RESUMO
This study introduces a novel electrochemical biosensor for detecting Matrix Metalloproteinase-2 (MMP-2), a key biomarker in cancer diagnostics and tissue remodeling. The biosensor is based on a dual-amplification strategy utilizing T7 RNA polymerase isothermal amplification and CRISPR-Cas12a technology. The principle involves the release of a DNA template in the presence of MMP-2, leading to RNA synthesis by T7 RNA polymerase. This RNA activates CRISPR-Cas12a, which cleaves a DNA probe on the electrode surface, resulting in a measurable electrochemical signal.The biosensor demonstrated exceptional sensitivity, with a detection limit of 2.62 fM for MMP-2. This high sensitivity was achieved through the combination of transcriptional amplification and the collateral cleavage activity of CRISPR-Cas12a, which amplifies the signal. The sensor was able to detect MMP-2 across a wide dynamic range from 2 fM to 1 nM, showing a strong linear correlation between MMP-2 concentration and the electrochemical signal. In practical applications, the biosensor accurately detected elevated levels of MMP-2 in cell culture supernatants from HepG2 liver cancer cells, distinguishing them from normal LO2 liver cells. The use of an MMP-2 inhibitor confirmed the specificity of the detection. These results underscore the biosensor's potential for clinical diagnostics, particularly in early cancer detection and monitoring of tissue remodeling activities. The biosensor's design allows for rapid, point-of-care testing without the need for complex laboratory equipment, making it a promising tool for personalized healthcare and diagnostic applications.
Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , RNA Polimerases Dirigidas por DNA , Técnicas Eletroquímicas , Metaloproteinase 2 da Matriz , Proteínas Virais , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Sistemas CRISPR-Cas/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Células Hep G2 , Limite de DetecçãoRESUMO
Background: Fragile X syndrome, with an approximate incidence rate of 1 in 4000 males to 1 in 8000 females, is the most prevalent genetic cause of heritable intellectual disability and the most common monogenic cause of autism spectrum disorder. The full mutation of the Fragile X Messenger Ribonucleoprotein-1 gene, characterized by an expansion of CGG trinucleotide repeats (>200 CGG repeats), leads to fragile X syndrome. Currently, there are no targeted treatments available for fragile X syndrome. In a recent large multi-site trial, FXLEARN, the effects of the mGluR5 negative allosteric modulator, AFQ056 (mavoglurant), were investigated, but did not show a significant impact of AFQ056 on language development in children with fragile X syndrome aged 3-6 years. Objectives: The current analyses from biospecimens collected in the FXLEARN study aimed to determine whether AFQ056 affects the level of potential biomarkers associated with Akt/mTOR and matrix metalloproteinase 9 signaling in young individuals with fragile X syndrome. Previous research has indicated that these biomarkers play crucial roles in the pathophysiology of fragile X syndrome. Design: A double-blind placebo-controlled parallel-group flexible-dose forced titration design. Methods: Blood samples for biomarkers were collected during the FXLEARN at baseline and subsequent visits (1- and 8-month visits). Biomarker analyses included fragile X messenger ribonucleoprotein-1 genotyping by Southern blot and PCR approaches, fragile X messenger ribonucleoprotein-1 mRNA levels determined by PCR, matrix metalloproteinase 9 levels' detection using a magnetic bead panel, and targets of the Akt/mTOR signaling pathway with their phosphorylation levels detected. Results: This research revealed that administering AFQ056 does not affect the expression levels of the investigated blood biomarkers in young children with fragile X syndrome. Conclusion: Our findings of the lack of association between clinical improvement and biomarkers' levels in the treatment group are in line with the lack of benefit observed in the FXLEARN study. These findings indicate that AFQ056 does not provide benefits as assessed by primary or secondary endpoints. Registration: ClincalTrials.gov NCT02920892.
RESUMO
Background: The poor surgical efficacy and recurrence of glioblastoma (GBM) are due to its lack of visible infiltrative features. Our bioinformatics study suggests that low expression of small ubiquitin-like modifier (SUMO)-specific protease 7 (SENP7) indicates poor prognosis in GBM. Objectives: This study investigated the effect of SENP7 expression on the invasion, migration, and proliferation of GBM cells and aims to identify the SUMO target proteins affected by SENP7. Methods: SENP7 expression was analyzed in eight GBM tumor samples and four GBM cell lines, comparing them to normal brain tissue. The effect of SENP7 overexpression on GBM LN229 cell migration, invasion, and proliferation was examined through in vitro assays. Furthermore, four SUMO target proteins involved in tumor invasion and proliferation (CDK6, matrix metalloproteinase-9 [MMP9], AKT, and HIF-1α) were studied to explore SENP7's molecular mechanism. Results: SENP7 expression was significantly lower in GBM tumors compared to normal tissue. SENP7 overexpression in LN229 cells inhibited migration and invasion without affecting proliferation. Overexpression reduced the levels of MMP9, AKT, and HIF-1α, but not CDK6. Immunohistochemical analysis showed decreased MMP9 and CD31 levels, suggesting reduced tumor invasion and angiogenesis. However, SENP7 overexpression did not affect tumor growth in vivo. Conclusions: SENP7 inhibits GBM invasion by dissociating proteins associated with tumor invasion from SUMO2/3, providing a potential target for future GBM therapies.
RESUMO
Yak (Bos grunniens) is the only large mammal species in the Qinghai-Tibet Plateau. The most of the studies in yak remain confined for the main contributor of meat, which requires a good understanding of muscle growth. Matrix metalloproteinases-2 (MMP-2) and MMP-9 are widely expressed in mammal tissues they mainly degrade collagen in the extracellular matrix for muscle development. However, the influence of MMPs on yak muscle remains unclear. Hence, we assessed the expression of MMP-2, MMP-9, and related factors with ages in Maiwa yak for study the correlation between MMPs expression and yak muscle growth. The mRNA expression of MMP-2, MMP-9, MMP-14, and collagen III increased with age, except collagen I by quantitative real-time PCR. Moreover, muscle fiber diameter increased with age, whereas the density decreased, which showed that fiber grew thicker with age using hematoxylin-eosin staining. Interestingly, MMP and collagen expression significantly decreased with age using western blotting. Pearson correlation method showed that both mRNA and protein expression of MMP-14 and collagen were strongly correlated with muscle fiber growth, but MMP-2 protein and MMP-9 mRNA expression were moderately correlated with muscle fiber growth. Overall, the expression of MMPs and collagen significantly changed with age, which means that MMPs and their function related genes could correlate with Maiwa yak muscle fiber growth.
RESUMO
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases with important roles in kidney homeostasis and pathology. While capable of collectively degrading each component of the extracellular matrix, MMPs also degrade nonmatrix substrates to regulate inflammation, epithelial plasticity, proliferation, apoptosis, and angiogenesis. More recently, intriguing mechanisms that directly alter podocyte biology have been described. There is now irrefutable evidence for MMP dysregulation in many types of kidney disease including acute kidney injury, diabetic and hypertensive nephropathy, polycystic kidney disease and Alport syndrome. This updated review will detail the complex biology of MMPs in kidney disease.
RESUMO
Over the past decade, the greatest promise for treating severe and currently incurable systemic and neurodegenerative diseases has turned to agents capable of effectively degrading pathological amyloid deposits without causing side effects. Specifically, amyloid destruction observed in immunotherapy is hypothesized to occur through activation of proteolytic enzymes. This study examines poorly understood effects of an immune enzyme, extracellular matrix metalloproteinase-9 (MMP9), on amyloids associated with Alzheimer's and Parkinson's diseases, lysozyme, insulin, and dialysis-related amyloidoses. The study establishes the universality of MMP9's effect on various amyloids, with its efficacy largely depending on the fibrillar cluster size. Irreversible amyloid degradation by MMP9 is attributed to the destruction of intramolecular interactions rather than intermolecular hydrogen bonds in the fibril backbone. This process results in the loss of ordered fiber structure without reducing aggregate size or increasing cytotoxicity. Thus, MMP9 can mitigate side effects of anti-amyloid therapy associated with the formation of low-molecular-weight degradation products that may accelerate fibrillogenesis and amyloid propagation between tissues and organs. MMP9 shows promise as a component of safe anti-amyloid drugs by enhancing the accessibility of binding sites through "loosening" amyloid clusters, which facilitates subsequent fragmentation and monomerization by other enzymes.
RESUMO
Matrix metalloproteinase-2 (MMP-2) plays a pivotal role in anti-aging research. Developing advanced detection platforms for MMP-2 with high specificity, sensitivity, and accessibility is crucial. This study introduces a novel electrochemiluminescence (ECL) biosensor for MMP-2 determination, leveraging the CRISPR/Cas13a system and Exponential Amplification Reaction (EXPAR). The biosensor operates by utilizing the T7 RNA polymerase to transcribe RNA from a DNA template upon MMP-2 interaction. This RNA activates Cas13a, leading to signal amplification and ECL detection. The incorporation of the "photoswitch" molecule [Ru(phen)2dppz]2+ streamlines the process by eliminating the need for extensive electrode modification and cleaning. Under optimized conditions, the biosensor achieved an impressive detection limit of 12.8 aM for MMP-2. The platform demonstrated excellent selectivity, reproducibility, and stability, making it highly suitable for detecting MMP-2 in complex biological samples. This innovative approach shows great potential for applications in molecular diagnostics and anti-aging research.
Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Técnicas Eletroquímicas , Limite de Detecção , Medições Luminescentes , Metaloproteinase 2 da Matriz , Técnicas Biossensoriais/métodos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Humanos , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Reprodutibilidade dos TestesRESUMO
OBJECTIVES: This meta-analysis aims to explore the association between MMP-9-C1562T polymorphism and susceptibility to preeclampsia (PE). MATERIAL AND METHODS: Four English databases were searched to collect relevant records up to April 2024. The pooled odds ratio (OR) was calculated using Stata 15.0. RESULTS: A total of 10 studies were enrolled in our systematic review. The results showed that genotype CT at MMP-9-C1562T locus increased the risk of PE versus genotype TT (Genotype CT vs TT: OR = 2.32, 95% CI: 1.27-4.24, P = 0.006), but no significant differences were found in other gene models (C vs T: OR = 0.88, 95% CI: 0.71-1.08, P = 0.225; Genotype CC vs TT: OR = 1.51, 95% CI: 0.87-2.61, P = 0.139; Genotype CC + CT vs TT: OR = 1.63, 95% CI: 0.95-2.81, P = 0.079; Genotype CC vs CT + TT: OR = 0.80, 95% CI: 0.63-1.03, P = 0.086). Subgroup analysis by ethnicity showed a statistically significant difference in the heterozygous model in China (Genotype CT vs TT: OR = 2.38, 95% CI: 1.15 -4.91, P = 0.019). CONCLUSIONS: Association of MMP-9-C1562T polymorphism with susceptibility to PE exists. Specifically, genotype CT increases the risk of PE versus genotype TT, particularly in Caucasian populations.
RESUMO
Objective: Long COVID is a major health concern because many patients develop chronic neuropsychiatric symptoms, but the precise pathogenesis is unknown. Matrix metalloproteinase-9 (MMP-9) can disrupt neuronal connectivity and be elevated in patients with long COVID. Methods: In this study, MMP-9 was measured in the serum of long COVID patients and healthy controls, as well as in the supernatant fluid of cultured human microglia cell line stimulated by recombinant severe acute respiratory syndrome coronavirus 2 Spike protein, as well as lipopolysaccharide (LPS) and neurotensin (NT) used as positive controls. MMP-9 was measured by commercial enzyme-linked immunosorbent assay. Results: MMP-9 was significantly elevated in the serum of long COVID patients compared to healthy controls. Moreover, there was significant release of MMP-9 from a cultured human microglia cell line stimulated by LPS, NT, or Spike protein. We further show that pretreatment with the flavonoids luteolin and tetramethoxyluteolin (methlut) significantly inhibited the release of MMP-9 stimulated by the Spike protein. Conclusion: MMP-9 from Spike protein-stimulated microglia could contribute to the development of long COVID and may serve as a target for treatment including the use of luteolin.
RESUMO
Bisphosphonates (BP) are considered a treatment option for osteoarthritis (OA) due to reduction of OA-induced microtrauma in the bone marrow, stabilization of subchondral bone (SB) layer and pain reduction. The effects of high-dose alendronate (ALN) treatment on SB and articular cartilage after destabilization of the medial meniscus (DMM) or Sham surgery of male C57Bl/6J mice were analyzed. We performed serum analysis; histology and immunohistochemistry to assess the severity of OA and a possible pain symptomatology. Subsequently, the ratio of bone volume to total volume (BV/TV), epiphyseal trabecular morphology and the bone mineral density (BMD) was analyzed by nanoCT. Serum analysis revealed a reduction of ADAMTS5 level. The histological evaluation displayed no protective effect of ALN-treatment on cartilage erosion. NanoCT-analysis of the medial epiphysis revealed an increase of BV/TV in ALN-treated mice. Only the DMM group had significantly higher SB volume accompanied by decreased subchondral bone surface. Furthermore Nano-CT analysis revealed an increase in trabecular density and number, a decreased BMD and reduced osteophyte formation in the ALN mice. ALN treatment affected bone micro-architecture by reducing osteophytosis with simultaneous increasing subchondral bone plate thickness, trabecular thickness and BMD. Accordingly, ALN cannot be considered as a potential treatment strategy in general, however in a subgroup of patients with high bone turnover in an early-stage of OA, ALN might be an option when applied during a restricted time frame.
Assuntos
Alendronato , Densidade Óssea , Cartilagem Articular , Condrócitos , Camundongos Endogâmicos C57BL , Osteoartrite , Animais , Alendronato/farmacologia , Alendronato/uso terapêutico , Camundongos , Masculino , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Densidade Óssea/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Condrócitos/metabolismo , Modelos Animais de Doenças , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico , Proteína ADAMTS5/metabolismo , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologiaRESUMO
Lumbar spinal stenosis (LSS) is a degenerative spinal condition characterized by the narrowing of the spinal canal, resulting in low back pain (LBP) and limited leg mobility. Twin and family studies have suggested that genetics contributes to disease progression. However, the genetic causes of familial LSS remain unclear. We performed whole-exome and direct sequencing on seven female patients from a Han Chinese family with LBP, among whom four developed LSS. Based on our genetic findings, we performed gene knockdown studies in human chondrocytes to study possible pathological mechanisms underlying LSS. We found a novel nonsense mutation, c.417C > G (NM_002183, p.Y139X), in IL3RA, shared by all the LBP/LSS cases. Knockdown of IL3RA led to a reduction in the total collagen content of 81.6% in female chondrocytes and 21% in male chondrocytes. The expression of MMP-1, -3, and/or -10 significantly increased, with a more pronounced effect observed in females than in males. Furthermore, EsRb expression significantly decreased following IL3RA knockdown. Moreover, the knockdown of EsRb resulted in increased MMP-1 and -10 expression in chondrocytes from females. We speculate that IL3RA deficiency could lead to a reduction in collagen content and intervertebral disk (IVD) strength, particularly in females, thereby accelerating IVD degeneration and promoting LSS occurrence. Our results illustrate, for the first time, the association between IL3RA and estrogen receptor beta, highlighting their importance and impact on MMPs and collagen in degenerative spines in women.
Assuntos
Condrócitos , Vértebras Lombares , Estenose Espinal , Humanos , Feminino , Estenose Espinal/metabolismo , Estenose Espinal/genética , Estenose Espinal/patologia , Masculino , Pessoa de Meia-Idade , Vértebras Lombares/metabolismo , Vértebras Lombares/patologia , Condrócitos/metabolismo , Condrócitos/patologia , Linhagem , Adulto , Idoso , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Colágeno/metabolismoRESUMO
INTRODUCTION: Dentin integrity is a critical aspect of tooth structure, with matrix metalloproteinases (MMPs) playing a crucial role in dentinogenesis, caries formation, and dental bonding. It is crucial to accurately assess MMP activity to understand dentin pathophysiology and develop effective clinical strategies. OBJECTIVES: The study aimed to conduct a thorough review and comprehensive summary of diverse techniques employed in assessing MMPs in dentin. DATA AND SOURCES: To conduct the research, electronic databases were systematically searched and manual citation searches were performed. A total of 621 articles were identified. After eliminating duplicates and irrelevant studies, 70 articles were included in the review. 25 articles with overlapping methodologies were also excluded. STUDY SELECTION: The selection criteria were based on the relevance of the studies to MMPs and MMP inhibitors in dentin without regard to the study design. Only peer-reviewed articles published in English were included. The search was restricted to studies published until November 2022. CONCLUSION: The comprehensive analysis of various studies has yielded 37 techniques for evaluating MMPs and MMP inhibitors, which hold significant promise in creating diagnostic markers and devising targeted therapeutic interventions.
RESUMO
BACKGROUND: Bulk-fill resin composites may suffer from recurrent caries around compound proximal restorations in posterior teeth, especially at the proximo-gingival interface.Over 12 months, will the bulk fill technique affect the caries recurrence rate at gingival margins when compared to the conventional incremental packing technique? How early will the first clinical, radiographical, and biochemical evidence of caries recurrence occur? METHODS: After randomization, in 30 patients with two compound (OM or OD) supragingival lesions, one tooth was restored using the bulk fill technique on one side (group 1) (n = 15). In contrast, the other tooth on the other side was restored utilizing the incremental layering technique (group 2) (n = 15). Both teeth received restorative material (X-tra fil, Voco, Cuxhaven, Germany). The FDI criteria were used to evaluate restorations. As for the periodontal assessment, the gingival index, plaque index, papillary bleeding scoring index and periodontal pocket depth were evaluated. The gingival crevicular fluid (GCF) specimens were gathered, and MMP-9 was extracted and quantitated by ELISA. A customized radiographic template was designed, and 3D printed digital bitewing radiographs were taken. Assessments were done clinically, radiographically and biochemically at baseline (1 week) and after 3, 6 and 12 months. Data was statistically analyzed. RESULTS: The null hypothesis was accepted clinically; no statistically significant differences appeared between bulk and incrementally filled posterior restorations. As for the radiographic assessment, the null hypothesis was accepted except for increased periodontal ligament width at 3 months. The null hypothesis for the biochemical evaluation was rejected as there were significant changes in levels of MMP-9 at different testing times. CONCLUSIONS: 1. With similar results but less sensitivity and significant time saving, the bulk fill technique can be considered an efficient alternative to the incremental fill technique in restoring proximal cavities. 2. Early evidence of caries recurrence can be correlated to an increase in the MMP-9 level in gingival crevicular fluid, followed by an increase in radiographic periodontal ligament width measurement. TRIAL REGISTRATION: An ethical approval from the Research Ethics Committee at the Faculty of Dentistry, October 6 University, (Approval No. RECO6U/5-2022). The study was registered at the Pan African Clinical Trials Registry on 24/07/2023 with an identification number (PACTR202307573531455).
Assuntos
Resinas Compostas , Cárie Dentária , Restauração Dentária Permanente , Líquido do Sulco Gengival , Índice Periodontal , Humanos , Resinas Compostas/uso terapêutico , Resinas Compostas/química , Restauração Dentária Permanente/métodos , Cárie Dentária/diagnóstico por imagem , Cárie Dentária/terapia , Líquido do Sulco Gengival/química , Feminino , Masculino , Adulto , Metaloproteinase 9 da Matriz/metabolismo , Índice de Placa Dentária , Pessoa de Meia-Idade , Recidiva , Radiografia Interproximal/métodos , Adulto JovemRESUMO
Aging is a risk factor for various human disorders, including cancer. Current literature advocates that the primary principles of aging depend on the endogenous stress-induced DNA damage caused by reactive oxygen species 50 Hz low-frequency magnetic field was suggested to induce DNA damage and chromosomal instability. NF-kB, activated by DNA damage, is upregulated in age-related cancers and inhibition of NF-kB results in aging-related delayed pathologies. Metformin (Met), an NF-kB inhibitor, significantly reduces both NF-kB activation and expression in aging and cancer. This in vitro study, therefore, was set out to assess the effects of 5mT MF in 50 Hz frequency and Met treatment on the viability and proliferation of aged mouse NIH/3T3 fibroblasts and expression of RELA/p65, matrix metalloproteinases MMP2 and MMP9, and E-cadherin (CDH1) genes. The trypan blue exclusion assay was used to determine cell viability and the BrdU incorporation assay to determine cell proliferation. The MMP-2/9 protein analysis was carried out by immunocytochemistry, NF-kB activity by ELISA and the expressions of targeted genes by qRT-PCR methods. Four doses of Met (500 uM, 1 mM, 2 mM and 10 mM) suppressed both the proliferation and viability of fibroblasts exposed to the MF in a dose-dependent pattern, and the peak inhibition was recorded at the 10 mM dose. Met reduced the expression of NF-kB, and MMP2/9, elevated CDH1 expression and suppressed NF-kB activity. These findings suggest that Met treatment suppresses the carcinogenic potential of 50 Hz MFs in aged mouse fibroblasts, possibly through modulation of NF-kB activation and epithelial-mesenchymal transition modulation.
Assuntos
Proliferação de Células , Sobrevivência Celular , Fibroblastos , Campos Magnéticos , Metformina , NF-kappa B , Animais , Metformina/farmacologia , Camundongos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Células NIH 3T3 , NF-kappa B/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/patologia , Fator de Transcrição RelA/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Caderinas/metabolismo , Caderinas/genética , Senescência Celular/efeitos dos fármacosRESUMO
Increased MMP-9 expression in the tumor microenvironment (TME) plays a crucial role in the extracellular matrix remodeling to facilitate cancer invasion and metastasis. However, the mechanism of MMP-9 upregulation in TME remains elusive. Since TGF-ß and TNF-α levels are elevated in TME, we asked whether these two agents interacted to induce/augment MMP-9 expression. Using a well-established MDA-MB-231 breast cancer model, we found that the synergy between TGF-ß and TNF-α led to MMP-9 upregulation at the transcriptional and translational levels, compared to treatments with each agent alone. Our in vitro findings are corroborated by co-expression of elevated MMP-9 with TGF-ß and TNF-α in human breast cancer tissues. Mechanistically, we found that the MMP-9 upregulation driven by TGF-ß/TNF-α cooperativity was attenuated by selective inhibition of the TGF-ßRI/Smad3 pathway. Comparable outcomes were observed upon inhibition of TGF-ß-induced phosphorylation of Smad2/3 and p38. As expected, the cells defective in Smad2/3 or p38-mediated signaling did not exhibit this synergistic induction of MMP-9. Importantly, the inhibition of histone methylation but not acetylation dampened the synergistic MMP-9 expression. Histone modification profiling further identified the H3K36me2 as an epigenetic regulatory mark of this synergy. Moreover, TGF-ß/TNF-α co-stimulation led to increased levels of the transcriptionally permissive dimethylation mark at H3K36 in the MMP-9 promoter. Comparable outcomes were noted in cells deficient in NSD2 histone methyltransferase. In conclusion, our findings support a cooperativity model in which TGF-ß could amplify the TNF-α-mediated MMP-9 production via chromatin remodeling and facilitate breast cancer invasion and metastasis.
Assuntos
Neoplasias da Mama , Regulação Neoplásica da Expressão Gênica , Metaloproteinase 9 da Matriz , Metástase Neoplásica , Fator de Crescimento Transformador beta , Fator de Necrose Tumoral alfa , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Fator de Necrose Tumoral alfa/metabolismo , Feminino , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular Tumoral , Histonas/metabolismo , Metilação , Transdução de Sinais , Microambiente TumoralRESUMO
Subsequently to the publication of the above paper, an interested reader drew to the authors' attention that the pair of data panels shown for the invasion experiments in Fig. 2D on p. 1826 were strikingly similar to the 'Control' data panels shown for the Transwell assay experiments in Fig. 5C on p. 1829. After having reexamined their original data files, the authors realized that Fig. 5C had been inadvertently assembled incorrectly. The revised version of Fig. 5, now featuring the correct data for the '231control/Control' and '231BMP6/Control' experiments in Fig. 5C, is shown below. Note that the corrections made to this figure do not affect the overall conclusions reported in the paper. The authors are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish this Corrigendum, and apologize to the readership for any inconvenience caused. [Oncology Reports 35: 18231830, 2016; DOI: 10.3892/or.2015.4540].
RESUMO
Background: Osgood-Schlatter disease (OSD) belongs to the group of sterile bone necrosis and mainly affects athletically active children. The pathogenesis of OSD is currently not fully understood, so the purpose of this study was to evaluate the concentrations of selected matrix metalloproteinases (MMPs)-MMP-2, MMP-3, MMP-7, MMP-9, MMP-10 and MMP-26 in patients diagnosed with OSD compared to patients with diseases other than sterile bone necrosis Methods: The study group included 140 patients with OSD, while the control group contained 100 patients with knee pain unrelated to sterile bone necrosis. The MMPs tested were determined by an enzyme-linked immunosorbent assay in plasma. Results: Patients with OSD had higher concentrations of MMP-2 and MMP-9 compared to the control group. The concentrations of MMP-7, MMP-10 and MMP-26 were lower in affected children. High values of diagnostic parameters-diagnostic accuracy (AC), sensitivity (SE), specificity (SP) and area under curve (AUC)-were obtained for MMP-7, MMP-9 and MMP-26. Conclusions: The collected results convince that MMP-7, MMP-9 and MMP-26 can be consider as a differential ancillary test between OSD and other knee pain and may be involved in the pathogenesis of this condition.
RESUMO
Purpose: This study aimed to measure the correlation between miR-183 and gene expression that regulates apoptosis and adhesion mechanism that may be linked to the pathogenesis of endometriosis. Patients and Methods: Forty-four subjects, including 22 control subjects, participated in this study. We collected ectopic endometriosis and endometrial samples. For the control, the sample was taken from endometrial tissue through pipelle biopsy. RNA was extracted from all tissues using RNA mini kit, and the expression was assessed using quantitative-real time PCR. Relative mRNA and miRNA expression were presented using the formula of the Livak method. The data were statistically analyzed using GraphPad Prism 8. Results: The expression of Caspase-3, Survivin, Integrin ß1 (ITGB1), matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) (adhesion- and apoptosis-related gene) were calculated using the relative expression method. We found significant differences in Caspase-3, Survivin, ITGB1, MMP-9, and TIMP-1 expression between ectopic endometriosis tissues of women with endometriosis compared to healthy endometrium. MMP-9, Survivin, and ITGB1 was significantly increased in the endometriosis group, while Caspase-3, TIMP-1, and miR-183 were significantly reduced in the endometriosis group. No correlation was found between the expression level of miR-183 and Caspase3, Survivin, ITGB1, and Cadherin in both tissue types. Conclusion: Despite the difference in expression levels of miR-183 and associated adhesion- and apoptosis-related genes, there was no significant association between miR-183 with specific adhesion and apoptosis genes in endometriosis tissue.
RESUMO
Esophageal cancer (EC) continues to pose a significant health risk. Cancer-associated fibroblasts (CAFs), an essential part of the tumor microenvironment (TME), are viewed as potential therapeutic targets. However, their role in tumor mechanisms specific to esophageal cancer remains to be elucidated. This study identified MMP14+ CAFs and MMP14- CAFs using immunofluorescence staining. The cytotoxic activity of CD8 T cells was assessed via western blot and ELISA. Using a transwell test, the migratory potential of MMP14+ CAFs was evaluated. Using flow cytometry, apoptosis was found in the esophageal squamous cell carcinoma cell line KYSE30. To determine the important tsRNAs released by MMP14+ CAFs, tsRNA-seq was used. Two subgroups of EC receiving PD-1 immunotherapy were identified by our research: MMP14+ CAFs and MMP14- CAFs. MMP14+ CAFs showed improved migratory capacity and released more inflammatory factors linked to cancer. Through exosomes, these CAFs may prevent anti-PD-1-treated CD8 T cells from being cytotoxic. Furthermore, exosomal tsRNA from MMP14+ CAFs primarily targeted signaling pathways connected with cancer. Notably, it was discovered that tsRNA-10522 plays a critical role within inhibiting CD8 T cell tumor cell death. The tumor cell killing of CD8 T cells by exosomal tsRNA-10522 is inhibited by a subgroup of cells called MMP14+ CAFs inside the EC microenvironment during PD-1 immunotherapy. This reduces the effectiveness of PD-1 immunotherapy for EC. Our findings demonstrate the inhibitory function of MMP14+ CAFs within EC receiving PD-1 immunotherapy, raising the prospect that MMP14+ CAFs might serve as predictive indicators in EC receiving PD-1 immunotherapy.
Assuntos
Fibroblastos Associados a Câncer , Neoplasias Esofágicas , Exossomos , Imunoterapia , Metaloproteinase 14 da Matriz , Receptor de Morte Celular Programada 1 , Microambiente Tumoral , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Humanos , Fibroblastos Associados a Câncer/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética , Linhagem Celular Tumoral , Exossomos/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 14 da Matriz/genética , Linfócitos T CD8-Positivos/imunologiaRESUMO
BACKGROUND AND AIMS: As humans undergo the aging process, they become more vulnerable to various types of cancers, including gastric cancer (GC), which is frequently associated with aging. The senescent phenotype is closely linked to lysosomes, but research on the combined impact of senescence and lysosomes on GC prognosis is scarce. METHODS: To construct and validate a prognostic model for gastric cancer (GC), we obtained gene expression and clinical data of GC patients from Cancer Genome Atlas (TCGA) databases. We employed Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression for model construction and ConsensusClusterPlus R package for generating cluster heatmaps. The model's predictive ability was evaluated through Kaplan-Meier survival analysis and ROC curve analysis. Our analysis included an assessment of the senescence and lysosome state using expression profiles and immune infiltration analysis through CIBERSORT methods. Finally, we validated potential gene targets through cellular experiments. RESULTS: "In this research, we discovered two subtypes of gastric cancer (GC), Cluster 1 and Cluster 2. These subtypes are characterized by the presence of lysosomes and senescence, and we have identified distinct molecular features unique to each subtype. We observed that Cluster 2 had a lower survival prognosis compared to Cluster 1. Additionally, we have developed a risk prediction model that takes into consideration the presence of lysosomes and senescence. Patients in the high-risk group, as predicted by our model, experienced shorter survival times. Further analysis included immune infiltration, immune checkpoint, and chemotherapy evaluation of GC patients. We have displayed the frequency of mutations and copy number variations (CNVs) in visual formats. Our cellular experiments demonstrated that the MMP12 gene serves as a protective factor in GC cells." CONCLUSIONS: In conclusion, we have clarified the extensive relationship between lysosomes and senescence in GC and developed a risk signature to forecast the prognosis of GC patients. MMP12 could be a promising protective factor for GC patients and might present a novel concept for anticipating the efficacy of targeted therapies and immunotherapies in GC patients.