Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cells ; 13(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38920672

RESUMO

Recently, we successfully utilized noninvasive magnetic resonance and bioluminescence imaging to track MIN6 cells subcutaneously transplanted in immunocompromised nude mice for up to 64 days. In this study, we further used bioluminescence imaging to investigate the immune rejection of MIN6 cells in immunocompetent C3H mice. A total of 5 × 106 luciferase-transfected MIN6 cells were implanted into the subcutaneous space of each nude or C3H mouse. After transplantation, hypoglycemia and persistent bioluminescence signals were observed in eight of eight (100%) nude mice and five of nine (56%) C3H mice (p < 0.05). We then presensitized a group of C3H mice with C57BL/6 spleen cells just prior to transplantation (n = 14). Interestingly, none of them had hypoglycemia or persistent bioluminescence signals (p < 0.01 vs. C3H mice without presensitization). Histological examination of the grafts revealed a lack or minimal presence of insulin-positive cells in recipients without hypoglycemia and persistent bioluminescence signals. In contrast, recipients with hypoglycemia and persistent bioluminescence signals showed a significant presence of insulin-positive cells in their grafts. Our results indicate that rejection of MIN6 cells occurred in C3H mice and could be enhanced by presensitization with C57BL/6 spleen cells and that bioluminescence imaging is a useful noninvasive tool for detecting rejection of subcutaneously transplanted MIN6 cells.


Assuntos
Rejeição de Enxerto , Medições Luminescentes , Camundongos Endogâmicos C3H , Animais , Camundongos , Rejeição de Enxerto/imunologia , Medições Luminescentes/métodos , Camundongos Endogâmicos C57BL , Camundongos Nus , Linhagem Celular Tumoral , Baço
2.
Cells ; 13(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891081

RESUMO

This study unveils verapamil's compelling cytoprotective and proliferative effects on pancreatic ß-cells amidst diabetic stressors, spotlighting its unforeseen role in augmenting cholecystokinin (CCK) expression. Through rigorous investigations employing MIN6 ß-cells and zebrafish models under type 1 and type 2 diabetic conditions, we demonstrate verapamil's capacity to significantly boost ß-cell proliferation, enhance glucose-stimulated insulin secretion, and fortify cellular resilience. A pivotal revelation of our research is verapamil's induction of CCK, a peptide hormone known for its role in nutrient digestion and insulin secretion, which signifies a novel pathway through which verapamil exerts its therapeutic effects. Furthermore, our mechanistic insights reveal that verapamil orchestrates a broad spectrum of gene and protein expressions pivotal for ß-cell survival and adaptation to immune-metabolic challenges. In vivo validation in a zebrafish larvae model confirms verapamil's efficacy in fostering ß-cell recovery post-metronidazole infliction. Collectively, our findings advocate for verapamil's reevaluation as a multifaceted agent in diabetes therapy, highlighting its novel function in CCK upregulation alongside enhancing ß-cell proliferation, glucose sensing, and oxidative respiration. This research enriches the therapeutic landscape, proposing verapamil not only as a cytoprotector but also as a promoter of ß-cell regeneration, thereby offering fresh avenues for diabetes management strategies aimed at preserving and augmenting ß-cell functionality.


Assuntos
Colecistocinina , Células Secretoras de Insulina , Verapamil , Peixe-Zebra , Animais , Camundongos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Colecistocinina/metabolismo , Colecistocinina/farmacologia , Modelos Animais de Doenças , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Verapamil/farmacologia
3.
Ann Biomed Eng ; 52(9): 2610-2626, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38829457

RESUMO

Interactions between cells are of fundamental importance in affecting cell function. In vivo, endothelial cells and islet cells are close to each other, which makes endothelial cells essential for islet cell development and maintenance of islet cell function. We used endothelial cells to construct 3D pseudo-islets, which demonstrated better glucose regulation and greater insulin secretion compared to conventional pseudo-islets in both in vivo and in vitro trials. However, the underlying mechanism of how endothelial cells promote beta cell function localized within islets is still unknown. We performed transcriptomic sequencing, differential gene analysis, and enrichment analysis on two types of pseudo-islets to show that endothelial cells can promote the function of internal beta cells in pseudo-islets through the BTC-EGFR-JAK/STAT signaling pathway. Min6 cells secreted additional BTC after co-culture of endothelial cells with MIN6 cells outside the body. After BTC knockout in vitro, we found that beta cells functioned differently: insulin secretion levels decreased significantly, while the expression of key proteins in the EGFR-mediated JAK/STAT signaling pathway simultaneously decreased, further confirming our results. Through our experiments, we elucidate the molecular mechanisms by which endothelial cells maintain islet function in vitro, which provides a theoretical basis for the construction of pseudo-islets and islet cell transplants for the treatment of diabetes mellitus.


Assuntos
Células Endoteliais , Receptores ErbB , Transdução de Sinais , Animais , Receptores ErbB/metabolismo , Receptores ErbB/genética , Células Endoteliais/metabolismo , Camundongos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Insulina/metabolismo , Linhagem Celular , Secreção de Insulina
4.
Biogerontology ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748336

RESUMO

An over-activation of the mechanistic target of rapamycin (mTOR) pathway promotes senescence and age-related diseases like type 2 diabetes. Besides, the regenerative potential of pancreatic islets deteriorates with aging. Nevertheless, the role of mTOR on senescence promoted by metabolic stress in islet cells as well as its relevance for electrophysiological aspects is not yet known. Here, we investigated whether parameters suggested to be indicative for senescence are induced in vitro in mouse islet cells by glucotoxicity and if mTOR inhibition plays a protective role against this. Islet cells exhibit a significant increase (~ 76%) in senescence-associated beta-galactosidase (SA-beta-gal) activity after exposure to glucotoxicity for 72 h. Glucotoxicity does not markedly influence p16INK4a protein within 72 h, but p16INK4a levels increase significantly after a 7-days incubation period. mTOR inhibition with a low rapamycin concentration (1 nM) entirely prevents the glucotoxicity-mediated increase of SA-beta-gal and p16INK4a. At the functional level, reactive oxygen species, calcium homeostasis, and electrical activity are disturbed by glucotoxicity, and rapamycin fails to prevent this. In contrast, rapamycin significantly attenuates the insulin hypersecretion promoted by glucotoxicity by modifying the mRNA levels of Vamp2 and Snap25 genes, related to insulin exocytosis. Our data indicate an influence of glucotoxicity on pancreatic islet-cell senescence and a reduction of the senescence markers by mTOR inhibition, which is relevant to preserve the regenerative potential of the islets. Decreasing the influence of mTOR on islet cells exposed to glucotoxicity attenuates insulin hypersecretion, but is not sufficient to prevent electrophysiological disturbances, indicating the involvement of mTOR-independent mechanisms.

5.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562689

RESUMO

We previously showed that miR-146a-5p is upregulated in pancreatic islets treated with pro-inflammatory cytokines. Others have reported that miR-146a-5p overexpression is associated with ß cell apoptosis and impaired insulin secretion. However, the molecular mechanisms mediating these effects remain elusive. To investigate the role of miR-146a-5p in ß cell function, we developed stable MIN6 cell lines to either overexpress or inhibit the expression of miR-146a-5p. Monoclonal cell populations were treated with pro-inflammatory cytokines (IL-1ß, IFNγ, and TNFα) to model T1D in vitro. We found that overexpression of miR-146a-5p increased cell death under conditions of inflammatory stress, whereas inhibition of miR-146a-5p reversed these effects. Additionally, inhibition of miR-146a-5p increased mitochondrial DNA copy number, respiration rate, and ATP production. Further, RNA sequencing data showed enrichment of pathways related to insulin secretion, apoptosis, and mitochondrial function when the expression levels of miR-146a-5p were altered. Finally, a temporal increase in miR-146a-5p expression levels and a decrease in mitochondria function markers was observed in islets derived from NOD mice. Collectively, these data suggest that miR-146a-5p may promote ß cell dysfunction and death during inflammatory stress by suppressing mitochondrial function.

6.
Mol Nutr Food Res ; 68(1): e2200842, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37990402

RESUMO

SCOPE: Consuming goat milk is known to benefit high-fat diet-fed and streptozocin (STZ)-induced diabetic rats, but the underlying mechanisms are unknown. This study is conducted to investigate the metabolic effects of a goat milk diet (a form of goat milk powder) on glucose homeostasis and pancreatic conditions in a mouse model of Type 2 diabetes mellitus (T2DM) induced by STZ. METHODS AND RESULTS: T2DM mice are fed with a goat-milk-based diet containing 10.3% w/w goat milk powder for 10 weeks for investigating the in vivo effects; a ß-cell line MIN6 cells are used to test the in vitro effects of digested goat milk (DGM). Goat milk diet improves the deleterious effects of STZ on fasting glucose levels and glucose tolerance, accelerates pancreatic structure recovery, and alters blood metabolites in mice. Based on the significant differences observed in metabolites, the key pathways, metabolite regulatory enzymes, metabolite molecular modules, and biochemical reactions are identified as critical integrated pathways. DGM promotes the cell activity, glucose transportation, and AKT activation in cultured STZ-treated MIN6 cells in vitro. CONCLUSIONS: Goat milk diet improves glucose homeostasis and pancreatic conditions of T2DM mice, in association with improved blood metabolite profiles and activation of pancreatic AKT pathway.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Camundongos , Ratos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Leite/química , Diabetes Mellitus Experimental/metabolismo , Proteínas Proto-Oncogênicas c-akt , Pós , Glucose/metabolismo , Dieta Hiperlipídica/efeitos adversos , Cabras/metabolismo , Glicemia/metabolismo , Estreptozocina , Insulina
7.
Polymers (Basel) ; 15(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37376231

RESUMO

Previously, we have successfully used noninvasive magnetic resonance (MR) and bioluminescence imaging to detect and monitor mPEG-poly(Ala) hydrogel-embedded MIN6 cells at the subcutaneous space for up to 64 days. In this study, we further explored the histological evolution of MIN6 cell grafts and correlated it with image findings. MIN6 cells were incubated overnight with chitosan-coated superparamagnetic iron oxide (CSPIO) and then 5 × 106 cells in the 100 µL hydrogel solution were injected subcutaneously into each nude mouse. Grafts were removed and examined the vascularization, cell growth and proliferation with anti-CD31, SMA, insulin and ki67 antibodies, respectively, at 8, 14, 21, 29 and 36 days after transplantation. All grafts were well-vascularized with prominent CD31 and SMA staining at all time points. Interestingly, insulin-positive cells and iron-positive cells were scattered in the graft at 8 and 14 days; while clusters of insulin-positive cells without iron-positive cells appeared in the grafts at 21 days and persisted thereafter, indicating neogrowth of MIN6 cells. Moreover, proliferating MIN6 cells with strong ki67 staining was observed in 21-, 29- and 36-day grafts. Our results indicate that the originally transplanted MIN6 cells proliferated from 21 days that presented distinctive bioluminescence and MR images.

8.
Antioxidants (Basel) ; 12(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36978941

RESUMO

The low-level antioxidant activity of pancreatic islets causes type 1 diabetes due to oxidative stress, which is also the cause of failure in the pancreatic islets' isolation and cell transplantation. In our previous study, pteryxin was found to be a natural product as a nuclear factor-erythroid-2-related factor (Nrf2) activator. This study focused on elucidation that the potentiality of pteryxin can activate the antioxidant enzymes, even under oxidative stress, by hydrogen peroxide (H2O2). Pteryxin treated with mouse insulinoma MIN6 cells was enhanced the antioxidant gene expressions in the ARE (antioxidant response element) region for HO-1 (Heme Oxygenase-1), GCLC (Glutamate-cysteine ligase catalytic subunit), SOD1 (Super Oxide dismutase1), and Trxr1 (Thioredoxin reductase1), and those enzymes were also expressed during the nuclei transference of cytoplasmic Nrf2. In fact, the cells exposed to H2O2 concentrations of a half-cell lethal in the presence of pteryxin were then induced main antioxidant enzymes, HO-1, GCLC, and Trxr1 in the ARE region. The increased glutathione (GSH) levels associated with the GCLC expression also suggested to be cytoprotective against oxidative stress by activating the redox-metabolizing enzymes involving their increased antioxidant activity in the cells. In addition, Akt is a modulator for Nrf2, which may be responsible for the Nrf2 activation. These results allowed us to consider whether pteryxin or its synthesized congeners, an Nrf2 activator, is a potential preservative agent against islet isolation during cell transplantation.

9.
J Ethnopharmacol ; 302(Pt B): 115937, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36410575

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ayurvedic medicine has been used in the treatment of diabetes mellitus for centuries. In Arabia and some areas of Africa, Commiphora myrrha (CM) has been extensively used as a plant-based remedy. We have previously shown that an aqueous CM resin solution directly stimulates insulin secretion from MIN6 cells, a mouse ß-cell line, and isolated mouse and human islets. However, the signaling pathways involved in CM-induced insulin secretion are completely unknown. Insulin secretion is normally triggered by elevations in intracellular Ca2+ ([Ca2+]i) through voltage gated Ca2+ channels (VGCC) and activation of protein kinases. Protein and lipid kinases such as protein kinase A (PKA), Ca2+-calmodulin dependent protein kinase II (CaMKII), phosphoinositide 3-kinases (PI3Ks), protein kinase C (PKC) and mitogen-activated protein kinase (MAPK), specifically extracellular signal-regulated kinases (ERK1/2), may be involved in receptor-operated insulin secretion. Therefore, we hypothesized that CM may induce insulin secretion by modulating the activity of VGCC and/or one or more of the above kinases. AIM OF THE STUDY: To investigate the possible molecular mechanism of action of CM-induced insulin secretion. The effects of aqueous CM resin extract on [Ca2+]i and protein kinase activation from ß-cells were examined. METHODS: The effect of aqueous CM resin solution on [Ca2+]i was assessed using Ca2+ microfluorimetry. The involvement of VGCC in CM-induced insulin secretion was investigated using static and perifusion insulin secretion experiments in the presence of either EGTA, a Ca2+ chelator, or nifedipine, a blocker of VGCC. The involvement of kinase activation in the stimulatory effect of CM on insulin secretion was examined by using static and perifusion insulin secretion experiments in the presence of known pharmacological inhibitors and/or downregulation of specific kinases. The effects of CM on phosphorylation of PKCζ and ERK1/2 were also assessed using the Wes™ capillary-based protein electrophoresis. RESULTS: Ca2+ microfluorimetry measurements showed that exposing MIN6 cells to CM (0.5-2 mg/mL) was not associated with changes in [Ca2+]i. Similarly, incubating MIN6 cells and mouse islets with EGTA and nifedipine, respectively, did not attenuate the insulin secretion induced by CM. However, incubating mouse and human islets with CM in the presence of staurosporine, a non-selective protein kinase inhibitor, completely blocked the effect of CM on insulin secretion. Exposing mouse islets to CM in the presence of H89, KN62 and LY294002, inhibitors of PKA, CaMKII and PI3K, respectively, did not reduce CM-induced insulin secretion. However, incubating mouse and human islets with CM in the presence of Ro 31-8220, a pan-PKC inhibitor, diminished insulin secretion stimulated by CM, whereas inhibiting the action of typical PKC (with Go6976) and PLCß (with U73122) did not affect CM-stimulated insulin secretion. Similarly, downregulating typical and novel PKC by chronic exposure of mouse islets to phorbol 12-myristate 13-acetate (PMA) was also not associated with a decrease in the stimulatory effect of CM on insulin secretion. Interestingly, CM-induced insulin secretion from mouse islets was inhibited in the presence of the PKCζ inhibitor ZIP and a MAPK inhibitor PD 98059. In addition, Wes™ capillary-based protein electrophoresis indicated that expression of the phosphorylated forms of PKCζ and ERK1/2, a MAPK, was significantly increased following exposure of INS-1832/13 cells, a rat insulinoma cell line, to CM. CONCLUSIONS: Our data indicate that CM directly stimulates insulin secretion through activating known downstream effectors of insulin-stimulus secretion coupling. Indeed, the increase in insulin secretion seen with CM is independent of changes in [Ca2+]i and does not involve activation of VGCC. Instead, the CM stimulatory effect on insulin secretion is completely dependent on protein kinase activation. Our findings indicate that CM could induce insulin exocytosis by stimulating the phosphorylation and activation of PKCζ, which in turn phosphorylates and activates ERK1/2.


Assuntos
Commiphora , Neoplasias Pancreáticas , Humanos , Ratos , Animais , Camundongos , Secreção de Insulina , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Ácido Egtázico , Nifedipino , Proteína Quinase C , Proteínas Quinases Dependentes de AMP Cíclico , Insulina , MAP Quinases Reguladas por Sinal Extracelular , Acetato de Tetradecanoilforbol , Fosfatidilinositol 3-Quinases
10.
Food Chem Toxicol ; 167: 113315, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35863481

RESUMO

With the widespread use of plastics, microplastics (MPs) and di(2-ethylhexyl) phthalate (DEHP) have become emerging environmental pollutants. The combined toxicity of MPs and DEHP on the mouse pancreas and the specific mechanism of toxicity remain unclear. To establish in vitro and in vivo models to address these questions, mice were continuously exposed to 200 mg/kg/d DEHP and 10 mg/L MPs for 4 weeks. In vitro, MIN-6 cells were treated with 200 µg/mL MPs and 200 µM DEHP for 24 h. Based on toxicity assessed using CCK8 of the equivalent TU binary mixture, the IC50 of the TU-mix of DEHP and MPs 0.692 < 0.8, indicating a synergistic effect of the two toxicants. Meanwhile, our data revealed that compared to the control group, MPs and DEHP combined treatment increased ROS levels, inhibited the activity, and enhanced the expression of GRP78, and CHOP. Simultaneously, activated CHOP decreased the expression of Bcl-2, and increased the expression of Bax. In conclusion, DEHP and MPs synergistically induce oxidative stress, and activate the GRP78/CHOP/Bcl-2 pathway to induce pancreatic apoptosis in mice. Our finding provides a new direction for the research on the specific mechanism of MPs and DEHP combined toxicity.


Assuntos
Dietilexilftalato , Chaperona BiP do Retículo Endoplasmático , Genes bcl-2 , Microplásticos , Estresse Oxidativo , Pâncreas , Fator de Transcrição CHOP , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Dietilexilftalato/toxicidade , Chaperona BiP do Retículo Endoplasmático/genética , Chaperona BiP do Retículo Endoplasmático/metabolismo , Genes bcl-2/genética , Genes bcl-2/fisiologia , Camundongos , Microplásticos/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia , Ácidos Ftálicos , Plásticos , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
11.
Acta Histochem ; 124(6): 151928, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35797733

RESUMO

AIMS: Diabetes is a chronic disease that is associated with a decrease or disfunction of ß-cell. In the present study, fabrication of bioartificial pancreas using MIN-6 ß-cell line seeded in decellularized rat testicles was investigated. MAIN METHODS: In this experimental study, the whole body of testes were decellularized and after characterization, were seeded by MIN-6 cell line. The expression of insulin-related genes and proteins including PDX-1, Glut2, Insulin, and Neurogenin-3 were evaluated. Insulin secretion was assessed under different concentrations of glucose. Seeded scaffolds with or without MIN-6 cells were transplanted to the rat's mesentery and their blood sugar and body weight were evaluated every three days for 28 days and analyzed with H&E staining. RESULTS: Histological assessments indicated the cells were completely removed after decellularization. The scaffold had no toxic impacts on the MIN-6 cells (P˂ 0.02). Insulin release in response to different concentrations of glucose in 3D culture (testis-ECM) was significantly more than the traditional 2D monolayer culture (P < 0.001). Moreover, the relative genes and proteins expression were significantly higher in the 3D culture, compared to the 2D control group. In vivo transplantation of the (testis- Extra Cellular Matrix) testis-ECM scaffolds showed appropriate positions for transplantation with angiogenesis and low infiltration of inflammatory cells. The recellularized scaffolds could drop blood sugar levels and increase the body-weight of STZ-diabetic rats (P < 0.01). SIGNIFICANCE: Our study clearly confirmed that ECM valuable organ scaffolds prepared by decellularization of the testicular tissue is suitable for the fabrication of bioartificial pancreas for transplantation.


Assuntos
Diabetes Mellitus Experimental , Insulinas , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Matriz Extracelular/metabolismo , Glucose/metabolismo , Insulinas/metabolismo , Masculino , Pâncreas , Ratos , Engenharia Tecidual , Alicerces Teciduais
12.
Gen Comp Endocrinol ; 326: 114068, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35671834

RESUMO

BACKGROUND: Reports in recent years have shown that pancreatic ß-cell pyroptosis represents a critical mechanism involved with the progressive failure of pancreatic function. Previous research from our laboratory has indicated that artemether can increase the number of cells in pancreatic islets of db/db mice. In this study, we further examined whether artesunate (ART) protects pancreatic ß-cells from the damage of streptozotocin (STZ) by inhibiting pyroptosis. MATERIALS AND METHODS: In vitro, MIN6 cells exposed to 1 mM STZ were treated with ART (0.8 or 1.6 µM). The effects of ART on STZ-treated cells were evaluated through CCK-8 assay, flow cytometry and western blot, and further compared the effects of ART with the NLRP3 inhibitor, Mcc950 upon pyroptosis pathway proteins using western blot. In vivo, Male C57 mice were administered with a single intraperitoneal injection of STZ, and those with confirmed diabetes mellitus were given ART (0.5 or 1.0 mg/ml in drinking water) for 18 days. The effects of ART on STZ-induced diabetes were assessed by the observation of the general situation, glucose tolerance test, hematoxylin-eosin (HE) staining and immunohistochemistry. RESULTS: In MIN6 cells treated with STZ, we found that ART increased cell viability, decreased the number of late apoptotic cells (including pyroptosis cells) and inhibited the expression of proteins associated with the pyroptosis pathway. In STZ-induced animal model, the administration of ART reduced blood glucose levels, improved the consumption status within this diabetic mouse model and inhibited the expression of proteins include in the pyroptosis pathway in mice pancreats. CONCLUSIONS: Inhibition of pyroptosis may be a critical mechanism through which artesunate exerts protective effects upon pancreatic ß cells.


Assuntos
Artesunato , Diabetes Mellitus Experimental , Células Secretoras de Insulina , Animais , Artesunato/efeitos adversos , Artesunato/farmacologia , Caspase 1/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Estreptozocina
13.
Toxicology ; 465: 153048, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34813903

RESUMO

Acrolein is a typical food and environmental pollutant and a risk factor for diabetes. The primary pathogenesis of diabetes is insulin deficiency and resistance. Ferroptosis is an iron-dependent cell death type, accompanying by lipid peroxide accumulation. Here, 25 µM acrolein-induced ferroptosis is observed in mouse pancreatic ß-cell MIN6 cells as indicated by ferroptosis-related indicators, including GPX4 exhaustion, lipid peroxides accumulation, and insulin secretion impairment. Additionally, acrolein-induced ferroptosis could be reversed by Ferrostatin-1. Furthermore, endoplasmic reticulum stress (ER stress) is involved in acrolein-induced ferroptosis. The ER stress inhibits the expression of PPARγ, an essential gene in glucose and lipid metabolism, and facilitates lipid peroxide accumulation, leading to MIN6 cells ferroptosis and dysfunction. Moreover, resveratrol, an antioxidant natural product, may relieve ER stress and upregulate PPARγ expression, thereby inhibiting acrolein-induced ferroptosis. Thus, this study demonstrated a new perspective for the cytotoxic mechanism of acrolein on pancreatic ß-cell and the protective effect of resveratrol.


Assuntos
Acroleína/toxicidade , Antioxidantes/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Resveratrol/farmacologia , eIF-2 Quinase/metabolismo , Animais , Linhagem Celular , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , PPAR gama/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Transdução de Sinais , Fator de Transcrição CHOP/metabolismo
14.
FEBS Open Bio ; 12(1): 175-191, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34709731

RESUMO

We previously isolated derrisfolin A, a novel rotenoid derivative, from the stems of Derris trifoliata Lour. (Leguminosae). Here, we report that derrisfolin A induces the expression of endogenous regucalcin (RGN) protein in both pancreatic MIN6 ß-cells and RAW264.7 macrophages. Induction of RGN expression by derrisfolin A or retrovirus-mediated gene transfer in MIN6 cells and RAW264.7 macrophages significantly decreased lipopolysaccharide (LPS)-induced mRNA expression of Nos2, Il1b, and Tnf via nuclear factor-κB activation; reduced LPS-induced apoptosis in MIN6 cells, accompanied by decreased production of nitric oxide, interleukin-1ß, and tumor necrosis factor-α; and attenuated generation of LPS-induced reactive oxygen species, malondialdehyde, and 3-nitrotyrosine in MIN6 cells. Additionally, in co-cultures of MIN6 cells with RAW264.7 macrophages in the presence of LPS, induction of RGN expression by derrisfolin A or retrovirus-mediated gene transfer in RAW264.7 macrophages attenuated apoptosis and oxidative/nitrosative stress in MIN6 cells. These results suggest that the induction of RGN expression in MIN6 cells was effective in suppressing LPS-induced inflammatory cytotoxicity and that in co-culture conditions, the induction of RGN expression in RAW264.7 macrophages blocked LPS-induced paracrine effects of RAW264.7 macrophages on inflammatory cytotoxicity in MIN6 cells. Our findings suggest that derrisfolin A, a chemical inducer of RGN, might be useful for developing a new drug against macrophage-associated ß-cell inflammation in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Lipopolissacarídeos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Células RAW 264.7
15.
Front Genet ; 12: 664799, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868391

RESUMO

Many ion channels participate in controlling insulin synthesis and secretion of pancreatic ß-cells. Epithelial sodium channel (ENaC) expressed in human pancreatic tissue, but the biological role of ENaC in pancreatic ß-cells is still unclear. Here, we applied the CRISPR/Cas9 gene editing technique to knockout α-ENaC gene in a murine pancreatic ß-cell line (MIN6 cell). Four single-guide RNA (sgRNA) sites were designed for the exons of α-ENaC. The sgRNA1 and sgRNA3 with the higher activity were constructed and co-transfected into MIN6 cells. Through processing a series of experiment flow included drug screening, cloning, and sequencing, the α-ENaC gene-knockout (α-ENaC-/-) in MIN6 cells were obtained. Compared with the wild-type MIN6 cells, the cell viability and insulin content were significantly increased in α-ENaC-/- MIN6 cells. Therefore, α-ENaC-/- MIN6 cells generated by CRISPR/Cas9 technology added an effective tool to study the biological function of α-ENaC in pancreatic ß-cells.

16.
World J Diabetes ; 12(4): 480-498, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33889292

RESUMO

BACKGROUND: Type 2 diabetes (T2D) is characterized by insufficient insulin secretion caused by defective pancreatic ß-cell function or insulin resistance, resulting in an increase in blood glucose. However, the mechanism involved in this lack of insulin secretion is unclear. The level of vascular endothelial growth factor B (VEGF-B) is significantly increased in T2D patients. The inactivation of VEGF-B could restore insulin sensitivity in db/db mice by reducing fatty acid accumulation. It is speculated that VEGF-B is related to pancreatic ß-cell dysfunction and is an important factor affecting ß-cell secretion of insulin. As an in vitro model of normal pancreatic ß-cells, the MIN6 cell line can be used to analyze the mechanism of insulin secretion and related biological effects. AIM: To study the role of VEGF-B in the insulin secretion signaling pathway in MIN6 cells and explore the effect of VEGF-B on blood glucose regulation. METHODS: The MIN6 mouse pancreatic islet ß-cell line was used as the model system. By administering exogenous VEGF-B protein or knocking down VEGF-B expression in MIN6 cells, we examined the effects of VEGF-B on insulin secretion, Ca2+ and cyclic adenosine monophosphate (cAMP) levels, and the insulin secretion signaling pathway. RESULTS: Exogenous VEGF-B inhibited the secretion of insulin and simultaneously reduced the levels of Ca2+ and cAMP in MIN6 cells. Exogenous VEGF-B also reduced the expression of phospholipase C gamma 1 (PLCγ1), phosphatidylinositol 3-kinase (PI3K), serine/threonine kinase (AKT), and other proteins in the insulin secretion pathway. Upon knockdown of VEGF-B, MIN6 cells exhibited increased insulin secretion and Ca2+ and cAMP levels and upregulated expression of PLCγ1, PI3K, AKT, and other proteins. CONCLUSION: VEGF-B can regulate insulin secretion by modulating the levels of Ca2+ and cAMP. VEGF-B involvement in insulin secretion is related to the expression of PLCγ1, PI3K, AKT, and other signaling proteins. These results provide theoretical support and an experimental basis for the study of VEGF-B in the pathogenesis of T2D.

17.
Polymers (Basel) ; 13(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805723

RESUMO

Recently, we demonstrated the feasibility of subcutaneous transplantation of MIN6 cells embedded in a scaffold with poly(ethylene glycol) methyl ether (mPEG)-poly(Ala) hydrogels. In this study, we further tracked these grafts using magnetic resonance (MR) and bioluminescence imaging. After being incubated overnight with chitosan-coated superparamagnetic iron oxide (CSPIO) nanoparticles and then mixed with mPEG-poly(Ala) hydrogels, MIN6 cells appeared as dark spots on MR scans. For in vivo experiments, we transfected MIN6 cells with luciferase and/or incubated them overnight with CSPIO overnight; 5 × 106 MIN6 cells embedded in mPEG-poly(Ala) hydrogels were transplanted into the subcutaneous space of each nude mouse. The graft of CSPIO-labeled MIN6 cells was visualized as a distinct hypointense area on MR images located at the implantation site before day 21. However, this area became hyperintense on MR scans for up to 64 days. In addition, positive bioluminescence images were also observed for up to 64 days after transplantation. The histology of removed grafts showed positive insulin and iron staining. These results indicate mPEG-poly(Ala) is a suitable scaffold for ß-cell encapsulation and transplantation. Moreover, MR and bioluminescence imaging are useful noninvasive tools for detecting and monitoring mPEG-poly(Ala) hydrogel-embedded MIN6 cells at a subcutaneous site.

18.
J Endocrinol Invest ; 44(9): 1897-1904, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33486704

RESUMO

BACKGROUND: High-density lipoprotein (HDL) is considered a complex plasma-circulating particle with subfractions that vary in function, size, and chemical composition. We sought to test the effects of HDL, and HDL subfractions on insulin secretion and cholesterol efflux in the ß-cell line MIN-6. METHODS: We used total HDL and HDL subfractions 2a, 2b, 3a, 3b, and 3c, isolated from human plasma, to test insulin secretion under different glucose concentrations as well as insulin content and cholesterol efflux in the insulinoma MIN-6 cell line. RESULTS: Incubation of MIN-6 cells with low glucose and total HDL increased insulin release two-fold. Meanwhile, when high glucose and HDL were used, insulin release increased more than five times. HDL subfractions 2a, 2b, 3a, 3b, and 3c elicited higher insulin secretion and cholesterol efflux than their respective controls, at both low and high glucose concentrations. The insulin content of the MIN-6 cells incubated with low glucose and any of the five HDL subclasses had a modest reduction compared with their controls. However, there were no statistically significant differences between each HDL subfraction on their capacity of eliciting insulin secretion, insulin content, or cholesterol efflux. CONCLUSIONS: HDL can trigger insulin secretion under low, normal, and high glucose conditions. We found that all HDL subfractions exhibit very similar capacity to increase insulin secretion and cholesterol efflux. This is the first report demonstrating that HDL subfractions act both as insulin secretagogues (under low glucose) and insulin secretion enhancers (under high glucose) in the MIN-6 cell line.


Assuntos
Colesterol/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Lipoproteínas HDL/sangue , Adulto , Animais , Linhagem Celular Tumoral , Feminino , Glucose/farmacologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade
19.
J Ethnopharmacol ; 264: 113075, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32829055

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditionally plant-based remedies such as Commiphora myrrha (CM) have been used as an ayurvedic medicine to treat diabetes mellitus in some region of Arabia and Africa. Previous reports have shown that CM reduced blood glucose levels and increased insulin concentrations in animal models of diabetes in vivo. However, the exact mechanisms by which CM improved glycemic control in these animals are not fully understood. We hypothesized that CM may have a direct insulinotropic activity on ß-cells to increase insulin secretion. AIM OF THE STUDY: The direct effects of CM were investigated using MIN6 ß-cells and isolated mouse and human islets in static and perifusion insulin secretion experiments. Isolated mouse and human islets were used to investigate the rate and pattern of CM-induced insulin secretion. MATERIALS AND METHODS: The effect of CM on insulin secretion was assessed by static and perifusion experiments using MIN6 cells, a mouse-derived ß-cell line, and primary mouse and human islets. The effects of CM on cell viability and membrane integrity of MIN6 cells and mouse islets were assessed using an ATP viability assay and a trypan blue exclusion test. The mRNA expression profiles of preproinsulin and Pdx1, a major ß-cell transcription factor, were determined by quantitative RT-PCR following chronic exposure to CM. RESULTS: Exposing MIN6 cells to a CM resin solution (0.5-10 mg/ml) caused a concentration-dependent increase in insulin secretion in a static setting. Similarly, incubating mouse islets to CM (0.1-10 mg/ml) resulted in stimulation of insulin secretion in a concentration-dependent manner. CM concentrations at ≤ 2 mg/ml were not associated with reduction in cell viability nor with reduction in cell membrane integrity. However, higher concentrations of CM were accompanied with marked uptake of trypan blue dye and cell death. In a perifusion setting, CM (2 mg/ml) caused rapid and reversible increases in insulin secretion from both mouse and human islets at both sub-stimulatory and stimulatory glucose levels. The stimulatory effect of CM on insulin secretion did not change the total insulin content of ß-cells nor the mRNA expression of preproinsulin and Pdx1. CONCLUSIONS: These data indicate that aqueous CM resin solution has a direct stimulatory effect on ß-cells without compromising plasma membrane integrity. CM stimulates insulin secretion from MIN6 cells, a mouse-derived ß-cell line, and isolated primary mouse and human islets in vitro at both sub-stimulatory and stimulatory glucose concentrations. The mechanism by which CM may induce insulin secretion is most likely due to a stimulation of insulin granules release rather than insulin synthesis.


Assuntos
Commiphora , Secreção de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Extratos Vegetais/farmacologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/isolamento & purificação
20.
Acta Biochim Biophys Sin (Shanghai) ; 53(1): 46-53, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33242093

RESUMO

Endoplasmic reticulum (ER) stress plays a critical role in pancreatic ß cell destruction which leads to the pathogenesis of type 1 diabetes mellitus (T1DM). Vitamin D (VD) has been reported to reduce the risk of T1DM; however, it remains unknown whether VD affects ER stress in pancreatic ß cells. In this study, we investigated the role of the active form of VD, 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], in ER stress-induced ß cell apoptosis and explored its potential mechanism in mouse insulinoma cell line mouse insulinoma 6 (MIN6). The results of cell counting kit-8 (CCK8) and flow cytometric analyses showed that 1,25-(OH)2D3 caused a significant increase in the viability of MIN6 cells injured by H2O2. The protein kinase like ER kinase (PERK) signal pathway, one of the most conserved branches of ER stress, was found to be involved in this process. H2O2 activated the phosphorylation of PERK, upregulated the activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) expression, and subsequently initiated cell apoptosis, which were significantly reversed by 1,25-(OH)2D3 pretreatment. In addition, GSK2606414, a specific inhibitor of PERK, suppressed PERK phosphorylation and reduced the expressions of ATF4 and CHOP, leading to a significant decrease in ß cell apoptosis induced by H2O2. Taken together, the present findings firstly demonstrated that 1,25-(OH)2D3 could prevent MIN6 cells against ER stress-associated apoptosis by inhibiting the PERK-ATF4-CHOP pathway. Therefore, our results suggested that 1,25-(OH)2D3 might serve as a potential therapeutic target for preventing pancreatic ß cell destruction in T1DM.


Assuntos
Fator 4 Ativador da Transcrição/antagonistas & inibidores , Calcitriol/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição CHOP/antagonistas & inibidores , eIF-2 Quinase/antagonistas & inibidores , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Indóis/farmacologia , Células Secretoras de Insulina/citologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA