Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 440(2): 295-9, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24070606

RESUMO

Receptor Activator of NFκB Ligand (RANKL) and its decoy receptor osteoprotegerin (OPG) have been shown to play a role not only in bone remodeling but also in inflammation, arterial calcification and atherosclerotic plaque rupture. In human smooth muscle cells, Cu(2+)-oxidized LDL (CuLDL) 10-50 µg/ml increased reactive oxygen species (ROS) and RANKL level in a dose-dependent manner, whereas OPG level was not affected. The lipid extract of CuLDL reproduced the effects of the whole particle. Vivit, an inhibitor of the transcription factor NFAT, reduced the CuLDL-induced increase in RANKL, whereas PKA and NFκB inhibitors were ineffective. LDL oxidized by myeloperoxidase (MPO-LDL), or other pro-oxidant conditions such as ultraviolet A (UVA) irradiation, incubation with H2O2 or with buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis, also induced an oxidative stress and enhanced RANKL level. The increase in RANKL in pro-oxidant conditions was also observed in fibroblasts and endothelial cells. Since RANKL is involved in myocardial inflammation, vascular calcification and plaque rupture, this study highlights a new mechanism whereby OxLDL might, by generation of an oxidative stress, exert a deleterious effect on different cell types of the arterial wall.


Assuntos
Lipoproteínas LDL/farmacologia , Músculo Liso Vascular/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ligante RANK/metabolismo , Humanos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Fatores de Transcrição NFATC/antagonistas & inibidores , Oligopeptídeos/farmacologia , Osteoprotegerina/metabolismo , Peroxidase/metabolismo
2.
Biochim Biophys Acta ; 1832(10): 1756-64, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23756197

RESUMO

BACKGROUND: Receptor activator of nuclear factor kappa-light-chain-enhancer of activated B cell ligand/osteoprotegerin ratio is of crucial importance in osteoclast differentiation and thus in bone dysregulation diseases. METHODS: Receptor activator of nuclear factor kappa-light-chain-enhancer of activated B cell ligand and osteoprotegerin were determined under oxidized low density lipoprotein treatment of human osteoblast-like cells. The involvement of oxidative stress, of the extracellular signal regulated kinase and of the transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells and nuclear factor of activated T cells was demonstrated. RESULTS: Cu(2+)-oxidized low density lipoprotein increased cell-associated and extracellular receptor activator of nuclear factor kappa-light-chain-enhancer of activated B cell ligand levels whereas osteoprotegerin levels were not affected. The increase in receptor activator of nuclear factor kappa-light-chain-enhancer of activated B cell ligand was parallel to the generation of reactive oxygen species provoked by Cu(2+)-oxidized low density lipoprotein. The lipid extract of Cu(2+)-oxidized low density lipoprotein, together with other forms of oxidized low density lipoproteins such as smooth muscle cell-oxidized low density lipoprotein and myeloperoxidase-oxidized low density lipoprotein, also induced an increase in reactive oxygen species and cell-associated receptor activator of nuclear factor kappa-light-chain-enhancer of activated B cell ligand. The effect of Cu(2+)-oxidized low density lipoprotein was prevented by the antioxidant vitamin E, and mimicked by the prooxidant compounds hydrogen peroxide and buthionine sulfoximine. Inhibitors of mitogen activated protein kinase/extracellular signal regulated kinase (PD 98059), nuclear factor kappa-light-chain-enhancer of activated B cells (Ro 106-9920) and nuclear factor of activated T cells (Vivit) reduced the effect of Cu(2+)-oxidized low density lipoprotein on receptor activator of nuclear factor kappa-light-chain-enhancer of activated B cell ligand expression. Cu(2+)-oxidized low density lipoprotein signaling was also reduced by vitamin E. GENERAL SIGNIFICANCE: This work describes a new molecular mechanism and elucidates the signaling pathway whereby oxidized low density lipoprotein, by means of its lipid moiety, can modulate the crosstalk between osteoblasts/osteoclasts and bone remodeling, leading to an eventual risk of osteoporosis.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Lipoproteínas LDL/metabolismo , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoblastos/metabolismo , Ligante RANK/metabolismo , Humanos , Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA