Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 700
Filtrar
1.
Int Immunopharmacol ; 143(Pt 1): 113318, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39393270

RESUMO

SARS-CoV-2, a ß-coronavirus responsible for the COVID-19 pandemic, has resulted in approximately 4.9 million fatalities worldwide. Despite the urgent need, there is currently no specific therapeutic developed for treating or preventing SARS-CoV-2 infections. The virus enters the host by engaging in a molecular interaction between the viral Spike glycoprotein (S protein) and the host ACE2 receptor, facilitating membrane fusion and initiating infection. Inhibiting this interaction could impede viral activity. Therefore, this study aimed to identify natural small molecules from perennial rue herb (Ruta graveolens) as potential inhibitors against the S protein, thus preventing virus infection. Initially, a screening process was conducted on 53 compounds identified from rue herbs, utilizing pharmacophore-based virtual screening approaches. This analysis resulted in the identification of 12 hit compounds. Four compounds, namely Amentoflavone (CID: 5281600), Agathisflavone (CID: 5281599), Vitamin P (CID: 24832108), and Daphnoretin (CID: 5281406), emerged as potential S protein inhibitors through molecular docking simulations, exhibiting binding energies in kcal/mol of -9.2, -8.8, -8.2, and -8.0, respectively. ADMET analysis revealed favorable pharmacokinetics and toxicity profiles for these compounds. The compounds' stability with respect to the target S protein was evaluated using MD simulation and MM-GBSA approaches. The analysis revealed the stability of the selected compounds with the target protein. Also, PCA revealed distinctive movement patterns in four selected compounds, offered valuable insights into their functional behaviors and potential interactions. In-vitro assays revealed that rue herb extracts containing these compounds displayed potential inhibitory properties against the virus, with an IC50 value of 1.299 mg/mL and a cytotoxic concentration (CC50) value of 11.991 mg/mL. The compounds derived from rue herb, specifically Amentoflavone, Agathisflavone, Vitamin P, and Daphnoretin, show promise as candidates for the therapeutic intervention of SARS-CoV-2-related complications.

2.
Comput Biol Chem ; 113: 108239, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39405778

RESUMO

Phosphodiesterase type 5 (PDE5) is a cyclic nucleotide-hydrolyzing enzyme that plays essential roles in the regulation of second messenger cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) produced in response to various stimuli. Pharmacological inhibition of PDE5 has been shown to have several therapeutic uses, including treating cardiovascular diseases and erectile dysfunction. In search of PDE5A inhibitors with safer pharmacokinetic properties, computational analyses of the binding propensity of fifty natural compounds comprising flavonoids, polyphenols, and glycosides were conducted. Molecular dynamics simulation coupled with Molecular mechanics with generalized Born and surface area solvation (MM/GBSA) showed that verbascoside may inhibit the activity of PDE5 with a comparative binding energy (ΔG) of -87.8 ± 9.2 kcal/mol to that of the cocrystal ligand (PDB ID: 3BJC), having ΔG = -77.7±4.5 kcal/mol. However, the other top compounds studied were found to have lower binding propensities than the cocrystal ligand WAN: hesperidin (ΔG = -33.8 ± 3.4 kcal/mol), rutin (ΔG = -23.6 ± 26.3 kcal/mol), caftaric acid (ΔG = -21.2 ±3.6 kcal/mol), and chlorogenic acid (ΔG = 6.0 ± 16.5 kcal/mol). Therefore, verbascoside may serve as a potential PDE5A inhibitor while hesperidin, rutin, and caftaric acid may provide templates for further structural optimization for the designs of safer PDE5 inhibitors.

3.
In Silico Pharmacol ; 12(2): 90, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39355758

RESUMO

Mucormycosis is a concerning invasive fungal infection with difficult diagnosis, high mortality rates, and limited treatment options. Iron availability is crucial for fungal growth that causes this disease. This study aimed to computationally target iron uptake proteins in Rhizopus arrhizus, Lichtheimia corymbifera, and Mucor circinelloides to identify inhibitors, thereby halting fungal growth and intervening in mucormycosis pathogenesis. Seven important iron uptake proteins were identified, modeled, and validated using Ramachandran plots. An in-house antifungal library of ~ 15,401 compounds was screened in molecular docking studies with these proteins. The best small molecule-protein complexes were simulated at 100 ns using Maestro, Schrodinger. Toxicity predictions suggested all six molecules, identified as the best binding compounds to seven proteins, belonged to lower toxicity levels per GHS classification. A molecular mechanics GBSA study for all seven complexes indicated low standard deviations after calculating free binding energies every 10 ns of the 100 ns trajectory. Density functional theory via quantum mechanics approaches highlighted the HOMO, LUMO, and other properties of the six best-bound molecules, revealing their binding capabilities and behaviour. This study sheds light on the molecular mechanisms and protein-ligand interactions, providing a multi-dimensional view towards the use of FDBD01920, FDBD01923, and FDBD01848 as stable antifungal ligands. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-024-00264-7.

4.
J Mol Model ; 30(11): 390, 2024 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-39480515

RESUMO

CONTEXT: The substantial increase in the number of active and inactive-state CB1 receptor experimental structures has provided opportunities for CB1 drug discovery using various structure-based drug design methods, including the popular end-point methods for predicting binding free energies-Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA). In this study, we have therefore evaluated the performance of MM/PBSA and MM/GBSA in calculating binding free energies for CB1 receptor. Additionally, with both MM/PBSA and MM/GBSA being known for their highly individualized performance, we have evaluated the effects of various simulation parameters including the use of energy minimized structures, choice of solute dielectric constant, inclusion of entropy, and the effects of the five GB models. Generally, MM/GBSA provided higher correlations than MM/PBSA (rMM/GBSA = 0.433 - 0.652 vs. rMM/PBSA = 0.100 - 0.486) regardless of the simulation parameters, while also offering faster calculations. Improved correlations were observed with the use of molecular dynamics ensembles compared with energy minimized structures and larger solute dielectric constants. Incorporation of entropic terms led to unfavorable results for both MM/PBSA and MM/GBSA for a majority of the dataset, while the evaluation of the various GB models exerted a varying effect on both the datasets. The findings obtained in this study demonstrate the utility of MM/PBSA and MM/GBSA in predicting binding free energies for the CB1 receptor, hence providing a useful benchmark for their applicability in the endocannabinoid system as well as other G protein-coupled receptors. METHODS: The study utilized the docked dataset (Induced Fit Docking with Glide XP scoring function) from Loo et al., consisting of 46 ligands-23 agonists and 23 antagonists. The equilibrated structures from Loo et al. were subjected to 30 ns production simulations using GROMACS 2018 at 300 K and 1 atm with the velocity rescaling thermostat and the Parinello-Rahman barostat. AMBER ff99SB*-ILDN was used for the proteins, General Amber Force Field (GAFF) was used for the ligands, and Slipids parameters were used for lipids. MM/PBSA and MM/GBSA binding free energies were then calculated using gmx_MMPBSA. The solute dielectric constant was varied between 1, 2, and 4 to study the effect of different solute dielectric constants on the performance of MM/PB(GB)SA. The effect of entropy on MM/PB(GB)SA binding free energies was evaluated using the interaction entropy module implemented in gmx_MMPBSA. Five GB models, GBHCT, GBOBC1, GBOBC2, GBNeck, and GBNeck2, were evaluated to study the effect of the choice of GB models in the performance of MM/GBSA. Pearson correlation coefficients were used to measure the correlation between experimental and predicted binding free energies.


Assuntos
Simulação de Dinâmica Molecular , Ligação Proteica , Receptor CB1 de Canabinoide , Termodinâmica , Receptor CB1 de Canabinoide/química , Receptor CB1 de Canabinoide/metabolismo , Ligantes , Canabinoides/química , Canabinoides/metabolismo , Canabinoides/farmacologia , Simulação de Acoplamento Molecular , Sítios de Ligação , Entropia , Humanos
5.
Artigo em Inglês | MEDLINE | ID: mdl-39473209

RESUMO

INTRODUCTION: DENV NS2B-NS3 protease inhibitors were designed based upon the reference molecule, 4-(1,3-dioxoisoindolin-2-yl)-N-(4-ethylphenyl) benzenesulfonamide, reported by our team with the aim to optimize lead compound via rational approach. Top five best scoring molecules with zinc ids ZINC23504872, ZINC48412318, ZINC00413269, ZINC13998032 and ZINC75249613 bearing 'pyrimidin-4(3H)-one' basic scaffold have been identified as a promising candidate against DENV protease enzyme. METHODS: The shape and electrostatic complementary between identified HITs and reference molecules were found to be Tanimotoshape 0.453, 0.690, 0.680, 0.685 & 0.672 respectively and Tanimotoelectrostatic 0.211, 0.211, 0.441, 0.442, 0.442 and 0.442 respectively. The molecular docking studies suggested that the identified HITs displayed the good interactions with active site residues and lower binding energies. The stability of docked complexes was assessed by MD simulations studies. The RMSD values of protein backbone (1.6779, 3.1563, 3.3634, 3.3893 & 3.0960 Å) and protein backbone RMSF values (1.0126, 1.0834, 1.0890, 0.9974 & 1.0080 Å respectively) for all top five HITs were stable and molecules did not fluctuate from the active pocket during entire 100ns MD run. RESULTS: The druggability Dscore below 1 indicate the tightly binding of ligand at the active site. Dscore for ZINC23504872 was found to be 1.084 while for the second class of compounds ZINC48412318, ZINC00413269, ZINC13998032 and ZINC75249613, 0.503, 0.484, 0.487 and 0.501 Dscores were observed. In-silico ADMET calculations suggested that all five HITs were possessed the drug likeliness properties and did not violate the Lipinski's rule of five. CONCLUSION: Summing up, these in-silico generated data suggested that the identified molecules bearing pyrimidin-4(3H)-one would be promising scaffold for DENV protease inhibitors. However, experimental results are needed to prove the obtained results.

6.
Metabolites ; 14(10)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39452899

RESUMO

Dengue (DENV) and Zika (ZIKV) virus continue to pose significant challenges globally due to their widespread prevalence and severe health implications. Given the absence of effective vaccines and specific therapeutics, targeting the highly conserved NS5 RNA-dependent RNA polymerase (RdRp) domain has emerged as a promising strategy. However, limited efforts have been made to develop inhibitors for this crucial target. In this study, we employed an integrated in silico approach utilizing combinatorial chemistry, docking, molecular dynamics simulations, MM/GBSA, and ADMET studies to target the allosteric N-pocket of DENV3-RdRp and ZIKV-RdRp. Using this methodology, we designed lycorine analogs with natural S-enantiomers (LYCS) and R-enantiomers (LYCR) as potential inhibitors of non-structural protein 5 (NS5) in DENV3 and ZIKV. Notably, 12 lycorine analogs displayed a robust binding free energy (<-9.00 kcal/mol), surpassing that of RdRp-ribavirin (<-7.00 kcal/mol) along with promising ADMET score predictions (<4.00), of which (LYCR728-210, LYCS728-210, LYCR728-212, LYCS505-214) displayed binding properties to both DENV3 and ZIKV targets. Our research highlights the potential of non-nucleoside lycorine-based analogs with different enantiomers that may present different or even completely opposite metabolic, toxicological, and pharmacological profiles as promising candidates for inhibiting NS5-RdRp in ZIKV and DENV3, paving the way for further exploration for the development of effective antiviral agents.

7.
3 Biotech ; 14(10): 234, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39297056

RESUMO

With the aim of finding the plant-derived allosteric inhibitors of caspase-3/-7, we conducted computational investigations of bioactive compounds present in various berry fruits. In a molecular docking study, perulactone demonstrated excellent binding affinity scores of -12.1 kcal/mol and -9.1 kcal/mol for caspase 7 and 3, respectively, whereas FDA-approved allosteric inhibitors (DICA and FICA) were found to show lower docking scores (-5.6 and -6.1 kcal/mol) against caspase 7 while (-5.0 and -5.1 kcal/mol) for caspase 3, respectively. MD simulations were used to validate the binding stability of perulactone in the active sites of caspase-7/-3, and the results showed outstanding stability with lower ligand RMSDs of 1.270-3.088 Å and 2.426-9.850 Å against the targeted receptor. Furthermore, we performed MMGBSA free binding energy, where the perulactone values of ΔG Bind were determined to be -63.98 kcal/mol and -66.32 kcal/mol for both receptors (3IBF and 1NME), which are significantly better than the -45.16 kcal/mol and -39.51 kcal/mol for DICA as well as -26.37 kcal/mol and -15.50 kcal/mol for FICA, respectively. The drug resemblance of perulactone was effectively evaluated by ADMET. Thus, our findings indicated that perulactone could be an orally administered therapeutic candidate for regulating apoptosis in a variety of disorders. However, there may be an urgent need to study using in vitro and in vivo experiments. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-04067-7.

8.
Pharmaceuticals (Basel) ; 17(9)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39338345

RESUMO

In the ongoing battle against antibiotic-resistant bacteria, New Delhi metallo-ß-lactamase-1 (NDM-1) has emerged as a significant therapeutic challenge due to its ability to confer resistance to a broad range of ß-lactam antibiotics. This study presents a pharmacophore-based virtual screening, docking, and molecular dynamics simulation approach for the identification of potential inhibitors targeting NDM-1, a critical enzyme associated with antibiotic resistance. Through the generation of a pharmacophore model and subsequent virtual screening of compound libraries, candidate molecules (ZINC29142850 (Z1), ZINC78607001 (Z2), and ZINC94303138 (Z3)) were prioritized based on their similarity to known NDM-1 binder (hydrolyzed oxacillin (0WO)). Molecular docking studies further elucidated the binding modes and affinities of the selected compounds towards the active site of NDM-1. These compounds demonstrated superior binding affinities to the enzyme compared to a control compound (-7.30 kcal/mol), with binding scores of -7.13, -7.92, and -8.10 kcal/mol, respectively. Binding interactions within NDM-1's active site showed significant interactions with critical residues such as His250, Asn220, and Trp93 for these compounds. Subsequent molecular dynamics simulations were conducted to assess the stability of the ligand-enzyme complexes, showing low root mean square deviation (RMSD) values between 0.5 and 0.7 nm for Z1, Z2, which indicate high stability. Z2's compactness in principal component analysis (PCA) suggests that it can stabilize particular protein conformations more efficiently. Z2 displays a very cohesive landscape with a notable deep basin, suggesting a very persistent conformational state induced by the ligand, indicating robust binding and perhaps efficient inhibition. Z2 demonstrates the highest binding affinity among the examined compounds with a binding free energy of -25.68 kcal/mol, suggesting that it could offer effective inhibition of NDM-1. This study highlights the efficacy of computational tools in identifying novel antimicrobial agents against resistant bacteria, accelerating drug discovery processes.

9.
Proteins ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264222

RESUMO

Considering p53's pivotal role as a tumor suppressor protein, proactive identification and characterization of potentially harmful p53 mutations are crucial before they appear in the population. To address this, four computational prediction tools-SIFT, Polyphen-2, PhD-SNP, and MutPred2-utilizing sequence-based and machine-learning algorithms, were employed to identify potentially deleterious p53 nsSNPs (nonsynonymous single nucleotide polymorphisms) that may impact p53 structure, dynamics, and binding with DNA. These computational methods identified three variants, namely, C141Y, C238S, and L265P, as detrimental to p53 stability. Furthermore, molecular dynamics (MD) simulations revealed that all three variants exhibited heightened structural flexibility compared to the native protein, especially the C141Y and L265P mutations. Consequently, due to the altered structure of mutant p53, the DNA-binding affinity of all three variants decreased by approximately 1.8 to 9.7 times compared to wild-type p53 binding with DNA (14 µM). Notably, the L265P mutation exhibited an approximately ten-fold greater reduction in binding affinity. Consequently, the presence of the L265P mutation in p53 could pose a substantial risk to humans. Given that p53 regulates abnormal tumor growth, this research carries significant implications for surveillance efforts and the development of anticancer therapies.

10.
Cell Biochem Funct ; 42(7): e4124, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39275928

RESUMO

Obesity and hyperlipidemia have become major disorders predominantly causing prevailing cardiovascular diseases and ultimately death. The prolonged use of anti-obesity drugs and statins for reducing obesity and blood lipid levels is leading toward adverse effects of kidneys and muscles, specifically rhabdomyolysis. The objective of this study is to evaluate potential of seeds of Ficus carica against hyperlipidemia. Various extracts and isolated compounds from fig seeds were analyzed and evaluated for their anti-hyperlipidemic potential. Methanol extract and its ethyl acetate fraction showed maximum pancreatic lipase inhibition of 61.93% and 86.45% in comparison to reference drug Orlistat. Four compounds isolated by HPLC-PDA technique were determined as Gallic acid, Catechin, Epicatechin, and Quercetin also showed strong potential to inhibit enzyme pancreatic lipase comparable to Orlistat. These isolated compounds were further analyzed for molecular docking and MM-GBSA studies. Three ligands, namely Quercetin, Epicatechin, and Catechin were found more effective against pancreatic lipase as these possessed docking scores (-9.881, -9.741, -9.410) higher to that of the reference ligand Orlistat (-5.273). The binding free energies of these compounds were -55.03, -56.54, and 60.35 kcal/mol, respectively. The results have shown that Quercetin has the highest binding affinity correlating with the highest inhibition of pancreatic lipase enzyme 1LPB. Hence, it is suggested that seeds of F. carica have promising anti-hyperlipidemic potential and foremost in reducing obesity.


Assuntos
Ficus , Hipolipemiantes , Simulação de Acoplamento Molecular , Extratos Vegetais , Sementes , Ficus/química , Sementes/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Hipolipemiantes/farmacologia , Hipolipemiantes/química , Hipolipemiantes/isolamento & purificação , Lipase/antagonistas & inibidores , Lipase/metabolismo , Humanos , Hiperlipidemias/tratamento farmacológico
11.
Mol Divers ; 28(4): 2345-2364, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39154146

RESUMO

Cancer is a generic term for a group of disorders defined by uncontrolled cell growth and the potential to invade or spread to other parts of the body. Gene and epigenetic alterations disrupt normal cellular control, leading to abnormal cell proliferation, resistance to cell death, blood vessel development, and metastasis (spread to other organs). One of the several routes that play an important role in the development and progression of cancer is the phosphoinositide 3-kinase (PI3K) signaling pathway. Moreover, the gene PIK3CG encodes the catalytic subunit gamma (p110γ) of phosphoinositide 3-kinase (PI3Kγ), a member of the PI3K family. Therefore, in this study, PIK3CG was targeted to inhibit cancer by identifying a novel inhibitor through computational methods. The study screened 1015 chemical fragments against PIK3CG using machine learning-based binding estimation and docking to select the potential compounds. Later, the analogues were generated from the selected hits, and 414 analogues were selected, which were further screened, and as most potential candidates, three compounds were obtained: (a) 84,332, 190,213, and 885,387. The protein-ligand complex's stability and flexibility were then investigated by dynamic modeling. The 100 ns simulation revealed that 885,387 exhibited the steadiest deviation and constant creation of hydrogen bonds. Compared to the other compounds, 885,387 demonstrated a superior binding free energy (ΔG = -18.80 kcal/mol) with the protein when the MM/GBSA technique was used. The study determined that 885,387 showed significant therapeutic potential and justifies further experimental investigation as a possible inhibitor of the PIK3CG target implicated in cancer.


Assuntos
Antineoplásicos , Desenho de Fármacos , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Neoplasias , Inibidores de Fosfoinositídeo-3 Quinase , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/química , Neoplasias/tratamento farmacológico , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/química , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Simulação de Dinâmica Molecular , Modelos Moleculares , Ligantes , Ligação Proteica
12.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125681

RESUMO

The search for bioactive compounds in natural products holds promise for discovering new pharmacologically active molecules. This study explores the anti-inflammatory potential of açaí (Euterpe oleracea Mart.) constituents against the NLRP3 inflammasome using high-throughput molecular modeling techniques. Utilizing methods such as molecular docking, molecular dynamics simulation, binding free energy calculations (MM/GBSA), and in silico toxicology, we compared açaí compounds with known NLRP3 inhibitors, MCC950 and NP3-146 (RM5). The docking studies revealed significant interactions between açaí constituents and the NLRP3 protein, while molecular dynamics simulations indicated structural stabilization. MM/GBSA calculations demonstrated favorable binding energies for catechin, apigenin, and epicatechin, although slightly lower than those of MCC950 and RM5. Importantly, in silico toxicology predicted lower toxicity for açaí compounds compared to synthetic inhibitors. These findings suggest that açaí-derived compounds are promising candidates for developing new anti-inflammatory therapies targeting the NLRP3 inflammasome, combining efficacy with a superior safety profile. Future research should include in vitro and in vivo validation to confirm the therapeutic potential and safety of these natural products. This study underscores the value of computational approaches in accelerating natural product-based drug discovery and highlights the pharmacological promise of Amazonian biodiversity.


Assuntos
Anti-Inflamatórios , Inflamassomos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Inflamassomos/antagonistas & inibidores , Inflamassomos/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Euterpe/química , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia
13.
Int J Mol Sci ; 25(16)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39201788

RESUMO

Nipah virus (NiV) is known to be a highly pathogenic zoonotic virus, which is included in the World Health Organization Research & Development Blueprint list of priority diseases with up to 70% mortality rate. Due to its high pathogenicity and outbreak potency, a therapeutic countermeasure against NiV is urgently needed. As NiV needs to be handled within a Biological Safety Level (BSL) 4 facility, we had developed a safe drug screening platform utilizing a baculovirus expression vector system (BEVS) based on a NiV-induced syncytium formation that could be handled within a BSL-1 facility. To reconstruct the NiV-induced syncytium formation in BEVS, two baculoviruses were generated to express recombinant proteins that are responsible for inducing the syncytium formation, including one baculovirus exhibiting co-expressed NiV fusion protein (NiV-F) and NiV attachment glycoprotein (NiV-G) and another exhibiting human EphrinB2 protein. Interestingly, syncytium formation was observed in infected insect cells when the medium was modified to have a lower pH level and supplemented with cholesterol. Fusion inhibitory properties of several compounds, such as phytochemicals and a polysulfonated naphthylamine compound, were evaluated using this platform. Among these compounds, suramin showed the highest fusion inhibitory activity against NiV-induced syncytium in the baculovirus expression system. Moreover, our in silico results provide a molecular-level glimpse of suramin's interaction with NiV-G's central hole and EphrinB2's G-H loop, which could be the possible reason for its fusion inhibitory activity.


Assuntos
Baculoviridae , Avaliação Pré-Clínica de Medicamentos , Células Gigantes , Vírus Nipah , Vírus Nipah/genética , Vírus Nipah/efeitos dos fármacos , Baculoviridae/genética , Animais , Humanos , Células Gigantes/efeitos dos fármacos , Células Gigantes/metabolismo , Células Gigantes/virologia , Avaliação Pré-Clínica de Medicamentos/métodos , Vetores Genéticos/genética , Antivirais/farmacologia , Suramina/farmacologia , Efrina-B2/metabolismo , Efrina-B2/genética , Infecções por Henipavirus/virologia , Células Sf9 , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus/efeitos dos fármacos
14.
Microb Pathog ; 195: 106892, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39216611

RESUMO

The highly pathogenic Marburg virus (MARV) is a member of the Filoviridae family, a non-segmented negative-strand RNA virus. This article represents the computer-aided drug design (CADD) approach for identifying drug-like compounds that prevent the MARV virus disease by inhibiting nucleoprotein, which is responsible for their replication. This study used a wide range of in silico drug design techniques to identify potential drugs. Out of 368 natural compounds, 202 compounds passed ADMET, and molecular docking identified the top two molecules (CID: 1804018 and 5280520) with a high binding affinity of -6.77 and -6.672 kcal/mol, respectively. Both compounds showed interactions with the common amino acid residues SER_216, ARG_215, TYR_135, CYS_195, and ILE_108, which indicates that lead compounds and control ligands interact in the common active site/catalytic site of the protein. The negative binding free energies of CID: 1804018 and 5280520 were -66.01 and -31.29 kcal/mol, respectively. Two lead compounds were re-evaluated using MD modeling techniques, which confirmed CID: 1804018 as the most stable when complexed with the target protein. PC3 of the (Z)-2-(2,5-dimethoxybenzylidene)-6-(2-(4-methoxyphenyl)-2-oxoethoxy) benzofuran-3(2H)-one (CID: 1804018) was 8.74 %, whereas PC3 of the 2'-Hydroxydaidzein (CID: 5280520) was 11.25 %. In this study, (Z)-2-(2,5-dimethoxybenzylidene)-6-(2-(4-methoxyphenyl)-2-oxoethoxy) benzofuran-3(2H)-one (CID: 1804018) unveiled the significant stability of the proteins' binding site in ADMET, Molecular docking, MM-GBSA and MD simulation analysis studies, which also showed a high negative binding free energy value, confirming as the best drug candidate which is found in Angelica archangelica which may potentially inhibit the replication of MARV nucleoprotein.


Assuntos
Antivirais , Benzofuranos , Marburgvirus , Simulação de Acoplamento Molecular , Replicação Viral , Antivirais/farmacologia , Antivirais/química , Antivirais/metabolismo , Marburgvirus/efeitos dos fármacos , Marburgvirus/metabolismo , Benzofuranos/farmacologia , Benzofuranos/química , Benzofuranos/metabolismo , Replicação Viral/efeitos dos fármacos , Quimioinformática/métodos , Desenho de Fármacos , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Sítios de Ligação , Ligantes
15.
Arch Biochem Biophys ; 760: 110137, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39216733

RESUMO

As the important hub of many cellular signaling networks, KRAS (Kirsten rat sarcoma viral oncogene homologue) has been identified as a tumor biomarker. It is the frequently mutated oncogene in human cancers, and KRAS protein activation caused by mutations, such as G12D, has been found in many human tumors tissues. Although, there are two specific allosteric sites (AS1 and AS2) on the KRAS protein that can be used as the targets for inhibitor development, the difference of regulatory mechanisms between two individual allosteric sites still not be reported. Here, using molecular dynamics simulations combined with molecular mechanics generalized born surface area (MM/GBSA) analysis, we found that both of the inhibitors, located at AS1 and AS2, were able to reduce the binding free energy between wild type, mutant KRAS (G12/D/V/S/C) and GTP remarkably, however the effect of inhibitors on the binding free energy between wild type, mutant KRAS and GDP was limited. In addition, the degree of decrease of binding free energy between KRAS and GTP caused by inhibitors at AS2 was significantly greater than that caused by inhibitors at AS1. Further analysis revealed that both inhibitors at AS1 and AS2 were able to regulate the fluctuation of Switch Ⅰ and Switch Ⅱ to expand the pocket of the orthosteric site (GTP binding site), thereby reducing the binding of KRAS to GTP. Noteworthy there was significant differences in the regulatory preferences on Switch Ⅰ and Switch Ⅱ between two type inhibitor. The inhibitor at AS2 mainly regulated Switch Ⅱ to affect the pocket of the orthosteric site, while the inhibitor at AS1 mainly expand the pocket of the orthosteric site by regulating the fluctuation of Switch Ⅰ. Our study compared the differences between two type inhibitors in regulating the KRAS protein activity and revealed the advantages of the AS2 as the small molecule drug target, aiming to provide theoretical guidance for the research of novel KRAS protein inhibitors.


Assuntos
Sítio Alostérico , Simulação de Dinâmica Molecular , Mutação , Proteínas Proto-Oncogênicas p21(ras) , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Humanos , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/química , Regulação Alostérica , Ligação Proteica , Guanosina Difosfato/metabolismo , Guanosina Difosfato/química
16.
Mol Biotechnol ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39207668

RESUMO

CDK4 is a member of the serine-threonine kinase family, which has been found to be overexpressed in a plethora of studies related to neurodegenerative diseases. CDK4 is one of the most validated therapeutic targets for neurodegenerative diseases. Hence, the discovery of potent inhibitors of CDK4 is a promising candidate in the drug discovery field. Firstly, the reference drug Palbociclib was identified from the available literature as a potential candidate against target CDK4. In the present study, the Collection of Open Natural Products (COCONUT) database was accessed for determining potential CDK4 inhibitors using computational approaches based on the Tanimoto algorithm for similarity with the target drug, i.e., Palbociclib. The potential candidates were analyzed using SWISSADME, and the best candidates were filtered based on Lipinski's Rule of 5, Brenk, blood-brain barrier permeability, and Pains parameter. Further, the molecular docking protocol was accessed for the filtered compounds to anticipate the CDK4-ligand binding score, which was validated by the fastDRH web-based server. Based on the best docking score so obtained, the best four natural compounds were chosen for further molecular dynamic simulation to assess their stability with CDK4. In this study, two natural products, with COCONUT Database compound ID-CNP0396493 and CNP0070947, have been identified as the most suitable candidates for neuroprotection.

17.
Chem Biodivers ; 21(10): e202400904, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38973448

RESUMO

There was an emergency call globally when COVID-19 was detected in December 2019. The SARS-CoV-2 virus, a modified virus, causes this contagious disease. Although research is being conducted throughout the world, the main target is still to find the promising candidate to target RNA-dependent RNA polymerase (RdRp) to provide possible drug against COVID-19. Aim of this work is to find a molecule to inhibit the translational process of viral protein synthesis. Density Functional Theory calculations revealed information about the formation of the desired ligand (RD). Molecular docking of RD with RdRp was performed and compared with some reported molecules and the data revealed that RD had the best docking score with RdRp (-6.7 kcal/mol). Further, molecular dynamics (MD) simulations of RD with RdRp of SARS-CoV-2 revealed the formation of stable complex with a maximum number of seven hydrogen bonds. Root mean square deviations values are in acceptable range and root mean square fluctuations are also low, indicating stable complex formation. Further, based on MM-GBSA calculation, RD formed a stable complex with RdRp of nCoV with ΔG° of -12.28 kcal mol-1.


Assuntos
Antivirais , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , RNA Polimerase Dependente de RNA , SARS-CoV-2 , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Antivirais/química , Antivirais/farmacologia , Antivirais/síntese química , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/química , Humanos , Tratamento Farmacológico da COVID-19 , Teoria da Densidade Funcional , Alanina/análogos & derivados , Alanina/química , Alanina/farmacologia , Ligação de Hidrogênio
18.
ChemistryOpen ; 13(10): e202300198, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39031747

RESUMO

In the present work, phytoconstituents from Citrus limon are computationally tested against SARS-CoV-2 target protein such as Mpro - (5R82.pdb), Spike - (6YZ5.pdb) &RdRp - (7BTF.pdb) for COVID-19. Docking was done by glide model, QikProp was performed by in silico ADMET screening & Prime MM-GB/SA modules were used to define binding energy. When compared with approved COVID-19 drugs such as Remdesivir, Ritonavir, Lopinavir, and Hydroxychloroquine, plant-based constituents such as Quercetin, Rutoside, Naringin, Eriocitrin, and Hesperidin. bind with significant G-scores to the active SARS-CoV-2 place. The constituents Rutoside and Eriocitrin were studied in each MD simulation in 100 ns against 3 proteins 5R82.pdb, 6YZ5.pdb and 7BTF.pdb.We performed an assay with significant natural compounds from contacts and in silico results (Rutin, Eriocitrin, Naringin, Hesperidin) using 3CL protease assay kit (B.11529 Omicron variant). This kit contained 3CL inhibitor GC376 as Control. The IC50 value of the test compound was found to be Rutin -17.50 µM, Eriocitrin-37.91 µM, Naringin-39.58 µM, Hesperidine-140.20 µM, the standard inhibitory concentration of GC376 was 38.64 µM. The phytoconstituents showed important interactions with SARS-CoV-2 targets, and potential modifications could be beneficial for future development.


Assuntos
Antivirais , Citrus , Simulação de Acoplamento Molecular , SARS-CoV-2 , Citrus/química , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Humanos , Tratamento Farmacológico da COVID-19 , Simulação de Dinâmica Molecular , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , COVID-19/virologia
19.
Res Pharm Sci ; 19(1): 29-41, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39006973

RESUMO

Background and purpose: Coronavirus disease (COVID-19) is one of the greatest challenges of the twentieth century. Recently, in silico tools help to predict new inhibitors of SARS-CoV-2. In this study, the new compounds based on the remdesivir structure (12 compounds) were designed. Experimental approach: The main interactions of remdesivir and designed compounds were investigated in the 3CLpro active site. The binding free energy of compounds by the MM-GBSA method was calculated and the best compound (compound 12 with the value of -88.173 kcal/mol) was introduced to the molecular dynamics simulation study. Findings/Results: The simulation results were compared with the results of protein simulation without the presence of an inhibitor and in the presence of remdesivir. Additionally, the RMSD results for the protein backbone showed that compound 12 in the second 50 nanoseconds has less fluctuation than the protein alone and in the presence of remdesivir, which indicates the stability of the compound in the active site of the Mpro protein. Furthermore, protein compactness was investigated in the absence of compounds and the presence of compound 12 and remdesivir. The Rg diagram shows a fluctuation of approximately 0.05 A, which indicates the compressibility of the protein in the presence and absence of compounds. The results of the RMSF plot also show the stability of essential amino acids during protein binding. Conclusion and implications: Supported by the theoretical results, compound 12 could have the potential to inhibit the 3CLpro enzyme, which requires further in vitro studies and enzyme inhibition must also be confirmed at protein levels.

20.
Mol Biotechnol ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004678

RESUMO

Alzheimer's disease (AD) poses a significant global health challenge, necessitating the exploration of novel therapeutic strategies. Fyn Tyrosine Kinase has emerged as a key player in AD pathogenesis, making it an attractive target for drug development. This study focuses on investigating the potential of Papaveroline as a drug candidate for AD by targeting Fyn Tyrosine Kinase. The research employed high-throughput virtual screening and QSAR analysis were conducted to identify compounds with optimal drug-like properties, emphasizing adherence to ADMET parameters for further evaluation. Molecular dynamics simulations to analyze the binding interactions between Papaveroline and Staurosporine with Fyn Tyrosine Kinase over a 200-ns period. The study revealed detailed insights into the binding mechanisms and stability of the Papaveroline-Fyn complex, showcasing the compound's potential as an inhibitor of Fyn Tyrosine Kinase. Comparative analysis with natural compounds and a reference compound highlighted Papaveroline's unique characteristics and promising therapeutic implications for AD treatment. Overall, the findings underscore Papaveroline's potential as a valuable drug candidate for targeting Fyn Tyrosine Kinase in AD therapy, offering new avenues for drug discovery in neurodegenerative diseases. This study contributes to advancing our understanding of molecular interactions in AD pathogenesis and paves the way for further research and development in this critical area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA