP in these patients was maximal isometric lower back extensor strength in a prone position ≤ 15.8 kg (OR = 37.3). Other possible risk factors were severity of myotonia and reduced physical activity. Conclusion: Outcomes of this study highlighted the presence of axial muscle dysfunction, respiratory muscle weakness, and frequent occurrence of CLBP together with its risk factors in patients with MD2. We believe that the findings of this study may help in management and prevention programs for patients with MD2.

18.
J Med Life ; 16(7): 1105-1110, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37900069

RESUMO

Sepsis, a life-threatening condition arising from infection, often results in multi-organ failure, including cardiac dysfunction. This study investigated Xanthohumol, a natural compound, and its potential mechanism of action to enhance heart function following sepsis. A total of twenty-four adult male Swiss albino mice were allocated randomly to one of four equal groups (n=6): sham, CLP, vehicle Xanthohumol the same amount of DMSO injected IP 10 minutes before the CLP, and Xanthohumol group (0.4 mg/kg of Xanthohumol administered IP before the CLP process). Toll-like receptor 4, pro-inflammatory mediators, anti-inflammatory markers, oxidative stress indicators, apoptosis markers, and serum cardiac damage biomarkers were measured in the cardiac tissue using ELISA. Data with normal distribution were analyzed using t-test and ANOVA tests (p<0.05). In comparison to the sham group, the sepsis group had significantly higher levels of TLR-4, IL-6, TNF-α, MIF, F2-isoprostane, caspase-3, cTn-I, and CK-MB, while the pre-treated group with Xanthohumol had significantly lower levels (p<0.05) of these markers than the sepsis group. Bcl-2 showed no significant difference in Xanthohumol pre-treated group relative to the sepsis group, while IL-10 was significantly elevated. Xanthohumol dramatically reduced cardiac tissue injury (p<0.05) relative to the CLP group. By blocking the downstream signal transduction pathways of TLR-4 and NF-kB, Xanthohumol was shown to lessen cardiac damage in male mice during CLP-induced polymicrobial sepsis.


Assuntos
Sepse , Receptor 4 Toll-Like , Camundongos , Masculino , Animais , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , NF-kappa B/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico
19.
J Med Life ; 16(7): 1120-1126, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37900081

RESUMO

As sepsis is associated with a 50% increase in mortality, sepsis-induced cardiomyopathy has become a critical topic. A multidisciplinary approach is required for the diagnosis and treatment of septic cardiomyopathy. This study looked at Sulforaphane, a natural product that aims to evaluate cardiac function after sepsis, and its likely mechanism of action. Twenty-four adult male Swiss albino mice were randomly divided into 4 equal groups (n=6): sham, CLP, vehicle Sulforaphane (the same amount of DMSO injected IP one hour before the CLP), and Sulforaphane group (one hour before the CLP, a 5mg/kg dose of Sulforaphane was injected). Cardiac tissue levels of toll-like receptor 4 (TLR-4), pro-inflammatory mediators, anti-inflammatory markers, oxidative stress markers, apoptosis markers, and serum cardiac damage biomarkers were assessed using ELISA. Statistical analyses, including t-tests and ANOVA tests, were performed with a significance level of 0.05 for normally distributed data. Compared to the sham group, the sepsis group had significantly elevated levels of TLR-4, IL-6, TNF-α, MIF, F2-isoprostane, caspase-3, cTn-I, and CK-MB (p<0.05). In contrast, the Sulforaphane pre-treated group demonstrated significantly lower levels of these markers (p<0.05). Additionally, Bcl-2 levels were significantly reduced (p<0.05) in the Sulforaphane group. Sulforaphane administration also significantly attenuated cardiac tissue injury (p<0.05). The findings suggest that Sulforaphane can decrease heart damage in male mice during CLP-induced polymicrobial sepsis by suppressing TLR-4/NF-kB downstream signal transduction pathways.


Assuntos
Cardiomiopatias , Traumatismos Cardíacos , Sepse , Camundongos , Masculino , Animais , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/uso terapêutico , Cardiomiopatias/etiologia , Cardiomiopatias/complicações , Traumatismos Cardíacos/complicações , Sepse/complicações , Sepse/tratamento farmacológico
20.
Bioorg Chem ; 141: 106880, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37783098

RESUMO

In this study, a receptor structure-based virtual screening strategy was constructed using a computer-aided drug design. First, the compounds were filtered based on the Lipinski pentad and adsorption, distribution, metabolism, excretion, and toxicity profiles. Then, receptor structure-based pharmacophore models were constructed and screened. Finally, the in vitro toxicity and anti-inflammatory activities of hit compounds were initially evaluated to investigate their in vitro anti-inflammatory effects and mechanisms of action. The results revealed that hit 94 had the best anti-inflammatory activity and low toxicity while inhibiting the activation of Toll-like receptor (TLR) 4/myeloid differentiation factor 2 (MD2)-associated signaling pathways of nuclear factor-κB and mitogen-activated protein kinase. In vivo adjuvant arthritis results also revealed that hit 94 ameliorated foot swelling to a greater extent in rats compared with the positive control drug indomethacin. These results suggest that hit 94 can be used as a potential TLR/MD2 inhibitor for inflammatory diseases.


Assuntos
Anti-Inflamatórios , Antígeno 96 de Linfócito , Receptor 4 Toll-Like , Animais , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Lipopolissacarídeos , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/antagonistas & inibidores , Antígeno 96 de Linfócito/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA