Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Colloids Surf B Biointerfaces ; 245: 114318, 2024 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-39418821

RESUMO

Hepatocellular carcinoma (HCC) exhibits an immunosuppressive tumor microenvironment, leading to a low objective response rate when immune checkpoint inhibitors (ICIs) are utilized. The cGAS-STING pathway demonstrates a powerful immune stimulatory effect, nevertheless, activation of this pathway triggers an upregulation of PD-L1, which inhibits the anti-tumor function of immune cells. The present study discovered that knockdown of MEF2D by a siRNA in H22 cells decreases the expression of PD-L1. Subsequently, tLyp-1-modified liposomes were developed for the delivery of SN38 and MEF2D-siRNA. The outcomes indicated that the modification of tLyp-1 could enhance the uptake of liposomes by tumor cells. tLip/siMEF2D/SN38 liposomes can effectively knockdown the expression of MEF2D in HCC cells and reduce the expression of PD-L1 in vitro and in vivo, thereby enhancing proliferation inhibition and apoptosis induction, and effectively suppressing the growth of tumors. SN38 treatment elevated the expression of p-TBK1 and p-IRF3 in tumor tissue, signifying the activation of the cGAS-STING pathway and facilitating the maturation of dendritic cells in vitro and in vivo. At the same time, the co-delivery of MEF2D-siRNA reduced the expression of PD-L1, thereby decreasing the quantity of M2 macrophages and myeloid-derived suppressor cells (MDSCs) in tumors, increasing the number of CD4+ T cells within the tumor, and strengthening the anti-tumor immune efficacy. In conclusion, our results suggest that tLyP-1 modified, SN38- and MEF2D siRNA-loaded liposomes have the potential for the treatment of HCC and optimize the immunotherapy of HCC via STING activation.

2.
Adv Exp Med Biol ; 1459: 379-403, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39017853

RESUMO

Myocyte enhancer factor 2 (MEF2) is a key transcription factor (TF) in skeletal, cardiac, and neural tissue development and includes four isoforms: MEF2A, MEF2B, MEF2C, and MEF2D. These isoforms significantly affect embryonic development, nervous system regulation, muscle cell differentiation, B- and T-cell development, thymocyte selection, and effects on tumorigenesis and leukemia. This chapter describes the multifaceted roles of MEF2 family proteins, covering embryonic development, nervous system regulation, and muscle cell differentiation. It further elucidates the contribution of MEF2 to various blood and immune cell functions. Specifically, in B-cell precursor acute lymphoblastic leukemia (BCP-ALL), MEF2D is aberrantly expressed and forms a fusion protein with BCL9, CSF1R, DAZAP1, HNRNPUL1, and SS18. These fusion proteins are closely related to the pathogenesis of leukemia. In addition, it specifically introduces the regulatory effect of MEF2D fusion protein on the proliferation and growth of B-cell acute lymphoblastic leukemia (B-ALL) cells. Finally, we detail the positive feedback loop between MEF2D and IRF8 that significantly promotes the progression of acute myeloid leukemia (AML) and the importance of the ZMYND8-BRD4 interaction in regulating the IRF8 and MYC transcriptional programs. The MEF2D-CEBPE axis is highlighted as a key transcriptional mechanism controlling the block of leukemic cell self-renewal and differentiation in AML. This chapter starts with the structure and function of MEF2 family proteins, specifically summarizing and analyzing the role of MEF2D in B-ALL and AML, mediating the complex molecular mechanisms of transcriptional regulation and exploring their implications for human health and disease.


Assuntos
Fatores de Transcrição MEF2 , Fatores de Transcrição MEF2/metabolismo , Fatores de Transcrição MEF2/genética , Humanos , Animais , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Diferenciação Celular/genética , Regulação Leucêmica da Expressão Gênica , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proliferação de Células/genética
3.
Ann Hematol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990294

RESUMO

The MEF2D rearrangement is a recurrent chromosomal abnormality detected in approximately 2.4-5.3% of patients with acute B-cell lymphoblastic leukemia (B-ALL). Currently, MEF2D-rearranged B-ALL is not classified as an independent subtype in the WHO classification. Consequently, the clinical significance of MEF2D rearrangement in B-ALL remains largely unexplored. In this study, we retrospectively screened 260 B-ALL patients with RNA sequencing data collected between November 2018 and December 2022. Among these, 10 patients were identified with MEF2D rearrangements (4 with MEF2D::HNRNPUL1, 3 with MEF2D::BCL9, 1 with MEF2D::ARID1B, 1 with MEF2D::DAZAP1 and 1 with MEF2D::HNRNPM). Notably, HNRNPM and ARID1B are reported as MEF2D fusion partners for the first time. The patient with the MEF2D::HNRNPM fusion was resistant to chemotherapy and chimeric antigen receptor T-cell therapy and relapsed early after allogenic stem cell transplantation. The patient with MEF2D::ARID1B experienced early extramedullary relapse after diagnosis. All 10 patients achieved complete remission after induction chemotherapy. However, 9/10 (90%) of whom experienced relapse. Three of the 9 patients relapsed with aberrant expression of myeloid antigens. The median overall survival of these patients was only 11 months. This small cohort showed a high incidence of early relapse and short survival in patients with MEF2D rearrangements.

4.
J Cancer Res Clin Oncol ; 150(6): 314, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907739

RESUMO

PURPOSE: Leukemia-associated fusion genes are closely related to the occurrence, development, diagnosis, and treatment of leukemia. DNA microarrays and second-generation sequencing have discovered multiple B-ALL fusion genes. We identified a novel MEF2C::SS18L1 fusion gene in a child diagnosed with B-ALL. This study investigates the oncogenicity and prognosis of this fusion gene in B-ALL. METHODS: A child with B-ALL who has a MEF2C::SS18L1 fusion is reported as a newly discovered case. Compared the breakpoints, structural domains, clinical phenotypes, and differential expression genes of MEF2C::SS18L1 and MEF2D::SS18.Using "ONCOFUSE" software, the carcinogenicity of MEF2C::SS18L1 is predicted. Using whole transcriptome sequencing, we analyze the breakpoints and the secondary structure of the fusion protein. Further, we compared the structures, differentially expressed genes, and clinical phenotypes of MEF2D and MEF2C fusion genes by DESeq, GO functional enrichment, and flow cytometry immunophenotyping analysis. RESULTS: Whole transcriptome sequencing identified a MEF2C::SS18L1 fusion transcript in a 3-year-old child with B-ALL. The MADS box, MEF structural domain, HJURP_C structural domain, and TAD I structural domain of MEF2C, and the QPGY structural domain of SS18L1, make up the fusion protein. "Oncofuse" found a 0.99 Bayesian probability that the fusion gene drives cancer. The breakpoint positions, fusion protein secondary structures, differentially expressed genes, and clinical characteristics of this patient were identical to those with MEF2D::SS18 fusion gene. CONCLUSION: We identified a novel MEF2C::SS18L1 fusion gene in childhood ALL, which shares similar structural and clinical characteristics with MEF2D::SS18. Further studies with more samples should be conducted in future.


Assuntos
Fatores de Transcrição MEF2 , Proteínas de Fusão Oncogênica , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Fatores de Transcrição MEF2/genética , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética
5.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791246

RESUMO

The myocyte enhancer factor 2 (MEF2) gene family play fundamental roles in the genetic programs that control cell differentiation, morphogenesis, proliferation, and survival in a wide range of cell types. More recently, these genes have also been implicated as drivers of carcinogenesis, by acting as oncogenes or tumor suppressors depending on the biological context. Nonetheless, the molecular programs they regulate and their roles in tumor development and progression remain incompletely understood. The present study evaluated whether the MEF2D transcription factor functions as a tumor suppressor in breast cancer. The knockout of the MEF2D gene in mouse mammary epithelial cells resulted in phenotypic changes characteristic of neoplastic transformation. These changes included enhanced cell proliferation, a loss of contact inhibition, and anchorage-independent growth in soft agar, as well as the capacity for tumor development in mice. Mechanistically, the knockout of MEF2D induced the epithelial-to-mesenchymal transition (EMT) and activated several oncogenic signaling pathways, including AKT, ERK, and Hippo-YAP. Correspondingly, a reduced expression of MEF2D was observed in human triple-negative breast cancer cell lines, and a low MEF2D expression in tissue samples was found to be correlated with a worse overall survival and relapse-free survival in breast cancer patients. MEF2D may, thus, be a putative tumor suppressor, acting through selective gene regulatory programs that have clinical and therapeutic significance.


Assuntos
Neoplasias da Mama , Proliferação de Células , Transição Epitelial-Mesenquimal , Fatores de Transcrição MEF2 , Fatores de Transcrição MEF2/metabolismo , Fatores de Transcrição MEF2/genética , Animais , Humanos , Feminino , Camundongos , Transição Epitelial-Mesenquimal/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Transdução de Sinais
6.
Cancer Lett ; 591: 216878, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38609001

RESUMO

Liver metastasis is the most common metastatic occurrence in gastric cancer patients, although the precise mechanism behind it remains unclear. Through a combination of proteomics and quantitative RT-PCR, our study has revealed a significant correlation between the upregulation of myocyte enhancer factor-2D (MEF2D) and both distant metastasis and poor prognosis in gastric cancer patients. In mouse models, we observed that overexpressing or knocking down MEF2D in gastric cancer cells respectively promoted or inhibited liver metastasis. Furthermore, our research has demonstrated that MEF2D regulates the transcriptional activation of H1X by binding to the H1X promoter. This regulation leads to the upregulation of H1X, which, in turn, promotes the in vivo metastasis of gastric cancer cells along with the upregulation of the downstream gene ß-CATENIN. Additionally, we found that the expression of MEF2D and H1X at both mRNA and protein levels can be induced by the inflammatory factor IL-13, and this induction exhibits a time gradient dependence. In human gastric cancer tissues, the expression of IL13RA1, the receptor for IL-13, positively correlates with the expression of MEF2D and H1X. IL13RA1 has been identified as an intermediate receptor through which IL-13 regulates MEF2D. In conclusion, our findings suggest that MEF2D plays a crucial role in promoting liver metastasis of gastric cancer by upregulating H1X and downstream target ß-CATENIN in response to IL-13 stimulation. Targeting MEF2D could therefore be a promising therapeutic strategy for the clinical management of gastric cancer. STATEMENT OF SIGNIFICANCE: MEF2D promotes its transcriptional activation in gastric cancer cells by binding to the H1X promoter and is upregulated by IL-13-IL13RA1, thereby promoting distant metastasis of gastric cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Interleucina-13 , Neoplasias Hepáticas , Fatores de Transcrição MEF2 , Neoplasias Gástricas , Animais , Feminino , Humanos , Masculino , Camundongos , beta Catenina/metabolismo , beta Catenina/genética , Linhagem Celular Tumoral , Interleucina-13/metabolismo , Interleucina-13/genética , Subunidade alfa1 de Receptor de Interleucina-13/genética , Subunidade alfa1 de Receptor de Interleucina-13/metabolismo , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Regiões Promotoras Genéticas , Transdução de Sinais , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Regulação para Cima , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
7.
Acta Neurol Belg ; 124(1): 141-149, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37572262

RESUMO

PURPOSE: Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory demyelinating lesions in the white matter of the central nervous system. Myocyte enhancer factor 2 (MEF2) family genes play important roles in the immune response. This study focuses on the relationship between MEF2 family gene polymorphisms and MS. METHODS: A total of 174 MS patients and 120 healthy controls were recruited. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to analyze the gene polymorphisms of MEF2D and MEF2C. In addition, peripheral blood was collected and leukocytes were isolated. The transcription level of MEF2D in the two groups of samples was detected with quantitative real time polymerase chain reaction (qRT-PCR). RESULTS: We found that the C allele frequency and CC genotype frequency of rs2274316 in MEF2D were significantly higher in MS patients. The C allele and CT genotype distribution for rs3790455 were significantly more frequent in MS patients. Female patients showed higher CC genotype frequency of rs2274316. The genotype frequency distribution of rs2274316 and rs3790455 were not related to onset age and phenotype of MS patients. In addition, this study also proved that MEF2D was significantly overexpressed in the peripheral blood leukocytes of MS patients. The transcription level of MEF2D was significantly higher in patients with CC genotype of rs2274316. CONCLUSION: These findings suggest rs2274316 and rs3790455 of MEF2D gene are potential genetic risk factors for MS in Chinese population. The transcription level of MEF2D is also associated with susceptibility to MS and MEF2D gene polymorphisms.


Assuntos
Esclerose Múltipla , Humanos , Feminino , Fatores de Transcrição MEF2/genética , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único/genética , Genótipo , Frequência do Gene , China , Predisposição Genética para Doença/genética , Estudos de Casos e Controles
8.
Genes Chromosomes Cancer ; 63(1): e23209, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37870842

RESUMO

Smooth muscle tumors are the most common mesenchymal tumors of the female genital tract, including the vulva. Since vulvar smooth muscle tumors are rare, our understanding of them compared to their uterine counterparts continues to evolve. Herein, we present two cases of morphologically distinct myxoid epithelioid smooth muscle tumors of the vulva with novel MEF2D::NCOA2 gene fusion. The tumors involved 24 and 37-year-old women. Both tumors presented as palpable vulvar masses that were circumscribed, measuring 2.8 and 5.1 cm in greatest dimension. Histologically, they were composed of epithelioid to spindle-shaped cells with minimal cytologic atypia and prominent myxoid matrix. Rare mitotic figures were present (1-3 mitotic figures per 10 high-power field (HPF)), and no areas of tumor necrosis were identified. By immunohistochemistry, the neoplastic cells strongly expressed smooth muscle actin, calponin, and desmin, confirming smooth muscle origin. Next-generation sequencing identified identical MEF2D::NCOA2 gene fusions. These two cases demonstrate that at least a subset of myxoid epithelioid smooth muscle tumors of the vulva represent a distinct entity characterized by a novel MEF2D::NCOA2 gene fusion. Importantly, recognition of the distinct morphologic and genetic features of these tumors is key to understanding the biological potential of these rare tumors.


Assuntos
Tumor de Músculo Liso , Adulto , Feminino , Humanos , Adulto Jovem , Biomarcadores Tumorais/genética , Fusão Gênica , Fatores de Transcrição MEF2/genética , Coativador 2 de Receptor Nuclear/genética , Tumor de Músculo Liso/patologia , Vulva/patologia
9.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37958849

RESUMO

Andrographolide, a medicinal compound, exhibits several pharmacological activities, including antiviral and anticancer properties. Previously, we reported that andrographolide inhibits Epstein-Barr virus (EBV) lytic reactivation, which is associated with viral transmission and oncogenesis in epithelial cancers, including head-and-neck cancer (HNC) cells. However, the underlying mechanism through which andrographolide inhibits EBV lytic reactivation and affects HNC cells is poorly understood. Therefore, we investigated these mechanisms using EBV-positive HNC cells and the molecular modeling and docking simulation of protein. Based on the results, the expression of EBV lytic genes and viral production were significantly inhibited in andrographolide-treated EBV-positive HNC cells. Concurrently, there was a reduction in transcription factors (TFs), myocyte enhancer factor-2D (MEF2D), specificity protein (SP) 1, and SP3, which was significantly associated with a combination of andrographolide and sodium butyrate (NaB) treatment. Surprisingly, andrographolide treatment also significantly induced the expression of DNA Methyltransferase (DNMT) 1, DNMT3B, and histone deacetylase (HDAC) 5 in EBV-positive cells. Molecular modeling and docking simulation suggested that HDAC5 could directly interact with MEF2D, SP1, and SP3. In our in vitro study, andrographolide exhibited a stronger cytotoxic effect on EBV-positive cells than EBV-negative cells by inducing cell death. Interestingly, the proteome analysis revealed that the expression of RIPK1, RIPK3, and MLKL, the key molecules for necroptosis, was significantly greater in andrographolide-treated cells. Taken together, it seems that andrographolide exhibits concurrent activities in HNC cells; it inhibits EBV lytic reactivation by interrupting the expression of TFs and induces cell death, probably via necroptosis.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias de Cabeça e Pescoço , Humanos , Herpesvirus Humano 4/fisiologia , Ativação Viral , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Morte Celular
10.
Adv Sci (Weinh) ; 10(35): e2305550, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37828611

RESUMO

Effective treatment for metastasis, a leading cause of cancer-associated death, is still lacking. To seed on a distal organ, disseminated cancer cells (DCCs) must adapt to the local tissue microenvironment. However, it remains elusive how DCCs respond the pro-metastatic niche signals. Here, systemic motif-enrichment identified myocyte enhancer factor 2D (MEF2D) as a critical sensor of niche signals to regulate DCCs adhesion and colonization, leading to intrahepatic metastasis and recurrence of liver cancer. In this context, MEF2D transactivates Itgb1 (coding ß1-integrin) and Itgb4 (coding ß4-integrin) to execute temporally unique functions, where ITGB1 recognizes extracellular matrix for early seeding, and ITGB4 acts as a novel sensor of neutrophil extracellular traps-DNA (NETs-DNA) for subsequent chemotaxis and colonization. In turn, an integrin-FAK circuit promotes a phosphorylation-dependent USP14-orchastrated deubiquitination switch to stabilize MEF2D via circumventing degradation by the E3-ubiquitin-ligase MDM2. Clinically, the USP14(pS432)-MEF2D-ITGB1/4 feedback loop is often hyper-active and indicative of inferior outcomes in human malignancies, while its blockade abrogated intrahepatic metastasis of DCCs. Together, DCCs exploit a deubiquitination-dependent switch on MEF2D to integrate niche signals in the liver mesenchyme, thereby amplifying the pro-metastatic integrin-FAK signaling. Disruption of this feedback loop is clinically applicable with fast-track potential to block microenvironmental cues driving metastasis.


Assuntos
Neoplasias Hepáticas , Ubiquitina , Humanos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Integrinas , DNA , Microambiente Tumoral , Ubiquitina Tiolesterase
11.
Biomed Pharmacother ; 165: 115255, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37549462

RESUMO

The current study intended to delve into the mechanisms of dexmedetomidine (Dex) in regulating myocardial pyroptosis against myocardial ischemia/reperfusion injury (MIRI). The rat MIRI models were induced by ligation/release of the coronary artery in vivo and Langendorff perfusion ex vivo. Hemodynamic parameters, infarction sizes, and histopathological changes were assessed to understand the effects of Dex on MIRI. We explored the mechanisms through functional experiments on an H9c2 cell hypoxia/reoxygenation (H/R) model. Cell viability and apoptosis were evaluated using cell counting kit 8 (CCK-8) and AV/PI dual staining respectively. The expressions of miR-665 and MEF2D mRNA were detected by qRT-PCR. Western blot was employed to determine the expression levels of pyroptosis- and signaling pathway- related proteins. The interplays between miR-665 and MEF2D were validated by Dual-luciferase reporter assays. Our findings indicated that Dex preconditioning dramatically attenuated hemodynamic derangements, infarct size, and histopathological damage in rats undergoing MIRI. Dex markedly augmented cell viability, while suppressing cell apoptosis and expressions of NLRP3, cleaved-caspase-1, ASC, GSDMD, IL-1ß, and IL-18 in H9c2 cells subjected to H/R injury. MiR-665 was significantly upregulated, MEF2D and Nrf2 downregulated following H/R, whereas Dex preconditioning reversed these changes. MEF2D was validated to be a target gene of miR-665. Overexpression of miR-665 decreased the expression of MEF2D and blunted the protective effects of Dex in H9c2 cells. Moreover, the functional rescue experiment further verified that Dex regulated MEF2D/Nrf2 pathway via miR-665. In conclusion, Dex mitigates MIRI through inhibiting pyroptosis via regulating miR-665/MEF2D/Nrf2 axis.


Assuntos
Dexmedetomidina , MicroRNAs , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Piroptose , Dexmedetomidina/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem Celular , MicroRNAs/metabolismo , Apoptose , Miócitos Cardíacos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Fatores de Transcrição MEF2/metabolismo
12.
Zhongguo Fei Ai Za Zhi ; 26(7): 538-544, 2023 Jul 20.
Artigo em Chinês | MEDLINE | ID: mdl-37653017

RESUMO

BACKGROUND: Myocyte enhancer factor 2D (MEF2D) can participate in the process of tumor lesions by regulating the transcription of oncogenes. In a previous study, MEF2D was demonstrated to enhance the proliferation and metastasis of lung adenocarcinoma cells A549 and H1299 by promoting the transcription of NUSAP1. The research aimed to explore the expression level and clinical significance of MEF2D in lung adenocarcinoma. METHODS: A total of 199 patients with lung adenocarcinoma were collected. Immunohistochemical staining was used to detect MEF2D expression levels in cancer and adjacent tissues. After the clinical and follow-up data were collated, the correlation between MEF2D expression level and clinical characteristics and prognosis of the patients was analyzed. RESULTS: In the lung adenocarcinoma, the high expression rate of MEF2D in cancer tissues was significantly higher than that in adjacent tissues (P<0.05). According to immunohistochemical score, MEF2D expression level in lung adenocarcinoma tissues was correlated with tumor differentiation, N stage, M stage and intrapulmonary metastasis (P<0.05). Kaplan-Meier analysis showed that patients with low MEF2D expression had significantly better prognosis than patients with high MEF2D expression (P<0.05). Cox multivariate analysis showed that MEF2D expression level, M stage, N stage and bone metastasis of lung cancer were independent risk factors for prognosis of lung adenocarcinoma patients. CONCLUSIONS: MEF2D expression level is closely related to the metastasis of lung adenocarcinoma and other clinical characteristics, and can be used as an independent risk factor for the prognosis of patients with lung adenocarcinoma, which has the potential to be developed as a clinical diagnosis and treatment target of lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Fatores de Transcrição MEF2/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/genética , Prognóstico , Oncogenes
13.
Rinsho Ketsueki ; 64(7): 633-638, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37544723

RESUMO

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) has many subtypes with diverse clinical and biological features and outcomes. Next generation sequencing has revealed several novel subtypes, including the ZNF384 and MEF2D rearrangements. The clinical characteristics and outcomes of the largest series of BCP-ALL cases with ZNF384 and MEF2D rearrangements in an international collaborative study are described here. Patients with ZNF384 rearrangements appear to express various leukemic phenotypes, including BCP-ALL (with or without abnormal expression of myeloid markers) and B/myeloid mixed phenotype acute leukemia. We provide strong evidence that among BCP-ALL patients with a ZNF384 fusion, the partner gene is associated with demographic features and influences the outcome; particularly the EP300-ZNF384 fusion is associated with a low risk of relapse. MEF2D rearrangements have been primarily described in children and young adults with BCP-ALL. Previous research has suggested that patients with MEF2D-BCL9 fusion have a high risk of relapse. Despite having the MEF2D-HNRNPUL1 fusion gene, the prognosis was favorable. Improved diagnostic genomic testing will enable future prospective studies to clarify the clinical significance of the ZNF384 and MEF2D rearrangements in childhood and young adult BCP-ALL.


Assuntos
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Estudos Prospectivos , Proteínas de Fusão Oncogênica/genética , Fatores de Transcrição , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Transativadores/genética , Fatores de Transcrição MEF2/genética
14.
Elife ; 122023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37458356

RESUMO

Evidence implicating p38γ and p38δ (p38γ/p38δ) in inflammation are mainly based on experiments using Mapk12/Mapk13-deficient (p38γ/δKO) mice, which show low levels of TPL2, the kinase upstream of MKK1-ERK1/2 in myeloid cells. This could obscure p38γ/p38δ roles, since TPL2 is essential for regulating inflammation. Here, we generated a Mapk12D171A/D171A/Mapk13-/- (p38γ/δKIKO) mouse, expressing kinase-inactive p38γ and lacking p38δ. This mouse exhibited normal TPL2 levels, making it an excellent tool to elucidate specific p38γ/p38δ functions. p38γ/δKIKO mice showed a reduced inflammatory response and less susceptibility to lipopolysaccharide (LPS)-induced septic shock and Candida albicans infection than wild-type (WT) mice. Gene expression analyses in LPS-activated wild-type and p38γ/δKIKO macrophages revealed that p38γ/p38δ-regulated numerous genes implicated in innate immune response. Additionally, phospho-proteomic analyses and in vitro kinase assays showed that the transcription factor myocyte enhancer factor-2D (MEF2D) was phosphorylated at Ser444 via p38γ/p38δ. Mutation of MEF2D Ser444 to the non-phosphorylatable residue Ala increased its transcriptional activity and the expression of Nos2 and Il1b mRNA. These results suggest that p38γ/p38δ govern innate immune responses by regulating MEF2D phosphorylation and transcriptional activity.


Assuntos
Lipopolissacarídeos , Proteína Quinase 13 Ativada por Mitógeno , Animais , Camundongos , Proteína Quinase 13 Ativada por Mitógeno/metabolismo , Proteômica , Imunidade Inata , Proteína Quinase 12 Ativada por Mitógeno/genética , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Inflamação
15.
Aging Dis ; 14(2): 331-349, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37008050

RESUMO

Cell regulatory networks are the determinants of cellular homeostasis. Any alteration to these networks results in the disturbance of cellular homeostasis and induces cells towards different fates. Myocyte enhancer factor 2A (MEF2A) is one of four members of the MEF2 family of transcription factors (MEF2A-D). MEF2A is highly expressed in all tissues and is involved in many cell regulatory networks including growth, differentiation, survival and death. It is also necessary for heart development, myogenesis, neuronal development and differentiation. In addition, many other important functions of MEF2A have been reported. Recent studies have shown that MEF2A can regulate different, and sometimes even mutually exclusive cellular events. How MEF2A regulates opposing cellular life processes is an interesting topic and worthy of further exploration. Here, we reviewed almost all MEF2A research papers published in English and summarized them into three main sections: 1) the association of genetic variants in MEF2A with cardiovascular disease, 2) the physiopathological functions of MEF2A, and 3) the regulation of MEF2A activity and its regulatory targets. In summary, multiple regulatory patterns for MEF2A activity and a variety of co-factors cause its transcriptional activity to switch to different target genes, thereby regulating opposing cell life processes. The association of MEF2A with numerous signaling molecules establishes a central role for MEF2A in the regulatory network of cellular physiopathology.

16.
Transl Cancer Res ; 12(2): 287-300, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36915581

RESUMO

Background: Myocyte enhancer factor 2D (MEF2D) is involved in the progression of various malignant tumors. However, its impact on B-cell acute lymphoblastic leukemia (B-ALL) has not been elucidated. Methods: In this study, the expression level of MEF2D in B-ALL patients was validated through the Gene Expression Omnibus (GEO) database and clinical specimens. MEF2D-knockdown B-ALL cell lines were constructed by lentivirus transfection, and the effects of MEF2D on the viability, apoptosis, cycle progression, and drug sensitivity of B-ALL cells were verified by Cell Counting Kit-8 (CCK-8) and flow cytometry (FCM). The effect of MEF2D on the proliferation of B-ALL cells in vivo was verified via the construction of a xenograft mouse model. The mechanism of MEF2D regulating B-ALL cells was explored by RNA sequencing analysis, quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemical (IHC). Results: In this study, overexpression of MEF2D was observed in B-ALL patients and was remarkably correlated to disease progression in ALL patients. The knockdown of MEF2D expression suppressed cell viability, induced cell apoptosis, blockaded cell cycle progression, enhanced drug sensitivity of B-ALL cells in vitro, and reduced the tumor load in vivo. Furthermore, mechanistic studies revealed that MEF2D knockdown downregulated the expression of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway. Conclusions: Our research demonstrated that MEF2D was markedly expressed in B-ALL. MEF2D knockdown inhibited cancer progression of B-ALL both in vitro and in vivo, which may be related to the downregulation of the PI3K-AKT signaling pathway. The data suggest that MEF2D plays a vital role in the process of tumorigenesis and may be a potential novel target for B-ALL therapy.

17.
Blood Sci ; 4(3): 161-163, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36518591

RESUMO

B-cell acute lymphoblastic leukemia (B-ALL) is a malignant tumor originating from B-lineage lymphoid precursor cells. The incidence of B-ALL is about 80% in childhood acute leukemia and 20% in adults. In recent years, with standardized treatment guided by risk stratification, the long-term disease-free survival rate of children is about 80%, while that of adults is less than 40%. However, the specific pathogenesis of the newly identified B-ALL and the targeted therapy strategies have not been vigorously investigated. In this review, we highlight the recent breakthroughs in mechanistic studies and novel therapeutic options in DUX4- and MEF2D-subtype B-ALLs.

18.
Pathologica ; 114(6): 422-435, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36534421

RESUMO

As a relevant element of novelty, the fifth CNS WHO Classification highlights the distinctive pathobiology underlying gliomas arising primarily in children by recognizing for the first time the families of paediatric-type diffuse gliomas, both high-grade and low-grade. This review will focus on the family of paediatric-type diffuse high-grade gliomas, which includes four tumour types: 1) Diffuse midline glioma H3 K27-altered; 2) Diffuse hemispheric glioma H3 G34-mutant; 3) Diffuse paediatric-type high-grade glioma H3-wildtype and IDH-wildtype; and 4) Infant-type hemispheric glioma. The essential and desirable diagnostic criteria as well as the entities entering in the differential will be discussed for each tumour type. A special focus will be given on the issues encountered in the daily practice, especially regarding the diagnosis of the diffuse paediatric-type high-grade glioma H3-wildtype and IDH-wildtype. The advantages and the limits of the multiple molecular tests which may be utilised to define the entities of this tumour family will be evaluated in each diagnostic context.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Criança , Mutação , Glioma/diagnóstico , Organização Mundial da Saúde
19.
Front Mol Neurosci ; 15: 922665, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966010

RESUMO

Ribbon synapses are important structures in transmitting auditory signals from the inner hair cells (IHCs) to their corresponding spiral ganglion neurons (SGNs). Over the last few decades, deafness has been primarily attributed to the deterioration of cochlear hair cells rather than ribbon synapses. Hearing dysfunction that cannot be detected by the hearing threshold is defined as hidden hearing loss (HHL). The relationship between ribbon synapses and FGF22 deletion remains unknown. In this study, we used a 6-week-old FGF22 knockout mice model (Fgf22 -/-) and mainly focused on alteration in ribbon synapses by applying the auditory brainstem response (ABR) test, the immunofluorescence staining, the patch-clamp recording, and quantitative real-time PCR. In Fgf22 -/- mice, we found the decreased amplitude of ABR wave I, the reduced vesicles of ribbon synapses, and the decreased efficiency of exocytosis, which was suggested by a decrease in the capacitance change. Quantitative real-time PCR revealed that Fgf22 - / - led to dysfunction in ribbon synapses by downregulating SNAP-25 and Gipc3 and upregulating MEF2D expression, which was important for the maintenance of ribbon synapses' function. Our research concluded that FGF22 deletion caused HHL by affecting the function of IHC ribbon synapses and may offer a novel therapeutic target to meet an ever-growing demand for deafness treatment.

20.
Front Mol Neurosci ; 15: 865858, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875662

RESUMO

Urokinase receptor (uPAR) is a glycosylphosphatidylinositol (GPI)-anchored receptor of urokinase (uPA), which is involved in brain development, nerve regeneration, wound healing and tissue remodeling. We have recently shown that Plaur, which encodes uPAR, is an early response gene in murine brain. Assumingly, diverse functions of Plaur might be attributed to hypothetical, unidentified microRNAs encoded within introns of the Plaur gene. Using a bioinformatic approach we identified novel small RNAs within the Plaur gene and named them Plaur-miR1-3p and Plaur-miR1-5p. We confirmed Plaur-dependent expression of Plaur-miR1-3p and Plaur-miR1-5p in the mouse brain and mouse neuroblastoma Neuro2a cells. Utilizing an in silico MR-microT algorithm in DianaTools we selected two target genes - Mef2d and Emx2 with the highest binding scores to small RNAs selected from identified Plaur-Pre-miR1. Furthermore, sequencing of mouse brain samples for Plaur-miR1-5p target genes revealed two more genes-Nrip3 and Snrnp200. The expression of Emx2, Mef2d, and Snrnp200 in the mouse brain and Mef2d and Snrnp200 in Neuro2a cells correlated with expression of Plaur and small RNAs-Plaur-miR1-3p and Plaur-miR1-5p. Finally, we demonstrated elevated MEF2D protein expression in the mouse brain after Plaur induction and displayed activating effects of Plaur-miR1-5p on Mef2d expression in Neuro2a cells using Luciferase reporter assay. In conclusion, we have identified Plaur-miR1-3p and Plaur-miR1-5p as novel small RNAs encoded in the Plaur gene. This finding expands the current understanding of Plaur function in brain development and functioning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA