Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(5)2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37239413

RESUMO

Economic losses due to copper intoxication or deficiency is a problem encountered by sheep farmers. The aim of this study was to investigate the ovine genome for genomic regions and candidate genes responsible for variability in liver copper concentration. Liver samples were collected from slaughtered lambs of the Merinoland breed from two farms, and used for measurement of copper concentration and genome-wide association study (GWAS). A total of 45,511 SNPs and 130 samples were finally used for analysis, in which single-locus and several multi-locus GWAS (SL-GWAS; ML-GWAS) methods were employed. Gene enrichment analysis was performed for identified candidate genes to detect gene ontology (GO) terms significantly associated with hepatic copper levels. The SL-GWAS and a minimum of two ML-GWAS identified two and thirteen significant SNPs, respectively. Within genomic regions surrounding identified SNPs, we observed nine promising candidate genes such as DYNC1I2, VPS35, SLC38A9 and CHMP1A. GO terms such as lysosomal membrane, mitochondrial inner membrane and sodium:proton antiporter activity were significantly enriched. Genes involved in these identified GO terms mediate multivesicular body (MVB) fusion with lysosome for degradation and control mitochondrial membrane permeability. This reveals the polygenic status of this trait and candidate genes for further studies on breeding for copper tolerance in sheep.


Assuntos
Cobre , Estudo de Associação Genômica Ampla , Ovinos/genética , Animais , Cobre/toxicidade , Genoma , Genômica , Fígado
2.
BMC Plant Biol ; 22(1): 519, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36344939

RESUMO

BACKGROUND: Rapid reductions in emissions from fossil fuel burning are needed to curb global climate change. Biofuel production from crop residues can contribute to reducing the energy crisis and environmental deterioration. Wheat is a renewable source for biofuels owing to the low cost and high availability of its residues. Thus, identifying candidate genes controlling these traits is pivotal for efficient biofuel production. Here, six multi-locus genome-wide association (ML-GWAS) models were applied using 185 tetraploid wheat accessions to detect quantitative trait nucleotides (QTNs) for fifteen traits associated with biomass composition. RESULTS: Among the 470 QTNs, only 72 identified by at least two models were considered as reliable. Among these latter, 16 also showed a significant effect on the corresponding trait (p.value < 0.05). Candidate genes survey carried out within 4 Mb flanking the QTNs, revealed putative biological functions associated with lipid transfer and metabolism, cell wall modifications, cell cycle, and photosynthesis. Four genes encoded as Cellulose Synthase (CeSa), Anaphase promoting complex (APC/C), Glucoronoxylan 4-O Methyltransferase (GXM) and HYPONASTIC LEAVES1 (HYL1) might be responsible for an increase in cellulose, and natural and acid detergent fiber (NDF and ADF) content in tetraploid wheat. In addition, the SNP marker RFL_Contig3228_2154 associated with the variation in stem solidness (Q.Scsb-3B) was validated through two molecular methods (High resolution melting; HRM and RNase H2-dependent PCR; rhAMP). CONCLUSIONS: The study provides new insights into the genetic basis of biomass composition traits on tetraploid wheat. The application of six ML-GWAS models on a panel of diverse wheat genotypes represents an efficient approach to dissect complex traits with low heritability such as wheat straw composition. The discovery of genes/genomic regions associated with biomass production and straw quality parameters is expected to accelerate the development of high-yielding wheat varieties useful for biofuel production.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/metabolismo , Biocombustíveis , Tetraploidia , Fenótipo
3.
Plants (Basel) ; 11(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35890461

RESUMO

Roots are essential organs for a plant's ability to absorb water and obtain mineral nutrients, hence they are critical to its development. Plants use root architectural alterations to improve their chances of absorbing nutrients when their supply is low. Nine root traits of a Brassica napus association panel were explored in hydroponic-system studies under low potassium (K) stress to unravel the genetic basis of root growth in rapeseed. The quantitative trait loci (QTL) and candidate genes for root development were discovered using a multilocus genome-wide association study (ML-GWAS). For the nine traits, a total of 453 significant associated single-nucleotide polymorphism (SNP) loci were discovered, which were then integrated into 206 QTL clusters. There were 45 pleiotropic clusters, and qRTA04-4 and qRTC04-7 were linked to TRL, TSA, and TRV at the same time, contributing 5.25-11.48% of the phenotypic variance explained (PVE) to the root traits. Additionally, 1360 annotated genes were discovered by examining genomic regions within 100 kb upstream and downstream of lead SNPs within the 45 loci. Thirty-five genes were identified as possibly regulating root-system development. As per protein-protein interaction analyses, homologs of three genes (BnaC08g29120D, BnaA07g10150D, and BnaC04g45700D) have been shown to influence root growth in earlier investigations. The QTL clusters and candidate genes identified in this work will help us better understand the genetics of root growth traits and could be employed in marker-assisted breeding for rapeseed adaptable to various conditions with low K levels.

4.
BMC Plant Biol ; 21(1): 364, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376143

RESUMO

BACKGROUND: Improving the overall production of rice with high quality is a major target of breeders. Mining potential yield-related loci have been geared towards developing efficient rice breeding strategies. In this study, one single-locus genome-wide association studies (SL-GWAS) method (MLM) in conjunction with five multi-locus genome-wide association studies (ML-GWAS) approaches (mrMLM, FASTmrMLM, pLARmEB, pKWmEB, and ISIS EM-BLASSO) were conducted in a panel consisting of 529 rice core varieties with 607,201 SNPs. RESULTS: A total of 152, 106, 12, 111, and 64 SNPs were detected by the MLM model associated with the five yield-related traits, namely grain length (GL), grain width (GW), grain thickness (GT), thousand-grain weight (TGW), and yield per plant (YPP), respectively. Furthermore, 74 significant quantitative trait nucleotides (QTNs) were presented across at least two ML-GWAS methods to be associated with the above five traits successively. Finally, 20 common QTNs were simultaneously discovered by both SL-GWAS and ML-GWAS methods. Based on genome annotation, gene expression analysis, and previous studies, two candidate key genes (LOC_Os09g02830 and LOC_Os07g31450) were characterized to affect GW and TGW, separately. CONCLUSIONS: These outcomes will provide an indication for breeding high-yielding rice varieties in the immediate future.


Assuntos
Estudo de Associação Genômica Ampla , Oryza/crescimento & desenvolvimento , Oryza/genética , Desequilíbrio de Ligação , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
5.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34281242

RESUMO

Cultivars with efficient root systems play a major role in enhancing resource use efficiency, particularly water absorption, and thus in drought tolerance. In this study, a diverse wheat association panel of 136 wheat accessions including mini core subset was genotyped using Axiom 35k Breeders' Array to identify genomic regions associated with seedling stage root architecture and shoot traits using multi-locus genome-wide association studies (ML-GWAS). The association panel revealed a wide variation of 1.5- to 50-fold and were grouped into six clusters based on 15 traits. Six different ML-GWAS models revealed 456 significant quantitative trait nucleotides (QTNs) for various traits with phenotypic variance in the range of 0.12-38.60%. Of these, 87 QTNs were repeatedly detected by two or more models and were considered reliable genomic regions for the respective traits. Among these QTNs, eleven were associated with average diameter and nine each for second order lateral root number (SOLRN), root volume (RV) and root length density (RLD). A total of eleven genomic regions were pleiotropic and each controlled two or three traits. Some important candidate genes such as Formin homology 1, Ubiquitin-like domain superfamily and ATP-dependent 6-phosphofructokinase were identified from the associated genomic regions. The genomic regions/genes identified in this study could potentially be targeted for improving root traits and drought tolerance in wheat.


Assuntos
Estudo de Associação Genômica Ampla , Osmorregulação/genética , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Triticum/genética , Secas , Variação Genética , Poliploidia , Plântula/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA